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Higher Order Barrier Certificates for
Leader-Follower Multi-Agent Systems

Maryam Sharifi and Dimos V. Dimarogonas

Abstract—This paper presents control strategies based on
time-varying convergent higher order control barrier functions
for a class of leader-follower multi-agent systems under signal
temporal logic (STL) tasks. Each agent is assigned a local
STL task which may be dependent on the behavior of agents
involved in other tasks. We consider one or more than one leader
in the multi-agent system. The leader has knowledge on the
associated tasks and controls the performance of the subgroup
involved agents. The followers are not aware of the tasks, and
do not have any control authority to reach them. They follow
the leader commands indirectly, according to their dynamics
interconnections, for the task satisfaction. We further assume
that the input-to-state stability (ISS) property for the multi-agent
system is fulfilled. First, robust solutions for the task satisfaction,
based on the leader’s accessibility to the follower agents’ states
are suggested. In addition, using the notion of higher order
barrier functions, individual barrier certificates for each agent
evolving in a formation dynamic structure are proposed. For the
case of presence of more leaders in the subgroups, we provide
decentralized barrier certificates. Our approach finds solutions
to guarantee the satisfaction of STL tasks independent of the
agents’ initial conditions.

I. INTRODUCTION

The improved capabilities of coordination in a group of
systems over single-agent systems to handle task complexity
and robustness to agent failures, makes the field of multi-agent
systems a popular research topic. The design of multi-agent
coordination strategies typically deals with group behaviors
such as achieving and maintaining consensus [1], formations
[2], covering areas of interest [3], environmental exploration
[4], connectivity maintenance [5], and collision avoidance
[6]. However, many complex tasks may not be defined as
stand-alone traditional control objectives and need employing
some tools from computer science such as formal verification
in order to define general specifications in temporal logic
formulations that induce a sequence of control actions [7],
[8]. Among those formulations, signal temporal logic (STL) is
beneficial as it is interpreted over continuous-time signals [9],
allows for imposing tasks with strict deadlines and introduces
quantitative robust semantics [10].

While assigning the same distributed control strategy to
all robots may be suitable for simpler and more traditional
control objectives, our aim here is to tackle high-level and
more complex task specifications in the form of STL. We
choose to consider a heterogeneous, leader-follower approach

This work was supported by the ERC CoG LEAFHOUND, the Swedish
Research Council (VR) and the Knut & Alice Wallenberg Foundation (KAW).
The authors are with Division of Decision and Control Systems, School
of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm, Sweden. {msharifi, dimos}@kth.se.

to the problem. In leader-follower networks, a subset of agents
with advanced actuation, computation and communication
capabilities, namely the leaders, are responsible for guiding
the whole group to satisfy STL tasks in a decentralized
and cooperative way while fulfilling the transient constraints.
While this approach will include the homogeneous (leaderless)
decentralized case as a subcase, it will guarantee the significant
improvement of several important attributes of the system,
including scalability, robustness with respect to failures, and
resource usability, since only a subset of the team (the lead-
ers) need to be actuated for the specification fulfilment. In
[11], several measures of controllability for leader-follower
networks are defined and utilized as the performance metric.
The authors in [12] investigate the problem of assigning a pre-
determined number of leaders formulated as a convex objective
function, to minimize the overall variance in the network
subject to stochastic disturbances. Leader selection to achieve
the stabilization and tracking via the notion of manipulability
is considered in [13]. However, these approaches don’t take
into account complex tasks with space and time constraints
prescribed by STL.

We present control strategies for first and second order
leader-follower multi-agent systems under local STL tasks.
For this aim, we present a notion of time-varying convergent
higher order control barrier functions (TCHCBF) to address
the high relative degree constraints and provide individual
barrier certificates for each follower. Control barrier functions
[14] guarantee the existence of a control law that renders a
desired set forward invariant. Nonsmooth, higher order and
time-varying control barrier functions are provided in [15],
[16] and [17], respectively. In addition, decentralized barrier
certificates are provided in [18]. Nevertheless, appropriate
control barrier functions to maintain the desired behavior of
leader-follower multi-agent systems under STL tasks haven’t
been introduced yet, to the best of our knowledge. We consider
connected graph topologies where each local STL task is
defined on a subset of connected agents containing one or more
leaders. The subsystems are not fully decoupled. Hence, each
task may be dependent on the behavior of other group agents.
The leader agent has the knowledge of the associated local
task and is responsible for its satisfaction. The followers are
not aware of the prescribed tasks and don’t have any control
authority to meet them.

We first consider the case of first order dynamics leader-
follower networks. Due to the deficiencies in the rank of
the input matrix, there exist singularities in the associated
constraints. This issue results from the under-actuated property
of the system caused by the follower agents which are not
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influenced by direct actuation. We tackle the singularities by
providing novel barrier function certificates for specific graph
topologies to guarantee fixed-time convergence to the specified
safe sets and remaining there onwards. We call these sets
fixed-time convergent and forward invariant. We then consider
higher order leader-follower networks, where the relative-
degree of each agent is more than one. Moreover, there exist
again singularities which cause infeasibilties in the satisfaction
of required constraints due to the existence of follower agents.
We provide higher order convergent control barrier functions
and singularity avoidance solutions to satisfy specifications.
Then, we focus on second order dynamic leader-follower
networks and provide higher order barrier certificates in order
to tackle the higher-order constraints, (e.g., position dependent
constraints) and the under-actuated property of the network.

In this paper, we consider (first and higher order dynamics)
leader-follower networks. The control barrier certificates are
provided based on the knowledge of the leader from the
followers and a connected network topology assumption, with
the aim to guarantee convergence and forward invariance of
the desired sets. We provide relaxed barrier certificates for
the input signal under the assumption that the leader has
only partial knowledge of the followers’ states and network
topology (according to Assumption 3), while there is no
need for the leader to know the upper bound of the norm
corresponding to the dynamic terms of its non-neighbor agents.
This upper-bound determines the ultimate convergent set for
the network under the specified tasks. Furthermore, in order to
improve scalability of the network control solution and account
for more general STL formulas, we have proposed individual
barrier certificates for each agent. Utilizing the higher order
barrier functions for the followers according to the formation
dynamic structure of the network, we are able to maintain the
constraints using the leader’s control input. In addition, we
consider subgroups consisting of more than one leader and
provide decentralized constraints as functions of the leaders’
control input signal.

The rest of the paper is organized as follows. Section II
gives some preliminaries on STL, leader-follower multi-agent
systems and time-varying barrier functions. First order systems
are considered in Sections III. Higher order leader-follower
networks are considered in Section IV and higher order,
individual and decentralized barrier certificates with some
illustrative examples are introduced. Finally, some concluding
points are presented in Sections V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Signal temporal logic (STL)

Signal temporal logic (STL) [9] is based on predicates ν
which are obtained by evaluation of a continuously differen-
tiable predicate function h : Rd → R as ν := > (True) if
h(x) ≥ 0 and ν := ⊥ (False) if h(x) < 0 for x ∈ Rd. The
STL syntax is then given by

φ ::= >|ν|¬φ|φ′ ∧ φ′′|φ′U[a,b]φ
′′,

where ¬ and ∧ denote negation and conjunction, respectively
and φ′, φ′′ are STL formulas, and U[a,b] is the until operator

with a ≤ b < ∞. In addition, define F[a,b]φ := >U[a,b]φ
(eventually operator) and G[a,b]φ := ¬F[a,b]¬φ (always oper-
ator). Note that ¬µ can be encoded in the STL syntax above
by defining µ̄ := ¬µ and h̄(ν) := −h(ν). Let (x, t) |= φ
denote the satisfaction relation, i.e., a formula φ is satisfiable
if ∃x : R≥0 → Rd such that (x, t) |= φ.

Definition 1. [9] (STL Semantics): For a signal x : R≥0 →
Rd, the STL semantics are recursively given by:

(x, t) |= ν ⇔ h(x) ≥ 0,

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ),

(x, t) |= φ′ ∧ φ′′ ⇔ (x, t) |= φ′ ∧ (x, t) |= φ′′,

(x, t) |= φ′U[a,b]φ
′′ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t.(x, t1) |= φ′′

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ′,

(x, t) |= F[a,b]φ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t.(x, t1) |= φ,

(x, t) |= G[a,b]φ ⇔ ∀t1 ∈ [t+ a, t+ b] s.t.(x, t1) |= φ.

B. Leader-follower multi-agent systems

Consider a connected undirected graph G := (V, E), where
V := {1, · · · , n} indicates the set consisting of n agents
and E ∈ V × V represents communication links. Without
loss of generality, we suppose the first nf agents as fol-
lowers and the last nl agents as leaders, with corresponding
vertices, sets denoted as Vf := {1, · · · , nf} and Vl :=
{nf + 1, · · · , nf + nl}, respectively, with nf + nl = n. Let
pi ∈ R, vi ∈ R and ui ∈ R denote the position, velocity
and control input of agent i ∈ V , respectively. Moreover, Ni
denotes the set of neighbors of agent i and |Ni| determines the
cardinality of the set Ni. In addition, we define the stacked
vector of all elements in the set X with cardinality |X |, as
[xi]i∈X := [x>i1 , · · · , x

>
i|X|

]>, i1, · · · , i|X | ∈ X . Then, the 1st

order dynamics of agent i can be described as

ṗi = fsi (pi, [pj ]j∈Ni) + big
s
i (pi)ui, (1)

where bi = 0, i ∈ {1, · · · , nf}, indicates the followers and
bi = 1, i ∈ {nf + 1, · · · , nf + nl}, denotes the leaders. In
addition, fsi : R1+|Ni| → R, gsi : R → R are assumed to be
locally Lipschitz continuous functions.

We also introduce the 2nd order dynamics for the followers
for bi = 0 and the leaders for bi = 1 as follows.[
pi
vi

]
=

[
vi

fdi (pi, [pj ]j∈Ni , vi, [vj ]j∈Ni)

]
︸ ︷︷ ︸

fdi (pi,[pj ]j∈Ni ,vi,[vj ]j∈Ni )

+bi

[
0

gdi (vi)ui

]
,

(2)

in which fdi : R2+2|Ni| → R, gdi : R→ R are locally Lipschitz
continuous functions.

We consider the STL fragment

ψ ::= >|ν|ψ′ ∧ ψ′′, (3a)
φ ::= G[a,b]ψ|F[a,b]ψ|ψ′U[a,b]ψ

′′|φ′ ∧ φ′′, (3b)

where ψ′, ψ′′ are formulas of class ψ in (3a) and φ′, φ′′ are
formulas of class φ in (3b). It is worth mentioning that these
formulas can be extended to consider disjunctions (∨) using
automata based approaches [19].
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Consider formulas φs and φd of the form (3b), corre-
sponding to the 1st and 2nd order leader-follower multi-agent
systems, respectively. The formula φs (resp. φd) consists of
a number of temporal operators and its satisfaction depends
on the behavior of the set of agents V = {1, · · · , n}. By
behavior of an agent i, we mean the state trajectories that
evolve according to (1) (resp. (2)).

Assumption 1. Predicate functions in φs (resp. φd) are
concave.

Concave predicate functions contain linear functions as well
as functions corresponding to reachability tasks (‖x− p‖2 ≤
ε, p ∈ Rn, ε ≥ 0). As the minimum of concave predicate
functions is again concave, they are useful in constructing valid
control barrier functions [20, Lemmas 3, 4].

Based on (1) and (2), we write the stacked dynamics for
the set of agents i ∈ V , as

ẋs = fs(xs) + gs(xs)u, (4)

for the 1st order dynamics and

ẋd = fd(xd) + gd(xd)u, (5)

for the 2nd order dynamics, where xs := [xsi ]i∈V = [pi]i∈V ∈
Ss ⊆ Rn, fs(·) = [fsi (·)]i∈V ∈ Rn, xd :=

[
xdi
]
i∈V =

[pi; vi]i∈V ∈ Sd ⊆ R2n, fd(·) =
[
fdi (·)

]
i∈V ∈ R2n.

Without loss of generality, we consider functions fsi (x
s)

and fdi (x
d) as fsi (x

s) = fsi,i(x
s
i ) +

∑
j∈V,j 6=i f

s
i,j(x

s
i , x

s
j)

and fdi (x
d) = fdi,i(x

d
i ) +

∑
j∈V,j 6=i f

d
i,j(x

d
i , x

d
j ), respectively.

The local dynamic function fsi,i(x
s
i ) corresponds to the

terms of fsi (x
s) which are only dependent on xsi (pi), and

fsi,j(x
s
i , x

s
j) contains the terms of fsi (x

s) which are dependent
on agent j ∈ V, j 6= i as well. The same holds for
fdi (x

d). For the case of one leader, with follower and leader
sets Vf := {1, · · · , n− 1} and Vl := {n}, respectively,
the input matrices and control input signal are defined as
gs(·) :=

[
0Tn−1×1, g

s
n(·)

]T
, gd(·) :=

[
0T2n−1×1, g

d
n(·)

]T
,

and u := un ∈ R. In addition, for networks containing
more than one leader, with Vf := {1, · · · , nf} and Vl :=
{nf + 1, · · · , n}, n = nf + nl, the associated matrices
are denoted as gs(·) :=

[
0Tnf×nl , g

s
nl

(·)Inl
]T

, gsnl(·) =

[gsi (·)]i∈{nf+1,··· ,n}, gd(·) :=
[

0Tne+nf×nl , g
d
nl

(·)Inl
]T

,
gdnl(·) =

[
gdi (·)

]
i∈{nf+1,··· ,n}, and u := [ui]i∈{nf+1,··· ,n} ∈

Rnl . Note also that the input matrices gs(·) and gd(·) are not
full row rank. We also denote by mi as the minimum of the
length of paths between agent i and the leaders of the network.

We assume that the dynamics of the agents are input-to-state
stable (ISS). In other words, consider the neighbor agents’
states xsj and xdj , j ∈ Ni, as inputs to the functions fsi (xs)
and fdi (xd), respectively, where i ∈ V . Then, ISS implies that
fsi (xs) (fdi (xd)), i ∈ V , is asymptotically stable whenever
xsj = 0 (xdj = 0), j ∈ Ni. Moreover, we assume that the small-
gain condition for the network consisting of n ISS agents is
satisfied according to [21]. In particular, for the case of first
order dynamics, consider the local dynamics ẋi = fsi (x

s) +
big

s
i (x

s
i )ui = fsi,i(x

s
i ) +

∑
j∈V,j 6=i f

s
i,j(x

s
i , x

s
j) + big

s
i (x

s
i )ui,

with bi = 0, i ∈ Vf and bi = 1, i ∈ Vl. Moreover, the stacked

dynamics is given as (4).
Then, the local ISS property for the dynamics ẋi = fsi (x

s) +
big

s
i (x

s
i )ui with internal inputs xsj , j ∈ Ni and external input

ui ∈ R, states that there exist continuously differentiable
functions Vi : R → R+ and functions αi, γiu ∈ K∞ and
γij ∈ K∞ ∪ {0}, i, j = 1, · · · , n such that

V̇i(x
s
i ) ≤ −αi(Vi(xsi )) +

∑
i6=j

γij(Vj(x
s
j)) + γiu(‖u‖) (6)

for all xsi ∈ R, i = 1, · · · , n. Now define the matrices
Γ(s) := (γij(s))i,j=1,··· ,n ∈ (K∞ ∪ {0})n×n and A(s) :=
diag(α1(s), · · · , αn(s)). Then, the small-gain property [21]
is formulated as

Γ ◦A−1(s) < s,∀s ∈ Rn+\{0}. (7)

In addition, the inequality (6) can be written in the vector form
below.

V̇vec(x
s) ≤ (−A+ Γ)(Vvec(x

s)) + γu(‖u‖), (8)

where Vvec(x
s) := (V1(xs1), · · · , Vn(xsn))T and γu(·) :=

[γiu(·)]i=1,··· ,n. Consider αi and γij as linear gains. Then,
according to [21, Lemma 3.1], there exists a vector µ ∈ Rn+,
µ > 0 such that µT (−A + Γ) < 0, if and only if the small-
gain condition (7) holds. By considering the candidate ISS-
Lyapunov function V (xs) := µTVvec(x

s) and applying the
result of [21, Lemma 3.1] to the inequality (8) corresponding
to the stacked dynamics of the network, the ISS property of the
network (i.e., boundedness of the state vector xs) is concluded.
For the case of nonlinear gains αi and γij , the small-gain
condition (7) is not sufficient to obtain the desired robustness
with respect to the external input. Thus, a robust small gain
condition is imposed in [21] which requires that for some
D = diag(id +β1, · · · , id +βn), βi ∈ K∞ we have

D ◦ Γ ◦A−1(s) < s,∀s ∈ Rn+\{0}, (9)

where id denotes the identity function. Under the robust small
gain condition (9), the ISS property of the whole network is
guaranteed according to [21, Theorem 4.1]. Similar arguments
are valid for the network (5) consisting of the second order
dynamics agents.

Definition 2. [14] A continuous function λ : (−b, a)⇒ R for
some a, b > 0 is called an extended class K function if it is
strictly increasing and λ(0) = 0.

C. Time-varying barrier functions

Let hs(xs, t) : Rn × R≥0 → R (resp. hd(xd, t) : R2n ×
R≥0 → R) be a piece-wise differentiable function. The time-
varying barrier function hs(xs, t) (resp. hd(xd, t)) is built
corresponding to the STL task φs (resp. φd) related to the
multi-agent system (4) (resp. (5)). Consider the 1st order
dynamic network (4). Following the procedure in [20], we con-
struct the barrier function, piece-wise continuous in the second
argument, for the conjunctions of a number of qs single tem-
poral operators in φs, by using a smooth under-approximation
of the min-operator. Accordingly, consider the continuously
differentiable barrier functions hsj(x

s, t), j ∈ {1, · · · , qs}, cor-
responding to each temporal operator in φs. Then, we have
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min
j∈{1,··· ,qs}

hsj(x
s, t) ≈ − 1

ηs ln(
qs∑

j=1

exp(−ηshsj (x s , t))), with

parameter ηs > 0 that is proportionally related to the accuracy
of this approximation. In view of [20, Steps A, B, and C], the
corresponding barrier function to φs could be constructed as

hs(xs, t) := − 1

ηs
ln(

qs∑
j=1

exp(−ηshsj (x s , t))), (10)

where each hsj (x s , t) is related to an always or eventually
operator specified for the time interval [aj , bj ]. Whenever the
jth temporal operator is satisfied, its corresponding barrier
function hsj (x s , t) is deactivated and hence a switching occurs
in hs(xs, t). This time-varying strategy helps reducing the
conservatism in the presence of large numbers of conjunctions
[20]. Due to the knowledge of [aj , bj ], the switching instants
can be known in advance. Denote the switching sequence as
{τ0 := t0, τ1, · · · , τps}. At time t ≥ τl, the next switch occurs
at τl+1 := argminbj∈{b1 ,...,bqs }ζ(bj , t), l ∈ {0, · · · , ps − 1},

where ζ(bj , t) :=

{
bj − t, bj − t > 0
∞, otherwise

.

Definition 3. [22] (Forward Invariance) Consider the set

Cs(t) := {xs ∈ Rn|hs(xs, t) ≥ 0}. (11)

The set Cs(t) is forward invariant with a given control law u
for (4), if for each initial condition xs0 ∈ Cs(t0), there exists
a unique solution xs : [t0, t1] → Rn with x(t0) = xs0, such
that xs(t) ∈ Cs(t) for all t ∈ [t0, t1].

If Cs(t) is forward invariant, then it holds that
xs |= φs. Note that since at each switching instant,
one control barrier function hsj(x

s , t)) is removed from

hs(xs, t) := − 1
ηs ln(

qs∑
j=1

exp(−ηshsj (x s , t))), the set Cs(t) is

non-decreasing at these switching instants. Hence, for each
switching instant τl, it holds that lim

t→τ−l
Cs(t) ⊆ Cs(τl), where

lim
t→τ−l

Cs(t) is the left-sided limit of Cs(t) at t = τl.

We also assume that the set Cs is compact and non-empty.

Definition 4. We denote the set Cs(t) to be fixed-time con-
vergent for (4), if there exists a user-defined, independent
of the initial condition, and finite time T s > t0, such
that limt→T s x

s(t) ∈ Cs(t). Moreover, the set Cs(t) is
robust fixed-time convergent if limt→T s x

s(t) ∈ Csrf (t),
where Csrf (t) ⊃ Cs(t), and robust convergent for (4), if
limt→∞ xs(t) ∈ Csrf (t). The set Csrf (t) is characterized as
Csrf (t) := {xs ∈ Rn|hs(xs, t) ≥ −εsmax}, where εsmax is a
bounded and positive value.

The same properties hold for the barrier functions hd(xd, t)
and the set Cd(t) corresponding to the 2nd order dynamic
network (5) under the task φd.

III. FIRST ORDER LEADER-FOLLOWER MULTI-AGENT
SYSTEMS

In this section, we provide conditions to guarantee the fixed-
time convergence property of the set Cs(t) corresponding to
the STL specification of the form (3b), using control barrier

certificates for a network of 1st order leader-follower agents,
based on the leader information of the involved followers.
Consider the leader-follower network (4) under the task φs.
Let hs(xs, t) define a time-varying barrier function for this
system. Next, we provide a Lemma to guarantee the fixed-time
convergence and forward invariance of the set Cs(t) given in
(11) for system (4), under the following assumption.

Assumption 2. The leader agent corresponding to the graph
G := (V, E) subject to the task φs has knowledge of the
functions ∂hs(xs,t)

∂xsi
and dynamics fsi (x

s), i ∈ {1, · · · , n}.

A special case satisfying Assumption 2, is the star topology
network with a leader in the middle.

Lemma 1. Consider a leader-follower multi-agent system
subject to the dynamics (4) containing one leader, under STL
task φs of the form (3b) satisfying Assumption 1. Suppose
that the leader satisfies Assumption 2. Let hs(xs, t) be a time-
varying barrier function associated with the task φs, specified
in Section II-C. If for some open set Ss with Ss ⊃ Cs(t) , ∀t ≥
t0, and for all (xs, t) ∈ Ss × [τl, τl+1), l ∈ {0, · · · , ps − 1},
for some constants 0 < γs1 < 1, γs2 > 1, αs > 0, βs > 0
such that 1

αs(1−γs1)
+ 1
βs(γs2−1)

≤ minl∈{0,··· ,ps−1}{τl+1−τl},
there exists a control law un satisfying∑

i∈V
∂hs(xs,t)
∂xsi

fsi (x
s) + ∂hs(xs,t)

∂xsn
gsn(xsn)un

+∂hs(xs,t)
∂t ≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ

s
1

−βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 ,

(12)

then the set Cs(t) is fixed-time convergent and forward invari-
ant. Hence, (xs, t) |= φs.

Proof. Consider the inequality (12) and dynamics (4). Since
the leader control signal un is the only external input respon-
sible for controlling the network, and under Assumption 2, the
inequality (12) can be written as follows:

∂hs(xs, t)

∂xs
(fs(xs) + gs(xs)u) +

∂hs(xs, t)

∂t

+ αssgn(hs(xs, t))|hs(xs, t)|γ
s
1

+ βssgn(hs(xs, t))|hs(xs, t)|γ
s
2 ≥ 0. (13)

Now, consider the satisfaction of (13) for all (xs, t) ∈
Ss × [τl, τl+1) under a control input u := un ∈ R with
positive constants γs1 < 1, γs2 > 1, αs, βs. Note that by
lim
t→τ−l

Cs(t) ⊆ Cs(τl), it is sufficient to ensure convergence

and forward invariance of Cs(t) for each [τl, τl+1). This
is due to the fact that if hs(xs, t) ∈ Cs(t) for all t ∈
[τl, τl+1), then hs(xs, τl+1) ∈ Cs(τl+1). Consider the function
V s(xs, t) = max {0,−hs(xs, t)}. Then, for xs(t0) ∈ Cs(t0)
(hs(xs, t) ≥ 0) we have V s(xs, t) = 0 for all t ≥ t0 by
the Comparison Lemma [23]. Hence, the set Cs(t) is forward-
invariant. Moreover, for xs(t0) ∈ Ss\Cs(t0) (hs(xs, t) < 0),
we get V s(xs, t) = −hs(xs, t). Thus, (13) can be written as

V̇ s(xs, t) ≤ −αsV s(xs, t)γ
s
1 − βsV s(xs, t)γ

s
2 ,

which guarantees the fixed-time convergence of xs to the set
Cs(t) within T s ≤ 1

αs(1−γs1)
+ 1

βs(γs2−1)
and staying there

onwards, according to [24]. The proof is complete.
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Accordingly, the following definition is provided.

Definition 5. The time-varying barrier function hs(xs, t) is
called a time-varying fixed-time convergent control barrier
function (TFCBF) for system (4), if there exist positive con-
stants γs1 < 1, γs2 > 1, αs, βs such that

sup
u∈R
{∂h

s(xs, t)

∂xs
fs(xs) +

∂hs(xs, t)

∂xs
gs(xs)u

+
∂hs(xs, t)

∂t
+ αssgn(hs(xs, t))|hs(xs, t)|γ

s
1

+ βssgn(hs(xs, t))|hs(xs, t)|γ
s
2 ≥ 0},

for all (xs, t) ∈ Cs(t)× [t0, t1].

Inspired by [25, Theorem 2], we extend the results of
Lemma 1 to the case of leader partial information from the
subgraph, i.e., there exist followers that aren’t neighbors of the
leader, denoted by i /∈ Nn. In this case, the robust fixed-time
convergence property of the set Cs(t) is guaranteed.

In the following, we impose some relaxations on Assump-
tion 2 and provide further results on task satisfaction under
new conditions.

Assumption 3. Consider the 1st order leader-follower
network (4) with a single leader i = n. We as-
sume that there exists a positive constant δs satisfying
‖
∑
i∈Nn,j /∈Nn

∂hs(xs,t)
∂xsj

fsj(x
s) + ∂hs(xs,t)

∂xsi
fsi,j(x

s
i , x

s
j)‖ ≤ δs,

∀(xs, t) ∈ Ss × [τl, τl+1), l ∈ {0, · · · , ps − 1}.

Remark 1. Note that the function hs(xs, t) is differentiable
∀(xs, t) ∈ Ss× [τl, τl+1). Moreover, according to the detailed
explanations provided in Section II-B, by the ISS property
of the agents’ dynamics and satisfaction of the small-gain
condition (9) for the network (4), the ISS property of the
multi-agent system is concluded [21, Theorem 4.1]. Therefore,
the boundedness of the stack vector xs is fulfilled and hence,
the inequality in Assumption 3 is feasible. Moreover, there
is no necessity for the leader to know δs. This term is
used in determining the ultimate convergent set, as will be
demonstrated in the following theorem.

Theorem 1. Consider a leader-follower multi-agent network
subject to the dynamics (4) containing one leader, under STL
task φs of the form (3b) satisfying Assumption 1. Let hs(xs, t)
be a time-varying barrier function associated with the task
φs, specified in Section II-C. Suppose that Assumption 3 is
satisfied for the network (4). If for some constants µs > 1,
ks > 1, γs1 = 1 − 1

µs , γ2 = 1 + 1
µs , αs > 0, βs > 0,

for some open set Ss with Ss ⊃ Cs(t), ∀t ≥ 0, and for all
(xs, t) ∈ Ss × [τl, τl+1), l ∈ {0, · · · , ps − 1}, there exists a
control law un such that∑

i∈Nn
∂hs(xs,t)
∂xsi

fsi,i(x
s
i ) + (∂h

s(xs,t)
∂xsn

+ ∂hs(xs,t)
∂xsi

)fsn,i(x
s
n, x

s
i )

+
∂hse(x

s,t)
∂xsn

fsn,n(xsn) + ∂hs(xs,t)
∂t + ∂hs(xs,t)

∂xsn
gsn(xsn)un

≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ1

−βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 ,

(14)

with

T s ≤


µs

αs(cs−bs) log( |1+c
s|

|1+bs| ) ; δs > 2
√
αsβs

µs√
αsβs

( 1
ks−1 ) ; δs = 2

√
αsβs

µs

αsks1
(π2 − tan−1ks2) ; 0 ≤ δs < 2

√
αsβs

≤ min
l∈{0,··· ,ps−1}

{τl+1 − τl}, (15)

where bs, cs are the solutions of γs(s) = αss2−δss+βs = 0,

ks1 =
√

4αsβs−δs2
4αs2 , ks2 = − δs√

4αsβs−δs2
, and δs is introduced

in Assumption 3, then, the set Csrf (t) ⊃ Cs(t) defined by

Csrf (t) := {xs ∈ Rn|hs(xs, t) ≥ −εsmax}

with

εsmax =


(
δs+
√
δs2−4αsβs
2αs )

µs

; δs > 2
√
αsβs

ksµ
s

(β
s

αs )
µs

2 ; δs = 2
√
αsβs

δs

2
√
αsβs

; 0 ≤ δs < 2
√
αsβs,

(16)

is forward invariant and fixed-time convergent within T s time
units, defined in (15).

Proof. Inequality (14) can be written as∑
i∈Nn

∂hs(xs,t)
∂xsi

fsi,i(x
s
i ) + (∂h

s(xs,t)
∂xsn

+ ∂hs(xs,t)
∂xsi

)fsn,i(x
s
n, x

s
i )

+
∑
i∈Nn,j /∈Nn

∂hs(xs,t)
∂xsj

fsj(x
s) + ∂hs(xs,t)

∂xsi
fsi,j(x

s
i , x

s
j)

+∂hs(xs,t)
∂xsn

fsn,n(xsn) + ∂hs(xs,t)
∂xsn

gsn(xsn)un + ∂hs(xs,t)
∂t

≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ1

−βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 +

∑
j /∈Nn

∂hs(xs,t)
∂xsj

fsj(x
s)

+
∑
i∈Nn,j /∈Nn

∂hs(xs,t)
∂xsi

fsi,j(x
s
i , x

s
j).

(17)
Then, we get

∂hs(xs,t)
∂xs (fs(xs) + gsn(xsn)un) + ∂hs(xs,t)

∂t
≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ1

−βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2

+
∑
i∈Nn,j /∈Nn

∂hs(xs,t)
∂xsj

fsj(x
s) + ∂hs(xs,t)

∂xsi
fsi,j(x

s
i , x

s
j).

(18)
It is apparent that the left hand side of (18) is equal to
the one in (13), since gsn(xsn)un = gs(xs)u. Following the
proof of Lemma 1, function V s(xs, t) = max {0,−hs(xs, t)}
is considered. This function satisfies V s(xs, t) = 0 for
xs(t0) ∈ Cs(t0). Therefore, as long as hs(xs, t) ≥ 0, V s

remains 0 and then xs(t) ∈ Cs(t), t ≥ t0. This ensures the
forward invariance of Cs(t). Moreover, V s(xs, t) > 0 for
xs ∈ Ss\Cs(t) and by Assumption 3, (18) can be written
as

V̇ s(xs, t) ≤ −αsV s(xs, t)γ
s
1 − βsV s(xs, t)γ

s
2 + δs.

Thus, according to [26, Lemma 1], the convergence of
V s(xs, t) to the set Csrf (t) ⊃ Cs(t) in a fixed-time interval
t ≤ T s, as in (15), is achieved. In addition, considering the
forward-invariance of Cs(t) besides the convergence property
of Csrf (t), ensures forward-invariance of Csrf (t)

Remark 2. Note that due to the lack of full information of
the leader from other agents of the network, a violation in
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the constraints satisfaction for φs might occur. This violation
has been quantified as a function of δs, demonstrated in (16).
Furthermore, (15) is feasible provided that the minimum time
interval between successive switchings is sufficiently large,
such that the user defined constants αs, βs, µs, ks fulfill (14)
and (15).

Remark 3. The constraint (14) might be satisfied more easily
if more than one leader agent for each subgroup exists,
provided that each follower is a neighbor to one leader. This
setting will be considered in Section IV-E and appropriate
solutions will be provided.

IV. HIGHER ORDER LEADER-FOLLOWER MULTI-AGENT
SYSTEMS

In this section, we consider higher order dynamics multi-
agent systems and in order to tackle higher relative degree
specifications, provide a class of higher order control barrier
functions with the property of convergence to the desired sets
and robustness with respect to uncertainties.

A. Convergent higher order control barrier functions

Consider the autonomous system

ẋ = f(x), (19)

with x ∈ Rn and locally Lipschitz continuous function f :
Rn → Rn. We introduce class Cm functions h(x, t) : Rn ×
[t0,∞)→ R, later called time-varying convergent higher order
control barrier functions, to satisfy STL task φ of the form
(3b). Define a series of functions ψk : Rn × [t0,∞) → Rn,
0 ≤ k ≤ m, as

ψ0(x, t) := h(x, t),

ψk(x, t) := ψ̇k−1(x, t)

+ λk(ψk−1(x, t)), 1 ≤ k ≤ m− 1,

ψm(x, t) := ψ̇m−1(x, t)

+ αmsgn(ψm−1(x, t))|ψm−1(x, t)|γ1m

+ βmsgn(ψm−1(x, t))|ψm−1(x, t)|γ2m , (20)

where λk(·), k = 1, · · · ,m− 1, are (m− k)th-order differen-
tiable extended class K functions and 0 < γ1m < 1, γ2m > 1,
αm > 0, βm > 0, are user specified constants. We define a
series of sets Ck(t), k = 1, · · · ,m, assumed to be compact,
as

Ck(t) := {x ∈ Rn|ψk−1(x, t) ≥ 0}. (21)

Definition 6. A class Cm function h(x, t) : Rn× [t0,∞)→ R
is a time-varying convergent higher order barrier function
(TCHBF) of degree m for the system (19), if there exist
extended class K functions λk(·), k = 1, · · · ,m−1, constants
0 < γ1m < 1, γ2m > 1, αm > 0, βm > 0, and an open set D
with C := ∩mk=1Ck ⊂ D ⊂ Rn such that

ψm(x, t) ≥ 0, ∀(x, t) ∈ D× R≥0,

where ψk(x, t), k = 0, · · · ,m, are given in (20).

In the following, we aim to show the convergence and
forward invariance of the set C.

Proposition 1. The set C := ∩mk=1Ck ⊂ D ⊂ Rn is convergent
and forward invariant for system (19), if h(x, t) is a TCHBF.

Proof. First, we show forward invariance of the set C. If
h(x, t) is a TCHBF, then ψm(x, t) ≥ 0, ∀(x, t) ∈ D× [t0,∞)
according to Definition 6. Then,

ψ̇m−1(x, t) + αmsgn(ψm−1(x, t))|ψm−1(x, t)|γ1m

+ βmsgn(ψm−1(x, t))|ψm−1(x, t)|γ2m ≥ 0.

By the proof of Lemma 1, it is concluded that if x(t0) ∈
Cm(t0), then we get ψm−1(x, t) ≥ 0, ∀t ∈ [t0,∞). Then,
by [15, Lemma 2] and considering ψm−1(x, t) given by (20),
since x(t0) ∈ Cm−1(t0), we also have ψm−2(x, t) ≥ 0, ∀t ∈
[t0,∞). Iteratively, we can show ψk−1(x, t) ≥ 0, ∀t ∈ [t0,∞)
for all k ∈ {1, 2, · · · ,m} which certifies x(t) ∈ Ck(t).
Therefore, the set C := ∩mk=1Ck ⊂ D ⊂ Rn is forward
invariant. The proof of convergence property follows similar
arguments as in [27, Proposition 3].

Definition 7. Consider the system

ẋ = f(x) + g(x)u(x), (22)

with locally Lipschitz continuous functions f and g. A class
Cm function h(x, t) : Rn × [t0,∞)→ R, associated with the
task φ of the form (3b), is called a time-varying convergent
higher order control barrier function (TCHCBF) of degree m
for this system under task φ of the form (3b), if for some
constants 0 < γ1m < 1, γ2m > 1, αm > 0, βm > 0, and an
open set D with C := ∩mk=1Ck ⊂ D ⊂ Rn, Ck, k = 1, · · · ,m,
defined as in (21), there exists a control law u(x) such that

∂ψm−1(x, t)

∂x
(f(x) + g(x)u(x)) +

∂ψm−1(x, t)

∂t
≥ −αmsgn(ψm−1(x, t))|ψm−1(x, t)|γ1m

− βmsgn(ψm−1(x, t))|ψm−1(x, t)|γ2m , (23)

where ψm−1(x, t) is given by (20).

Remark 4. Given a TCHCBF h(x, t) and a control signal
u(x) that provides fixed-time convergence to the set Cm and
renders the system (22) forward complete [28, Theorem III.2],
which is a required condition for the set convergence and
forward invariance property [17]. Then, it follows directly
from Proposition 1 that the set C is convergent and forward-
invariant.

Next, we use the introduced TCHCBFs to derive similar
results to Section III for 2nd order leader-follower networks.

B. Second order leader-follower multi-agent systems

Consider a group of n number of agents with 2nd order
dynamics as in (5), under the task φd. We will formulate
a quadratic program that renders the set Cd := ∩2k=1C

d
k ⊂

Sd ⊂ R2n corresponding to functions hd(xd, t) and ψ1(xd, t),
defined by (21), robust convergent, under the following As-
sumption.

Assumption 4. Consider the 2nd order leader-follower net-
work (5) with the leader i = n. There exists a posi-
tive constant δd satisfying ‖

∑
i∈Nn,j /∈Nn

∂ψ1(x
d,t)

∂xdj
fdj (x

d) +
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∂ψ1(x
d,t)

∂xdi
fdi,j(x

d
i , x

d
j )‖ ≤ δd, ∀(xd, t) ∈ Sd × [τl, τl+1),

l ∈ {0, · · · , pd − 1}).

Remark 5. Note that Assumption 4 is the equivalent of
Assumption 3 for the second order system dynamics. Moreover,
λ1(·) in (20) is a user defined function. Then, in view of
Assumption 3, and the defined sets in (20), Assumption 4 can
be rendered feasible, too. In addition, there is no need for the
leader to know δd.

In the following, a control input un will be found such
that for all initial conditions xd(t0), and under Assumption 4,
the trajectories of (5) converge to a the set Cd1,rf (t) ⊃ Cd(t)

and ψ1(xd, t) ∈ Cd2,rf , Cd2,rf (t) ⊃ Cd(t) in a fixed-time t ≤
T d+t0, T d > 0. The sets Cd1,rf and Cd2,rf will be characterized
in the sequel.

QP formulation: Define zd =
[
un, ε

d
]T ∈ R2, and

consider the following optimization problem.

min
un∈R,εd∈R≥0

1

2
zd
T
zd

s.t.∑
i∈Nn{

∂ψ1(x
d,t)

∂xdi
fdi,i(x

d
i )

+(∂ψ1(x
d,t)

∂xdn
+ ∂ψ1(x

d,t)

∂xdi
)fdn,i(x

d
n, x

d
i )}

+∂ψ1(x
d,t)

∂xdn
gdn(xdn)un + ∂ψ1(x

d,t)
∂xdn

fdn,n(xdn)

+∂ψ1(x
d,t)

∂t ≥ −αd2 sgn(ψ1(xd, t))|ψ1(xd, t)|γ
d
12

−βd2 sgn(ψ1(xd, t))|ψ1(xd, t)|γ
d
22 − εd,

(24)

where αd2 > 0, βd2 > 0, 0 < γd12 < 1, γd22 > 1.

Theorem 2. Consider a given TCHCBF hd(xd, t) from Def-
inition 7 with the associated functions ψk(xd, t), k ∈ {1, 2},
as defined in (20). Any control signal un : R → R which
solves the quadratic program (24) renders the set Cd(t)
robust convergent for the leader-follower network (5), under
Assumption 4.

Proof. In view of Theorem 1, constraint (24) corresponds to
the fixed-time convergence of the closed-loop trajectories of
network (5) to the set Cd2,rf (t) := {xd ∈ R2n|ψ1(xd, t) ≥
−εdmax}, where εdmax is defined by the same formulation as
in (16), within the fixed-time T d with similar expression as
in (15), built by parameters αd2, β

d
2 > 0, γd12 = 1 − 1

µd
,

γd22 = 1 + 1
µd

, µd > 1, kd > 1 and δd. These parameters
are substitutions of αs, βs, γs1 , γs2 , µs, ks and δs, respec-
tively, in (15) and (16). Then, according to (20), we get
ḣd(xd, t)+λ1(hd(xd, t)) ≥ −εdmax. Let λ1(·) a linear extended
class K function. Inspired by the notion of input-to-state safety
[29] and using the Comparison Lemma [30, Lemma 3.4],
the set Cd1,ref (t) := {xd ∈ R2n|hd(xd, t) ≥ λ−11 (−εdmax)},
t ≥ T de + t0 is forward-invariant and convergence of hd(xd, t)
to this set is achieved asymptotically. Moreover, εd > 0
relaxes (24) in the presence of conflicting specifications and
its minimization results in a least violating solution to ensure
the feasibility of (24).

Corollary 1. Consider TCHCBF hd(xd, t) from Definition 7
with the associated functions ψk(xd, t), k ∈ {1, 2}, as defined
in (20) for network (5). Then, any control signal un satisfying∑

i∈V
∂ψ1(x

d,t)

∂xdi
fdi (x

d) + ∂ψ1(x
d,t)

∂xdn
gdn(xdn)un

+∂ψ1(x
d,t)

∂t ≥ −αd2 sgn(ψ1(xd, t))|ψ1(xd, t)|γ
d
12

−βd2 sgn(ψ1(xd, t))|ψ1(xd, t)|γ
d
22 ,

for constants αd2 > 0, βd2 > 0, 0 < γd12 < 1, γd22 > 1,
renders the set Cd := ∩2k=1C

d
k ⊂ Sd ⊂ R2n convergent and

forward invariant. Moreover, it holds that xd |= φd within
T d ≤ 1

αd2(1−γd12)
+ 1

βd2 (γ
d
22−1)

Proof. Follows by the proof of Lemma 1 with incorporating
the arguments in Proposition 1.

Remark 6. Note that in this work we considered the treat-
ment of singularities that happen due to 1) the higher order
constraints in the specifications, e.g., the position constraints
in a second order system dynamics, and 2) the under-actuated
property of the system caused by the follower agents which
are not influenced by direct control actuation. However, there
might exist singularities in the solution of the higher order
barrier certificate (24) in a set of points of measure zero.
In particular, whenever ∂ψ1(x

d,t)
∂xdn

gdn(xdn) = 0. Under the
assumption that this type of singular points lie inside the safe
sets, it can be shown that the required inequalities remain
feasible and can be satisfied [27, Proposition 4].

C. Simulations (I)

Consider a leader-follower multi-agent system consisting
of M := 3 number of second order dynamics agents. We
consider dependent tasks, where the third agent acts as the
leader. Consider the formula φd = φd1 ∧ φd2 ∧ φd3 with
φd1 := G[10,30](|v3 − v2| ≤ 2) ∧ F[10,90](|p1 + 1− p3| ≤ 1),
φd2 := F[10,30](|v3 − v2| ≤ 1) ∧ G[30,90](|v1 − v3| ≤ 2),
φd3 := F[10,60](|v3 − v1| ≤ 1) ∧ G[60,90](|v2 − v3| ≤ 1) ∧
G[50,60](|p2 + 1− p3| ≤ 1). As the position dependent formu-
las are of relative degree 2, we use TCHCBFs of order m = 2.
Furthermore, TCHCBFs of order m = 1 are considered for
velocity dependent specifications. We have considered ηd (the
equivalence of ηs for the second order dynamics) as ηd = 1.
We choose the parameters of the QP formulation as µd = 2,
αd2 = βd2 = 1, and λ1(r) := r. We focus on the effect of leader
agent information on the group task satisfaction. First, we

consider the network (5), where L :=

 1 0 −1
0 1 −1
0 0 0

 is the

laplacian matrix and the input matrix gd(xd) :=
[

01×5, 1
]T

,
where leader has knowledge of the functions ∂ψ1(x

d,t)

∂xdi
and

dynamics fdi (x
d), i ∈ {1, · · · , n} (an equivalent condition to

Assumption 2 for 2nd order dynamics), where the convergent
and forward invariance property of set Cd(t), as well as
task satisfaction are concluded as shown in Fig. 1. Next,
we consider the agent i = 1 as the leader’s neighbor and
i = 2 as a neighbor to i = 1 under Assumption 4, where
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(a) Position errors (b) Velocity errors (c) TCHCBFs

(d) Leader control signal

Fig. 1: Leader-follower network (5) under full information of the leader from the network. All considered tasks are satisfied.

(a) Position errors (b) Velocity errors (c) TCHCBFs

(d) Leader control signal

Fig. 2: Leader-follower network (5) under Assumption 4. The third task is violated and is satisfied robustly.

fd(xd) :=

[
03 I3
−L −L

]
xd with L :=

 2 −1 −1
−1 1 0
0 0 0

.

By solving (24) where δd = 2.86, the fixed-time convergence
to the set Cd2,ref (t) ⊃ Cd(t) is achieved with εdmax = 6.01

using (16), which gives hd(xd, t) ≥ λ−11 (−εdmax) = −6.01.
Fig. 2 shows a violation in satisfaction of the third task in
t ∈ [50, 60] which certifies this result, although it is less
conservative than the estimation. The computation times on
an Intel Core i5-8365U with 16 GB of RAM are about 2.1ms.

D. Individual barrier certificates

The barrier certificates proposed in the previous sections
provide one constraint, for the networks (4) or (5), which relies
on the leader agent control signal as a central coordination
unit. This may cause limitations on the multi-agent system’s
scalability and robustness properties. To address these issues,
we next provide individual barrier certificates for each agent
according to the tasks that it is involved in, and based on
the formation structure of the multi-agent system, in order
to guarantee the satisfaction of φs (resp. φd). In particular,
according to the length of the path between each follower
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and the leader, higher order barrier certificates for each of the
followers are built. Consider first order dynamics in the leader-
follower multi-agent system (4), under the task φs of the form
(3b) satisfying Assumption 1, and the corresponding barrier
function hs(xs, t). We denote hsi (x

s, t) := ∂hs(xs,t)
∂xsi

fsi (x
s) and

a series of functions ψk,i : Ss × [t0,∞) → Rn, 0 ≤ k ≤ mi

for agent i ∈ {1, · · · , n− 1} as

ψ0,i(x
s, t) := hsi (x

s, t),

ψk,i(x
s, t) := ψ̇k−1,i(x

s, t)

+ λk,i(ψk−1,i(x
s, t)), 1 ≤ k ≤ mi − 1,

ψmi,i(x
s, t) := ψ̇mi−1,i(x

s, t)

+ αsi sgn(ψmi−1,i(x
s, t))|ψmi−1,i(xs, t)|γ

s
1,i

+ βsi sgn(ψmi−1,i(x
s, t))|ψmi−1,i(xs, t)|γ

s
2,i ,

(25)

where λk,i(·), k = 1, · · · ,mi − 1, are (mi − k)th-order
differentiable extended class K functions, and mi is the length
of path between the follower i ∈ {1, · · · , n−1} and the leader,
as mentioned in Section II-B. In addition, 0 < γs1,i < 1,
γs2,i > 1, αsi > 0, βsi > 0 are user-specified constants,
such that 1

αs(1−γs1)
+ 1
βs(γs2−1)

≤ minl∈{0,··· ,ps−1}{τl+1−τl}.
In addition, we define the corresponding sets Ck,i, k ∈
{1, · · · ,mi}, i ∈ {1, · · · , n − 1}, assumed to be compact,
as follows:

Ck,i(t) := {xs ∈ Ss|ψk−1,i(xs, t) ≥ 0}. (26)

Then, the individual barrier certificate for each agent i ∈
{1, · · · , n− 1} can be given as

ψmi,i(x
s, t) ≥ 0. (27)

Utilizing the analysis of the higher order barrier functions
demonstrated in Section IV, the corresponding constraints for
each agent could be satisfied by the leader external input signal
un that appears in (27) through ψ̇mi−1,i in (25). This strategy
has been formulated in the following Lemma.

Lemma 2. Consider the first order dynamics leader-follower
multi-agent system (4) containing one leader i = n, under
the task φs of the form (3b) satisfying Assumption 1. Let
Cindi := ∩mik=1Ck,i and Cind := ∩n−1i=1 C

ind
i with Ck,i, i ∈

{1, · · · , n− 1}, defined as in (26), and the set Cs as in (11). A
control input un that satisfies (27) for all i ∈ {1, · · · , n− 1},
and
∂hs(xs, t)

∂xsn
fsn,n(xsn) +

∂hs(xs, t)

∂xsn
gsn(xsn)un

+
∂hs(xs, t)

∂t
≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ

s
1

− βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 , (28)

renders the set Cs ∩ Cind forward invariant and convergent.

Proof. Consider the first order dynamics agents and decou-
ple the leader-follower network barrier constraint (12) to be
defined for the followers and the leader agent separately, as
follows:
∂hs(xs, t)

∂xsi
fsi (x

s) ≥ 0, i ∈ {1, · · · , n− 1} , (29a)

∂hs(xs, t)

∂xsn
fsn,n(xsn) +

∂hs(xs, t)

∂xsn
gsn(xsn)un

+
∂hs(xs, t)

∂t
≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ

s
1

− βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 . (29b)

It is obvious that if (29a) and (29b) are satisfied, then (12)
is satisfied, too. Constraint (29b) provides a condition for
satisfying the corresponding tasks to the leader agent, that
could be satisfied by choosing appropriate control signal
un. On the other hand, as can be seen from (29a), which
determines the barrier certificates of the followers, there is
no control input signal involved to satisfy these inequalities.
However, the follower dynamics are dependent to the leader
state trajectories through the formation structure of the leader-
follower multi-agent systems according to the graph topology.
Thus, we can use the barrier certificates of the followers,
described in (29a), and construct higher order barrier functions
of hsi (x

s, t) according to (25) and their corresponding sets Ck,i,
k ∈ {1, · · · ,mi} which are defined by (26). This procedure
leads to the desired result and is as follows. Consider (29a)
and let

hsi (x
s, t) =

∂hs(xs, t)

∂xsi
fsi (x

s), i ∈ {1, · · · , n− 1} , (30)

as the new barrier function corresponding to the follower i. It
is apparent from (29a) that if hsi ≥ 0, i ∈ {1, · · · , n− 1}, the
follower barrier certificates are satisfied. Provided that agent i
is a neighbor to the leader (i.e., mi = 1), (27) could be satisfied
provided that for some constants 0 < γs1,i < 1, γs2,i > 1,
αsi > 0, βsi > 0, the following inequality is established:

ḣsi (x
s, t) ≥− αsi sgn(hsi (x

s, t))|hsi (xs, t)|
γs1,i

− βsi sgn(hsi (x
s, t))|hsi (xs, t)|

γs2,i . (31)

The point is that the control input un appears in (31), provided
that the agent i is a neighbor of the leader. The reason is that
if the agent i is a neighbor to the leader n, then fi(x

s) is
a function of the leader state xn. Therefore, the derivative
of (30) (i.e., (31)) will be a function of ẋn, and hence, a
function of un. If agent i would not be a neighbor of the
leader, by using higher order barrier functions constructed
from hsi (x

s, t) using (25), and based on distance of agent i
from the leader, the control input un will be presented in the
constraints. In other words, the higher order barrier function
ψmi,i(x

s, t) that is the first one which is dependent on the
control signal un, is of order mi + 1 with respect to hs(xs, t)
(i.e., Lgn(xsn)

Lmifi(xs)
hs(xs, t) 6= 0), where mi is the length

of path from the follower i ∈ {1, · · · , n − 1} to the leader.
Thus, the functions hsi (x

s, t) are TCHCBFs, and hence, the
forward invariance and convergence property of the sets Cindi ,
i ∈ {1, · · · , n− 1}, are concluded according to Proposition 1.
Moreover, the barrier certificate for leader i = n is first order
with respect to hs(xs, t) as mn = 0, and will be written as in
(28). Then, the forward invariance and convergence of the set
Cs ∩ Cind is concluded, too.

Remark 7. Whenever ∂hs(xs,t)
∂xsn

= 0, the inequality (28) might
not be satisfied. In this case, we construct the higher order bar-
rier functions as in (20) to guarantee the forward invariance
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and convergence of the set C := ∩mk=1Ck ⊂ D ⊂ Rn, where
the sets Ck are defined as in (21) and m is the order of the
barrier function hs(xs, t).

We clarify the latter case using the following example:
Example 1: Consider a network consisting of n = 3 agents
with i = 3 as the leader and formation structure fs(xs) :=

−Lxs with L :=

 2 −1 −1
−1 1 0
0 0 0

 and the input matrix

gs(xs) :=
[

0, 0, 1
]T

. Assume that hs(xs, t) = pc − p2,
where pc is constant. Then, (12) is written as

− p1 + p2 ≥ −αd2 sgn(−p2 + pc)|p2 − pc|γ
s
1,2

− βs2 sgn(−p2 + pc)| − p2 + pc|γ
s
2,2 . (32)

As the control input doesn’t appear in (32), this task is
of relative degree greater than one and C1(t) := {xs ∈
R3|hs(xs, t) ≥ 0} according to (21). Building the second
order barrier function of hs(xs, t) using (20), we reach to
ψ1(xs, t) = ḣs(xs, t) +λ1(hs(xs, t)) = −p1 +p2 +λ1(−p2 +
pc) with C2(t) := {xs ∈ R3|ψ1(xs, t) ≥ 0}, where λ1(·)
is an extended class K function, that here is defined as
λ1(r) := r. As the leader state p3 doesn’t appear in ψ1(xse, t),
we build the third order barrier function as ψ2(xs, t) =
ψ̇s1(xs, t) + λ2(ψs1(xs, t)) = 2p1 − p2 − p3 + λ2(ψs1(xs, t))
with C3(t) := {xs ∈ R3|ψ2(xs, t) ≥ 0}, where λ2(·) is an
extended class K function, defined as λ2(r) := r. According to
the graph topology, we have m = 3. Then, the corresponding
barrier certificate ψ3 ≥ 0 by Definition 6, can be written as

− 3p1 + 2p2 + p3 − u3 ≥
− αs2 sgn(ψ2(xs, t))|ψ2(xs, t)|γ

s
13

− βs2 sgn(ψ2(xs, t))|ψ2(xs, t)|γ
s
23 .

Then, according to Proposition 1, the set Cs := ∩3k=1Ck is
convergent and forward invariant.

Note that higher order barrier certificates allow for taking
into account more general task specifications and graph topolo-
gies as there is no necessity that all formulas be dependent on
the leader.

E. Decentralized barrier certificates

In the previous sections, the multi-agent system contained
only one leader. Hence, the satisfaction of specifications had
to be achieved in a centralized way. It is apparent that a
larger number of leaders increases the ability of the multi-
agent system to consider more complex and general specifi-
cations. Hence, we next formulate the barrier certificates in a
decentralized scheme for multi-leader scenarios.

Lemma 3. Consider the leader-follower network (4) with the
first nf agents as followers and the last nl ones as leaders.

1

65

432

Fig. 3: Leader-follower network with the nodes 5 and 6 as the
leaders.

The decentralized barrier certificates can be written by nl
inequalities with respect to each leader, as below:∑

i∈Nnf+1
{∂h

s(xs,t)
∂xsi

fsi,i(x
s
i )

+(∂h
s(xs,t)

∂xsnf+1
+ ∂hs(xs,t)

∂xsi
)fsnf+1,i(x

s
nf+1, x

s
i )}

+∂hs(xs,t)
∂xsnf+1

fsnf+1,nf+1(xsnf+1) + ∂hs(xs,t)
∂xsnf+1

gsnf+1unf+1

≥ − τ1∑
j∈{1,··· ,nl} τj

[∂h
s(xs,t)
∂t + αs sgn(hs(xs, t))|hs(xs, t)|γ

s
1

+βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 ],

...∑
i∈Nnf+nl

{∂h
s(xs,t)
∂xsi

fsi,i(x
s
i )

+(∂h
s(xs,t)

∂xsnf+nl

+ ∂hs(xs,t)
∂xsi

)fsnf+nl,i(x
s
nf+nl

, xsi )}

+∂hs(xs,t)
∂xsnf+nl

fsnf+nl,nf+nl(x
s
nf+nl

) + ∂hs(xs,t)
∂xsnf+nl

gsnf+nlunf+nl

≥ − τnl∑
j∈{1,··· ,nl} τj

[∂h
s(xs,t)
∂t + αs sgn(hs(xs, t))|hs(xs, t)|γ

s
1

+βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 ],

(33)
for positive constants τj , j ∈ {1, · · · , nl}.

Proof. Consider the general inequality (12) that should be
satisfied for the network. According to its equivalent inequality
provided in Theorem 1, we can split the expressions in the left
hand side of the inequality (14) with respect to the related
terms to each leader and its corresponding followers. The
right hand side expression could also be divided using the
positive weights τ1, · · · , τnl . Then, the inequalities in (33) are
acquired.

Remark 8. Individual barrier certificates for the followers of
each leader are given in a similar way to what was proposed
in Lemma 2. In this case, mi is considered as the minimum
of the path lengths between follower i and the leaders of the
multi-agent system. Then, the corresponding individual barrier
certificate is constructed with respect to the closest leader
according to the graph topology.

We clarify the barrier certificate formulation of multi-leader
networks using the following example:

Example 2: Consider Figure 3 consisting of 1st order
dynamics agents, with agents i = {5, 6} as the leaders.
According to the graph topology, we have fs(xs) := −Lxs,

with L :=


1 0 0 0 −1 0
0 2 −1 0 −1 0
0 −1 2 0 0 −1
0 0 0 1 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

 and the input
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matrix gs :=
[

02×4, I2
]T

. Assume that hs(xs, t) = p2−p3.
In order to write the higher order barrier certificate according
to (20), we have ψ1(xs, t) = ḣs(xs, t) + λ1(hs(xs, t)) =
3(p2− p3)− p5 + p6 + λ1(p2− p3). By using λ1(r) := r, we
get ψ1(xs, t) = −2(p2 − p3) + p5 − p6. Therefore, according
to fs(xs), the second order barrier certificate ψ2(xs, t) ≥ 0
can be written as:

6(p2 − p3)− 2(p5 − p6) + u5 − u6 ≥
− α(−2(p2 − p3) + p5 − p6), (34)

for a positive constant α, and extended class K function
λ2(r) := r. Note that we used the function λ2(r) instead
of αssgn(ψ1(r))|ψ1(r)|γ

s
1 + βssgn(ψ1(r))|ψ1(r)|γ

s
2 , which

guarantees a fixed-time convergence to the set ψ2(xs, t). The
reason of this choice is that function λ2(r) allows us to
decentralize (34) with respect to leader’s control inputs u5,
u6 and the graph structure. In this way, the inequalities

6p2 − 2p5 + u5 ≥ −α(−2p2 + p5),

− 6p3 + 2p6 − u6 ≥ −α(2p3 − p6),

imply (34). Therefore, we relax the fixed-time convergence
property for the set ψ2(xs, t) in order to derive the decentral-
ized barrier certificates.

Note that the substitutions of extended class K functions are
used for the barrier certificates in which more than one leader’s
states are involved. In this example for instance, the barrier
certificates corresponding to the specifications dependent on
agents i = 1 or i = 4, that are directly connected to one
leader, can be written similar to (33), which give a fixed-time
convergence property to the specified sets.

Remark 9. The procedures introduced for the individual and
decentralized barrier certificates can be extended to higher
order dynamics. In that case, higher order constraints are
formulated using higher order barrier functions, as specified
in Section IV-A.

In the following simulation example, higher order individ-
ual barrier certificates are considered to guarantee the task
satisfaction.

F. Simulations (II)

We consider a leader-follower multi-agent system consisting
of M := 6 nonlinear second order dynamics’ agents with
the graph topology represented in Fig. 3 with Vl := {5, 6}.
According to (5). The overall dynamics of the network is
considered as ẋd := fd(xd) + fdNL(xd) + gd(xd)u, u ∈ R2,

where fd(xd) :=

[
06×6 I6
−L −L

]
xd, with L introduced in

Example 2, fdNL(xd) := [01×10,−v25 ,−v26 ]T and the input
matrix gd(xd) :=

[
02×10, I2

]T
. Consider the formula φd =

φd1 ∧ φd2 ∧ φd3 with φd1 := G[60,90](p2 − p3 − 1.8v3 ≥ 2),
φd2 := G[0,60](v2 − v3 ≥ 10), φd3 := G[30,90](p1 − p3 ≥ 10)).
The first formula, corresponds to the safety constraint for
two CAVs (connected and automated vehicles), where i = 2
physically immediately precedes i = 3. This formula is a
function of velocity (which is of relative degree 1) of the

follower i = 3 as the neighbor of leader i = 6. Then, according
to Lemma 2, the corresponding barrier function to this task
would be of order m = 2. The second formula, is dependent on
the velocities of agents that are neighbors to different leaders.
Then, the relative degree of this constraint is again m = 2
and the decentralization of the barrier certificate is established
according to (33). The third formula, has degree m = 4 since it
considers the position states (which are of relative degree 2) of
two followers as neighbors of leaders (which gives mi = 2,
i = 1, 3). This could be deduced using the dynamic matrix
fd(xd) and the input matrix gd(xd). We choose the parameters
of the QP formulation for φd1 as µd = 2, αd = βd = 1, and
λ1(r) := r. In addition, for φd2 and φd3, we consider extended
class K functions λ(r) := r for the decentralization purpose
as explained in Example 2. The results are presented in Fig.
4 which show the satisfaction of specified tasks.

V. CONCLUSION

Based on a class of time-varying convergent higher order
control barrier functions, we have presented feedback control
strategies to find solutions for the leader-follower multi-agent
systems performance under STL tasks, based on the knowl-
edge of leader from the network. Appropriate individual and
decentralized barrier certificates are also introduced to main-
tain more general formulas in a simpler framework. Future
work will extend these results to high level specifications
including planning fulfilment for leader-follower topologies;
e.g., leader selection methods to find the optimal solution with
respect to task specifications.
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