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Abstract— Signal Temporal Logic (STL) has been found
an expressive language for describing complex, time-
constrained tasks in several robotic applications. Existing
methods encode such specifications by either using inte-
ger constraints or by employing set invariance techniques.
While in the first case this results in MILP control problems,
in the latter case designer-specific choices may induce con-
servatism in the robot’s performance and the satisfaction of
the task. In this paper a continuous-time receding horizon
control scheme (RHS) is proposed that exploits the trade-
off between task satisfaction and performance costs such
as actuation and state costs, traditionally considered in
RHS schemes. The satisfaction of the STL tasks is encoded
using time-varying control barrier functions (CBFs) that
are designed online, thus avoiding the integer expressions
that are often used in literature. The recursive feasibility
of the proposed scheme is guaranteed by the satisfaction
of a time-varying terminal constraint that ensures the sat-
isfaction of the task with pre-determined robustness. The
effectiveness of the method is illustrated in a multi-robot
simulation scenario.

Index Terms— Autonomous systems, control barrier
functions, formal-methods control synthesis, receding
horizon control, signal temporal logic

I. INTRODUCTION

OVER the last decades, multiple robots have been con-
sidered in a variety of tasks, examples of which are

object transportation [1], coverage control [2] and search
and rescue missions [3]. Literature is rich in application-
specific solution approaches in the majority of which problems
like task-allocation, multi-robot coordination and planning are
addressed independently. Recently, trajectory planning meth-
ods were proposed for the satisfaction of a general class of
local or global, complex tasks described by Linear Temporal
Logic formulas (LTL) [4]–[6]. In these works the dynamical
systems describing the motion of the agents are abstracted into
Finite Transition Systems and discrete plans are obtained using
graph-based methods.

An important limitation of LTL is its inability to express
tasks with strict deadlines. Signal Temporal Logic (STL) [7],
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on the other hand, provides an appropriate framework for
introducing time-constrained tasks. In STL planning the satis-
faction of such tasks is examined over continuous time signals
and evaluated by robust semantics examples of which are
introduced in [8], [9]. In the majority of the works [10]–[14]
the STL formulas are encoded by integer variables and the
agents’ plans are obtained as solutions to MILP problems.
Although suggestions towards reducing the computational
burden have been made [15], these problems are known for the
scalability issues arising as the optimization horizon or number
of robots increases [12]. Addressing this problem, authors in
[10] make use of the agents’ past actions during planning
increasing conservatism in the overall performance of the
task. Other approaches [11], [16] consider an arbitrarily small
optimization horizon without however providing guarantees on
the recursive feasibility of the proposed RHS scheme while
recently learning-based controllers have been designed for
satisfaction of STL tasks [17], [18] or maximization of the
STL robustness [19] in discrete time.

An important limitation of the aforementioned works is the
lack of guarantees for the satisfaction of the task in continuous
time. This problem is addressed in [13], [14] where in the
former case a high-rate trajectory is designed while in the
latter case the differential flatness property of the continuous-
time nonlinear system is exploited.

Closer to our work is the control scheme proposed in
[20]–[22] for continuous-time, input-affine, nonlinear systems
under STL tasks. Here, a desired temporal behavior of the
system is introduced guaranteeing the satisfaction of the STL
task with predetermined robustness. Based on these temporal
behaviors, a time-varying Control Barrier Function (CBF) is
defined as a function of the error between the actual and
desired behavior of the system, and feedback control laws
are designed rendering a desired superlevel set of the barrier
function forward invariant. In that way, satisfaction of the STL
formula is ensured and a lower bound on the robustness is
obtained. Although computationally efficient, this method does
not consider input constraints while the performance of the
task is highly dependent on the user-defined temporal behavior
of the agents.

In this work a continuous-time receding horizon control
scheme is proposed for the satisfaction of a set of STL tasks
by a team of dynamically-coupled robots under state and input
constraints. Motivated by [21], a time-varying barrier function
is designed encapsulating a desired, temporal behavior for



the system guaranteeing the satisfaction of the STL task. In
our previous work [23], the desired temporal behavior of the
system is designed offline ensuring the satisfaction of the task
with a pre-determined robustness. Here, contrary to [20], [23],
the desired behavior of the system is shaped online with the
robustness value found as a solution to an RHS in which
the trade off between an increased performance and state and
input costs is explored. Based on [22], we design a least-
violating control law for the cases when the satisfaction of a
task is not possible due to state and input limitations. Given an
arbitrarily small optimization horizon, the recursive feasibility
of the proposed scheme is guaranteed by the design of an
appropriate terminal controller, initially introduced in [23], that
ensures the satisfaction of the global task with a minimum,
pre-determined robustness provided that the initial problem is
feasible. Extending [23], in this paper we provide a detailed
proof of existence of the proposed terminal controller.

The remainder of the paper is organized as follows: Section
II introduces the preliminaries and Section III the problem
formulation. Section IV describes the proposed control barrier
functions and Section V presents the proposed RHS scheme.
Simulations are shown in Section VI and conclusions are
summarized in Section VII.

II. PRELIMINARIES

In this paper R≥0 denotes the set of non-negative real
numbers. True and false are denoted by >,⊥ respectively.
Scalars and vectors are denoted by non-bold and bold letters
respectively. The partial derivative of a function b(x, t;θ)
with respect to x and t evaluated at (x′, t′) is abbreviated
by ∂b

∂x = ∂b(x,t;θ)
∂x

∣∣
x=x′

t=t′
and ∂b

∂t = ∂b(x,t;θ)
∂t

∣∣
x=x′

t=t′
respectively.

Here, ∂b
∂x is considered to be a row vector. We denote by

θ = [θi]i∈I =
[
θT1 . . . θT|I|

]T
the stacked vector of

θi, i ∈ I. An extended class K function α : R → R≥0 is
a locally Lipschitz continuous and strictly increasing function
with α(0) = 0. The function u : [t1, t2]→ Rm has a property
a.e. (almost everywhere) if the property holds everywhere
in [t1, t2] except from a set of points of measure zero. The
Euclidean norm of a vector ζ ∈ Rn is given by ‖ζ‖ =

√
ζT ζ.

The induced 2-norm of a rectangular matrix C is defined as:
‖C‖ = σmax(C), where σmax(C) is the maximum singular
value of C. The minimum singular value of the matrix C
is denoted by σmin(C). The Moore-Penroose matrix of a
full row-rank matrix B ∈ Mn×m(R) is defined as: B† =
BT (BBT )−1. Given a, b ∈ R, a divides b, denoted by a|b
if there exists an integer k such that b = ka. The Cartesian
product of the sets X1, . . . , Xn is denoted by X =

∏n
i=1Xi.

A. Signal Temporal Logic (STL)
Signal Temporal Logic (STL) determines whether a pred-

icate µ is true or false. The validity of each predicate µ
is evaluated based on a continuously differentiable function
h : Rn → R as follows:

µ =

{
>, h(ζ) ≥ 0

⊥, h(ζ) < 0
.

The basic STL formulas are given by the grammar:

φ ::= > | µ | ¬φ | φ1 ∧ φ2 | G[a,b]φ | F[a,b]φ | φ1 U[a,b] φ2,

where φ1, φ2 are STL formulas and G[a,b], F[a,b], U[a,b] is the
always, eventually and until operator defined over the interval
[a, b] with 0 ≤ a ≤ b. Let ζ′ |= φ denote the satisfaction of
the formula φ by a signal ζ′ : R≥0 → Rn. The formula φ is
satisfiable if ∃ ζ′ : R≥0 → Rn such that ζ′ |= φ.

The STL semantics for a signal ζ′ : R≥0 → Rn are
recursively given by [24]: (ζ′, t) |= µ ⇔ h(ζ′(t)) ≥ 0,
(ζ′, t) |= ¬φ ⇔ ¬((ζ′, t) |= φ), (ζ′, t) |= φ1 ∧ φ2 ⇔
(ζ′, t) |= φ1 ∧ (ζ′, t) |= φ2, (ζ′, t) |= G[a,b]φ ⇔ ∀t1 ∈
[t + a, t + b], (ζ′, t1) |= φ, (ζ′, t) |= F[a,b]φ ⇔ ∃t1 ∈
[t+a, t+b] s.t (ζ′, t1) |= φ and (ζ′, t) |= φ1 U[a,b] φ2 ⇔ ∃t1 ∈
[t+ a, t+ b] s.t (ζ′, t1) |= φ2 ∧ (ζ′, t2) |= φ1, ∀t2 ∈ [t, t1].

STL is equipped with robustness metrics determining how
robustly an STL formula φ is satisfied at time t by a signal
ζ′. These semantics are defined as follows [8], [9]:

ρµ(ζ′, t) = h(ζ′(t))

ρ¬φ(ζ′, t) = −ρφ(ζ′, t)

ρφ1∧φ2(ζ′, t) = min(ρφ1(ζ′, t), ρφ2(ζ′, t))

ρφ1 U[a,b] φ2 = max
t1∈[t+a,t+b]

min(ρφ2(ζ′, t1), min
t2∈[t,t1]

ρφ1(ζ′, t2))

ρF[a,b]φ(ζ′, t) = max
t1∈[t+a,t+b]

ρφ(ζ′, t1)

ρG[a,b]φ(ζ′, t) = min
t1∈[t+a,t+b]

ρφ(ζ′, t1)

Finally, it should be noted that ζ′ |= φ if ρφ(ζ′, 0) > 0.

B. Control Barrier Functions for STL satisfaction

In this Section we summarize the basic steps towards
designing a control barrier function (CBF) for STL satisfaction
as described in [20], [21]. Consider the STL fragment:

ψ = > | µ | ¬µ, (1a)
ϕ̄ = G[ā,b̄]ψ | F[ā,b̄]ψ | ψ1 U[ā,b̄] ψ2, (1b)

φ =

nφ∧
l=1

ϕ̄l, (1c)

where ψ1, ψ2 are STL formulas of the form (1a), ϕ̄l, l =
1, . . . , nφ are STL formulas of the form (1b), nφ ≥ 1 and
0 ≤ ā ≤ b̄ < ∞. By definition of the STL semantics, the
satisfaction of any until formula ψ1 U[ā,b̄] ψ2 of (1b) is ensured
by the satisfaction of a formula written as a conjunction of an
always and an eventually formula, i.e., as G[ā,t′] ψ1∧F[t′,t′] ψ2

where t′ ∈ [ā, b̄] is a-priori chosen in [20], [21]. Hence, it is
sufficient to ensure the satisfaction of the formula φ that is
defined as a conjunction of eventually and always formulas
ϕi as follows:

φ =
∧
i∈I

ϕi, (2)

where |I| = p = nφ + nu and nφ is the total number of
STL tasks in (1c) and nu the number of until operators in
(1c). Let ϕ̄li be the li-th formula in (1c). The new formula
ϕi is identical to a formula ϕ̄li in (1c), if ϕ̄li = G[āli ,b̄li ]

ψi



or ϕ̄li = F[āli ,b̄li ]
ψi. If ϕ̄li is an until formula, i.e., ϕ̄li =

ψ1,i U[āli ,b̄li ]
ψ2,i, then ϕi = G[āli ,t

′
i]
ψ1,i or ϕi = F[0,t′i]

ψ2,i

where t′i ∈ [āli , b̄li ]. We denote the time interval associated
with the temporal operator of ϕi as [ai, bi]. For each subfor-
mula ϕi, i ∈ I, let bi(x, t;θi) = −γi(t;θi) + hi(x), where
hi : Rn → R is the predicate function corresponding to ϕi,
assumed to be continuously differentiable and γi : R≥0 ×
Θi → R is a function describing a desired temporal behavior
of the system that ensures satisfaction of ϕi with a minimum
robustness r. In [21] the performance functions γi(t;θi) are
defined as piecewise linear functions, whose values depend
on a set of parameters θi ∈ Θi ⊂ R × R2

≥0 that are chosen
offline. Based on the functions bi(x, t;θi), the CBF function
b : Rn × R≥0 ×Θ→ R corresponding to φ is defined as:

b(x, t;θ) = − ln

(∑
i∈I

oi(t) exp (−bi(x, t;θi)
)
,

where θ =
[
θi
]
i∈I , Θ =

∏
i∈I Θi and oi : R≥0 → {0, 1} is

an integer valued function introduced to ensure that the barrier
function corresponding to subtask ϕi stops contributing to
b(x, t;θ), when ϕi is satisfied. Note that due to the existence
of the integer variables, b(x, t;θ) is differentiable only at
Rn× (σd, σd+1)×Θ, where σd ≤ σd+1 and σd ∈ {0,∞}∪ Σ̄
where Σ̄ = {ai, bi : i ∈ IG , ai 6= 0} ∪ {bi : i ∈ IG , ai =
0} ∪ {ti∗ : i ∈ IF}, and where IG , IF ⊂ I are the sets of
always and eventually formulas respectively. For this particular
choice of b(x, t;θ), it can be shown [24, Lemma 2] that:
b(x, t;θ) ≤ mini∈A(t) b

i(x, t;θi), where A(t) = {i ∈ I :
oi(t) 6= 0}. Therefore, if there exists x : R≥0 → Rn such that
b(x, t;θ) ≥ 0 for every t ≥ 0, then each subtask ϕi, i ∈ I, is
satisfied with a minimum robustness r.

III. MULTI-AGENT DYNAMICS AND PROBLEM
FORMULATION

In this work we consider a team of R agents with each
agent identified by its index k ∈ {1, . . . , R}. For every agent
k let xk ∈ Rn̄, uk ∈ Rm̄ denote its state and input vector
respectively. The states of agent k evolve over time based on
the following equation:

ẋk = Akkxk +
∑
k′ 6=k

Akk′xk′ +Bkuk

where Akk, Akk′ ∈ Mn̄(R), Bk ∈ Mn̄×m̄(R). Here, the
matrix Akk′ describes possible dynamical couplings between
the states of agents k, k′ and is a-priori known by agent k.
Examples of dynamically coupled systems include networked
systems, platoons, energy systems and mobile manipulators.

Let x =
[
xT1 . . . xTR

]T ∈ Rn,u =
[
uT1 . . . uTR

]T ∈
Rm be the stacked vector of the states and inputs of all agents
in the team respectively with n = Rn̄ and m = Rm̄. Then,
the dynamics of the agents can be written in stacked form as:

ẋ = Ax +Bu (3)

where A =

A11 . . . A1R

...
. . .

...
AR1 . . . ARR

 , B = diag{B1, . . . , BR}.

Assumption 1. The matrices Bk, k = 1, . . . , R have full row
rank equal to n̄ (n̄ ≤ m̄).

In this paper each agent is restricted to work within a pre-
specified area and is subject to actuation limitations. These
constraints could be expressed as xk ∈ Xk, uk ∈ Uk, k =
1, . . . , R where Xk = {xk ∈ Rn̄ : ‖xk‖ ≤ dkx} and Uk =
{uk ∈ Rm̄ : ‖uk‖ ≤ dku} with dkx, d

k
u > 0 known constants

for any k = 1, . . . , R. Let X =
∏R
k=1 Xk, U′ =

∏R
k=1 Uk

and dx =
∑R
k=1 d

k
x. Then, we may write the state and input

constraints of the centralized system as x ∈ X, u ∈ U with
X,U satisfying:

X ⊆ {x ∈ Rn : ‖x‖ ≤ dx} (4a)
U = {u ∈ Rm : ‖u‖ ≤ du} ⊆ U′. (4b)

Definition 1. Given a control signal u : [t1, t2] → U a
solution x : [t1, t2] → X of (3) with x(t1) = x1 is an
absolutely continuous function such that:

x(t) = x1 +

∫ t

t1

(Ax(τ) +Bu(τ))dτ

holds a.e. in [t1, t2].

Assumption 2. There exist sets X,U satisfying (4a)-(4b), such
that duσmin(B) > σmax(A)dx is true for the system dynamics
(3) subject to state and input constraints of the form x ∈
X, u ∈ U.

Intuitively, Assumption 2 guarantees that there exists
enough control input to prevent the multi-agent system from
leaving the workspace in the most ”aggressive” way based on
its dynamics. As will be shown in Section V-A this argument
is necessary for the design of a terminal controller that ensures
the satisfaction of task with a pre-determined robustness.

Remark 1. Assumptions 1 and 2 can be easily generalized
for input-affine systems ẋk = fk(x) + gk(x)uk, k = 1, . . . , R,
where fk : Rn → Rn̄ and gk : Rn → Rm̄ are locally Lipschitz
functions, as follows: 1) gk(x) is full-row rank for every x ∈
Rn, k ∈ {1, . . . , R} and 2) ‖f(x)‖ < σmin(g(x))du,∀x ∈ X,
where maxx∈X ‖f(x)‖ < ∞, maxx∈X ‖g(x)‖ < ∞, f(x) =[
fT1 (x) . . . fTR (x)

]T
and g(x) is the block diagonal matrix

of g1(x), . . . , gR(x). Hence, the RHS scheme proposed in
Section V-B can be easily applied to more general, nonlinear
dynamics.

Given the STL fragment defined by (1a)-(1c) let a finite
sequence of time instants {τj}Jj=0 with τj = j∆τ, j ∈ J =
{0, . . . , J} and τJ = maxl bl, where ∆τ is a given, positive
constant satisfying ∆τ |maxl bl and bl is the upper bound
of the interval of satisfaction corresponding to the temporal
operator of ϕ̄l in (1c). Based on the above we are in position
to define the Problem considered in this paper as follows:

Problem 1: Consider the dynamical system (3) subject to
state and input constraints x ∈ X, u ∈ U with X,U known,
compact sets satisfying (4a)-(4b). Given an STL formula φ as
in (1c), a positive prediction horizon length N and a sampling
rate ∆τ satisfying ∆τ |maxl bl, design a control input u such
that any solution x : [0, τJ ]→ X of (3) with initial condition
x(0) guarantees ρφ(x, 0) ≥ ρ̄, where ρ̄ is maximized.



IV. BARRIER FUNCTIONS FOR TASK SATISFACTION IN
THE RHS

In this Section we begin by designing the control barrier
functions (CBFs) encoding the STL constraints induced by
φ in (2). Motivated by the work in [20], [21], we introduce
two piece-wise differentiable functions bw : Rn × R≥0 ×
Θw → R, w ∈ {H,F}, defined as in Section II-B. The
barrier bH(x, t;θj,H) encodes the satisfaction of the STL
formula φ, defined in (2), and is designed online at each time
interval [τj , τj +N ]. On the contrary, bF (x, t;θF ), called the
terminal barrier function, is designed offline and encodes the
satisfaction of φ′ =

∧
i∈IF ϕi = φ∧ϕp+1∧. . .∧ϕp+R, where:

ϕp+k = G[0,bp+k]ψp+k, (5a)

ψp+k =

{
>, hp+k(x) ≥ 0

⊥, hp+k(x) < 0
, (5b)

with bp+k = τJ + N and hp+k(x) = dk 2
x − ‖xk‖2 for

k = 1, . . . , R. The extra tasks ϕp+1, . . . , ϕp+R are introduced
to ensure that the agents will stay within the workspace,
thus the state constraints x ∈ X are always satisfied. Since
the terminal barrier function is designed offline, for brevity,
we will sometimes omit the dependence on θF and use the
notation bF (x, t) instead.

Definition 2. A sub-formula ϕi, i ∈ I = {1, . . . , p} is
called active in the interval [τj , τj + N ], j ∈ J , if either
the intersection of the interval of satisfaction [āli , b̄li ] of the
formula ϕ̄li with [τj , τj + N ] is non-empty, i.e., [āli , b̄li ] ∩
[τj , τj +N ] 6= ∅ or if τj +N ≤ āli holds.

Let IjH denote the set of indices of the sub-formulas ϕi, i ∈
I, that are active at [τj , τj +N ] for every j ∈ J . Note that by
definition of (2), IjH = Ij,GH ∪ Ij,FH , where Ij,FH = {i ∈ IjH :

ϕi = F[ai,bi]ψi} and Ij,GH = {i ∈ IjH : ϕi = G[ai,bi]ψi}.
Given the active sub-formulas, we may define the barrier
function at each time interval [τj , τj +N ] as:

bH(x, t;θj,H) = − ln

( ∑
i∈IjH

oiH(t) exp (−biH(x, t;θij,H))

)
,

where θj,H ∈ ΘH is a set of parameters to be optimized on-
line, ΘH =

∏
i∈IjH

Θi
H and θij,H ∈ Θi

H is a set of parameters
defined shortly below. To simplify notation, we may omit the
subscript j from the elements defining bH(x, t;θj,H), when it
is clear from context. Next, we may define the terminal barrier
function bF (x, t;θF ) as:

bF (x, t;θF ) = − ln

( ∑
i∈IF

oiF (t) exp (−biF (x, t;θiF ))

)
, (6)

where θF ∈ ΘF is a set of parameters to be chosen offline,
ΘF =

∏
i∈IF Θi

F and θiF ∈ Θi
F is also given below.

We compactly denote the barrier functions considered here
by bw(x, t;θw), w ∈ {H,F}. For every w ∈ {H,F} the
functions biw(x, t;θiw), i ∈ Iw are defined as:

biw(x, t;θiw) = −γiw(t;θiw) + hi(x),

where hi : Rn → R is the predicate function corresponding
to ϕi, i ∈ Iw, w ∈ {H,F} and γiw : R≥0 × Θi

w → R

is the performance function ensuring satisfaction of ϕi with
robustness rw defined as follows [21]:

γiw(t;θiw) =

{
γiw,∞−γ

i
w,0

ti∗w
t+ γiw,0, if t < ti∗w

γiw,∞, if t ≥ ti∗w
, (7)

where θiw =
[
γiw,0 γiw,∞ ti∗w

]T ∈ Θi
w, w ∈ {H,F} is a

set of parameters depending on the robustness value rw and
satisfy the following:

γiw,0 ∈ (−∞, hi(x(0))), (8a)

γiw,∞ ∈ (max(rw, γ
i
w,0), hmax

i ), (8b)

ti∗w ∈

{
{āli}, i ∈ Ij,Gw
[āli , b̄li ], i ∈ Ij,Fw

, (8c)

ti∗H ≥ τd(i), i ∈ Ij,FH , (8d)

rw ∈

{
(0, hi(x(0)), ti∗w = 0

(0, hmax
i ), ti∗w 6= 0,

(8e)

where hmax
i = supx∈Rn hi(x) < ∞, d(i) = max{j ∈ J :

[āli , b̄li ] ∩ [τj , τj+1) 6= ∅}, where τJ+1 = (J + 1)∆τ . From
(8a), bw(x(0), 0;θw) > 0, for every w ∈ {H,F}. In addition,
due to (8b), for every t ≥ ti∗w we have that biw(x, t;θiw) ≤
−rw + hi(x). Thus, biw(x, t;θiw) ≥ 0 implies hi(x) ≥ rw for
all t ≥ ti∗w . Constraint (8c) ensures that ti∗w takes values within
the time interval of satisfaction of ϕi, i ∈ Iw while (8d) is in-
troduced to ensure that cases where ϕi, i ∈ Ij,FH is deactivated
prematurely without being satisfied are avoided. Based on the
above, we define Θi

H = {θ ∈ R×R2
≥0 : θ satisfies (8a)−(8d)}

and Θi
F = {θ ∈ R× R2

≥0 : θ satisfies (8a)− (8c)}, for every
i ∈ IH and i ∈ IF , respectively.

When a formula ϕi is satisfied, the contribution of
biw(x, t;θiw) to bw(x, t;θw) is deactivated. The deactivation
policy is introduced using an integer variable oiw : R≥0 →
{0, 1} defined as follows:

oiw(t) =

{
1, t ∈ T iw
0, t /∈ T iw

, (9)

where T iw = [0, ti∗w ), if i ∈ IFw , or T iw = [0, bi), if i ∈ {i′ ∈
IGw : ai′ = 0}, or T iw = [0, ai) ∪ (ai, bi) if i ∈ {i′ ∈ IGw :
ai′ 6= 0}. In addition, in order to ensure that bw(x, t;θw), w ∈
{H,F} are well defined at every time interval [τj , τj+N ], j ∈
J , we set oiww (t) = 1,∀t ≥ 0, where iF ∈ {p + 1, . . . , p +
R} and iH = arg maxi∈I b̄li . Based on bw(x, t;θw), w ∈
{H,F}, we may define the δ-level sets of bw(x, t;θw) as:

Cδw(t;θw) = {x ∈ Rn| bw(x, t;θw) ≥ δ}, (10)

where θw ∈ Θw is a set of parameters on which the value of
bw(x, t;θw) depends at each (x, t). If δ = 0, we will omit
the superscript and write CH(t;θH) for w = H and CF (t),
for w = F .

V. CONTROL APPROACH

As discussed in Section II-B maintaining a non-negative
value of the barrier function bw(x, t;θw), w ∈ {H,F} for
any t ≥ 0 implies that there exists a time instant ti∗w such
that hi(x(t)) > rw, t ∈ T iw, i.e., the satisfaction of ϕi. In [20]



authors construct a barrier function b(x, t) for determining the
satisfaction of φ and design a feedback control law u(x, t)
satisfying:

∂b

∂x
(Ax +Bu) +

∂b

∂t
≥ −α(b(x, t)), t ≥ 0, (11)

where α(·) is an appropriately chosen extended class K
function. The constraint above guarantees that b(x, t) ≥ 0
for all t ≥ 0 when b(x(0), 0) ≥ 0. Specifically, as long
as x ∈ {ζ ∈ Rn : b(ζ, t) > 0}, (11) forces the state
of the multi-agent system to keep the value of b(x, t) non-
negative without necessarily increasing it. However, when
x ∈ {ζ ∈ Rn : b(ζ, t) = 0} is true, (11) becomes ḃ(x, t) ≥ 0
forcing the state of the system to move towards maximizing
b(x, t).

A. Terminal Controller

Motivated by the work in [20], we design a feedback control
law satisfying an equivalent constraint to (11) for bF (x, t).
The resulting control law will work as a terminal controller
guaranteeing x(t) ∈ CF (t) for any t > τj + N if x(τj +
N) ∈ CF (τj + N) holds for any j ∈ J . To further simplify
notation, let ΣF = {0,∞}∪Σ′F , where Σ′F = Σ̄\{biF : iF ∈
{p+ 1, . . . , p+ R}} is the set of points at which bF (x, t) is
discontinuous with Σ̄ as defined in Section II-B. We begin by
formally introducing control barrier functions as follows:

Definition 3. The function bF (x, t) is a control barrier func-
tion (CBF) within each time interval (σsF , σ

s+1
F ), σsF ∈ ΣF ,

if there exists an extended class K function αF (·) and an
open, connected set Ω ⊂ Rn, where CF (t) ⊂ Ω ⊂ X is
assumed to be satisfied for every t ≥ 0, such that for all
(x, t) ∈ Ω× (σsF , σ

s+1
F ) holds the following:

sup
u∈U

{∂bF
∂x

(Ax +Bu) +
∂bF
∂t

+ αF (bF (x, t))
}
≥ 0. (12)

Assumption 3. Consider a differentiable function bF (x, t)
on Ω × (σsF , σ

s+1
F ), σsF ∈ ΣF , defined as in (6). Let

Assumption 2 hold. Consider further an extended class K
function αF (·) and a given, positive constant δ1 satisfying
δ1 > Lt+|αF (χ)|

duσmin(B)−σmax(A)dx
, where Lt = maxi∈IF

dγiF
dt |t=0

and χ < inf(x,t)∈Ω×R≥0
bF (x, t). Then, the barrier function

bF (x, t) is designed such that ∂bF∂x Ax+ ∂bF
∂t +αF (bF (x, t)) ≥

0 holds, for every (x, t) ∈ Ω × (σsF , σ
s+1
F ), σsF ∈ ΣF with∥∥∂bF

∂x

∥∥ ≤ δ1.

Assumption 3 ensures that a constraint similar to (11)
is satisfied when applying u = 0 for any (x, t) ∈ Ω ×
(σsF , σ

s+1
F ), σsF ∈ ΣF with

∥∥∂bF
∂x

∥∥ ≤ δ1. A high value of δ1
e.g., due to actuation limitations and/or increased performance
expectations, may introduce conservatism on the choice of
θF ∈ ΘF for the design of bF (x, t). Hence, a trade-off should
be considered between the performance of the multi-agent
system and the size of {(x, t) ∈ Ω × (σsF , σ

s+1
F ) :

∥∥∂bF
∂x

∥∥ ≤
δ1}.

Theorem 1. Consider the multi-agent system dynamics (3)
subject to input constraints u ∈ U with U defined by (4b)

and an STL formula φ′ =
∧
i∈IF ϕi, defined by (2) and (5a)-

(5b). Assume that bF (x, t) is a differentiable function on Ω×
(σsF , σ

s+1
F ), σsF ∈ ΣF , defined as in (6). Let Assumptions 1-

3 hold. Consider an extended class K function αF (·) and a
control law ū(x, t) := ū with ū given by:

ū = arg min
u∈U

uTu, (13)

subject to:

∂bF
∂x

(Ax +Bu) +
∂bF
∂t
≥ −αF (bF (x, t)). (13a)

Then, there exists a function x : R≥0 → X satisfying (3) a.e.
guaranteeing ρφ

′
(x, 0) ≥ rF > 0, where rF is a designing

parameter of the terminal barrier function bF (x, t), provided
that x(0) ∈ CF (0).

Proof. The proof of Theorem 1 is given in Appendix I. �

Remark 2. The proposed terminal barrier function bF (x, t)
ensures the satisfaction of the STL formula φ′ with a minimum
robustness rF > 0 for systems subject to input constraints. Not
surprisingly, the limited actuation capabilities of the systems
require a stronger assumption than [20, As. 3], [21, As. 3],
where no input limitations are imposed. To that end, Assump-
tion 3 is introduced to ensure the existence and continuity of
a terminal controller for every (x, t) ∈ Ω × (σsF , σ

s+1
F ) that

respects the input constraints u ∈ U. Although this condition
is sufficient for the existence of the terminal controller, our
simulations show it is not necessary. Relaxing Assumption
3 while ensuring existence and continuity of the optimal
controller will be a subject of future research.

B. Receding Horizon Control Problem

A basic assumption on CBF based control under STL
tasks [20] is the existence of an appropriate CBF function
bH(x, t;θH), where θH ∈ ΘH are chosen offline. This
requirement may potentially introduce conservatism and limit
the performance of the agents towards satisfying the task, as
feasible solutions of (3) may be excluded from CH(t;θH).
Towards increasing the size of CH(t;θH), a novel RHS
problem is proposed in which the CBF function bH(x, t;θH)
is designed online while state and input costs, often considered
in RHS problems, are minimized. The proposed RHS is solved
at pre-determined, equidistant time instants τj based on the
current state of the system x(τj). The resulting control law
is applied over a finite time interval [τj , τj+1) until the next
state measurement x(τj+1) becomes available at τj+1. The
aforementioned procedure is repeated for a finite number of
times J + 1 with J = maxl bl/∆τ .

Given the actuation limitations of the agents satisfaction of
φ might not be possible at all times as this decision might lead
to excessive state and input costs. Therefore, a modified ver-
sion of (11) is considered for the barrier function bH(x, t;θH)
and applied over the time interval [τj , τj +N ], j ∈ J . More
specifically, motivated by [22], we propose the relaxation of
(11) by a factor ε with ε : [τj , τj + N ] → R≥0 allowing



the violation of the task when necessary. Hence, the modified
version of (11) can be written as:

∂bH
∂x

(Ax +Bu) +
∂bH
∂t
≥ −αH(bH(x, t;θH))− ε, (14)

where αH(·) is an extended class K function. The relaxation
factor ε is considered as a variable of the RHS and the goal
is to minimize its value within [τj , τj +N ], j ∈ J . Based on
(14), we may impose the following constraint in the RHS:

(x,u, ε,θH) ∈ KH(t), a.e. [τj , τj +N) (15)

where KH(t) = {(x,u, ε,θH) ∈ Rn × Rm × R≥0 × ΘH :
∂bH
∂x (Ax + Bu) + ∂bH

∂t + αH(bH(x, t;θH)) + ε ≥ 0}.
Considering the above, we may define our problem at each
[τj , τj +N ] as follows:

min
u,ε

θH ,rH

J(x,u, ε, rH ,θH) (16)

subject to:

ẋ = Ax +Bu, a.e. [τj , τj +N ] (16a)
(x,u, ε,θH) ∈ KH(t), a.e. [τj , τj +N) (16b)

θiH ∈ Θi
H , i ∈ I

j
H (16c)

rH satisfying (8e) for every i ∈ IjH (16d)

x(0) ∈ Cδ2H (0;θH), if IjH = I0
H (16e)

x(τj +N) ∈ CF (τj +N), (16f)
x(τj) = xτj , (16g)

x ∈ X, t ∈ [τj , τj +N ] (16h)
u ∈ U, t ∈ [τj , τj +N ] (16i)
ε ∈ R≥0, t ∈ [τj , τj +N ] (16j)

where δ2 is a strictly positive tuning parameter such that
bH(x(0), 0;θH) ≥ δ2. The performance criterion of (16) is
defined as the sum of two cost functions as follows:

J(x,u, ε, rH ,θH) =

∫ τj+N

τj

(
‖u‖2 + ‖x‖2 + ‖ε‖2

)
dt+

+
∑
i∈IjH

ti∗H − rH .

(17)

The first function expresses the state, input and task violation
costs over the horizon while the second is introduced as
a function of the parameters of the barrier bH(x, t;θH).
The goal of this problem is hence threefold: 1) to minimize
operational costs usually considered in RHS problems while 2)
maximizing the robustness rH of φ and 3) minimizing the time
instants ti∗H at which each task ϕi is satisfied with robustness
rH .

Equation (16a) defines the dynamics of the multi-agent
system. Assuming that bH(x(τj), τj ;θH) ≥ 0 and ε(t) = 0
is true for every t ∈ [τj , τj +N), constraint (16b) guarantees
that the states of the agents will stay in CH(t;θH) for all
t ∈ [τj , τj +N). However, when this is not possible, e.g., due
to input limitations, agents’ states are allowed to lie outside
the set CH(t;θH). This is encoded by allowing ε(t) to take a
positive value. One of the main goals of this RHS framework

is to minimize the value of ε(t) so as agents stay at the
closest possible distance from CH(t;θH). Constraints (16c),
(16d) impose conditions for the choice of the parameters of
the barriers and the robustness value respectively. Constraint
(16e) forces agents to lie in the interior of CH(0;θH). Note
that (16i) is omitted when IjH ⊂ I0

H increasing the flexibility
in the choice of the parameters of bH(x, t;θH) allowing the
design of gamma functions with an increased robustness value
rH . Constraint (16f) guarantees that the final state of the
system lies inside the set CF (τj+N) and (16g) determines the
initial condition of the system. Finally, (16h)-(16i) define the
allowable values of the system’s state and input, respectively
while (16j) constrains the violating factor to be non-negative.

Due to the deactivation policy and since the time instants
ti∗j,H are decision variables of (16), the proposed optimiza-
tion problem becomes a Mixed Integer Nonlinear problem
(MINLP) which can be solved by global optimization solvers
or other solvers like BARON [25] and SCIP [26]. Neverthe-
less, if the sampling rate ∆τ is chosen such that ∆τ |b̄li for
every i ∈ Ij,FH , then (16) becomes a Nonlinear Program (NLP)
with continuous variables.

C. Theoretical Analysis
For the optimal control problem (16) we make the following

assumption on the regularity of u(t) on any time interval
[τj , τj +N ], j ∈ J :

Assumption 4. Any control input u : [τj , τj+N ]→ U, j ∈ J
satisfying (16a)-(16j) is continuous a.e. in [τj , τj +N ].

Assumption 4 is a common assumption in continuous time
model predictive control schemes, introduced to ensure the
existence of solutions of (3). Let {η1, . . . , ηs(u)} denote the
points of discontinuity of the control input u(t) ∈ U in the
interval [τj , τj +N ]. For brevity we will omit the dependency
of s on u when u is clear from context. From now on
we restrict our analysis to linear extended class K functions
αH(ξ) = αHξ.

Proposition 1. Consider the dynamical system (3) under the
STL task φ defined by (2). Let Assumption 4 hold. Assume
further that (16) is feasible over the time interval [τj , τj +
N ], j ∈ J with αH(ξ) = αHξ a linear, extended class K
function and let (uj , εj ,θj,H , rj,H) be a feasible solution of
(16) over [τj , τj +N ]. In addition, let xj : [τj , τj +N ]→ X
be a solution to (3) with x(τj) = xτj when uj(t) is applied
a.e. in [τj , τj +N ]. Then, for any t ∈ [τj , τj +N) it holds:

xj(t) ∈ Cjwc(t;θj,H), (18)

where Cjwc(t;θj,H) =
{
x ∈ Rn : bH(x, t;θj,H) ≥

α−1
H (−εjwc)+c

}
, c = min

(
0, bH(xj(τj), τj ;θj,H)

)
and εjwc =

supt∈[τj ,τj+N) εj(t).

Proof. The proof of Proposition 1 is given in Appendix II. �

For any feasible solution of (16) at [τj , τj +N ], Proposition
1 ensures a worst-case lower bound of the barrier function that
depends on the violating factor ε(t), t ∈ [τj , τj + N) and the
initial value of the barrier function at τj . This proposition will
be used later in Theorem 3 to determine a lower bound on the



robustness of the STL formula φ. Next, assuming the initial
feasibility of (16), we show the recursive feasibility property
of the proposed RHS scheme.

Theorem 2. Consider the system (3) and the STL formula φ
defined by (2). Let Assumptions 1-4 hold. Assume further that
(16) is feasible at τ0, and αH(ξ) is a linear, extended class K
function with αH(ξ) = αHξ. Then, (16) is recursively feasible
for the same class K function αH(ξ).

Proof. The proof of Theorem 2 is given in Appendix III. �

Having shown the recursive feasibility property of the RHS
scheme and the existence of a worst case lower bound of
the online designed barrier function bH(x, t;θH) at each time
interval [τj , τj +N), we can now determine a lower bound on
the robustness of the STL formula φ as follows:

Theorem 3. Let the Assumptions of Theorem 2 hold. Let xCL :
[0, τJ ]→ X be a solution of (3) under the control law:

κ(x(t)) =

{
uj(t), t ∈ [τj , τj+1), j ∈ J \{J}
uJ(t), t = τJ

Then, ρφ(xCL, 0) ≥ minj∈J ρ̄j with ρ̄j ≥
inft∈[τj ,τj+N) bH(xj(t), t;θj,H) ≥ c + α−1

H (−εwc), j ∈ J ,
where xj : [τj , τj + N ] → X is the solution to (3) when
applying the optimal control input uj(t), t ∈ [τj , τj + N ],
c = min

(
0, bH(xj(τj), τj ;θj,H)

)
, εwc = maxj∈J ε

j
wc,

εjwc = supt∈[τj ,τj+N) ε(t) and ρ̄j is maximized within
[τj , τj +N).

Proof. The proof of Theorem 3 is given in Appendix IV. �

VI. SIMULATION RESULTS

In this Section we present a simulation scenario for R =
4 agents. All simulations are performed in an Intel Core i7-
8665U with 16GB RAM using MATLAB.

The multi-robot dynamics are given by:

ẋ = b


−1 0 0 1
0 −1 0 1
0 0 −1 1
−2 0 −2 4

⊗ I2 + u

where xT =
[
xT1 . . . xT4

]
, xTk =

[
xk yk

]
, k = 1, . . . , 4,

b = 0.025 and In is the n×n identity matrix. The agents are
under state and inputs constraints with dkx = 4, du = 20, k =
1, . . . , 4. Next consider the formula φ =

∧4
i=1 ϕi with the

sub-formulas ϕi, i = 1, . . . , 4 defined as: ϕ1 = G[0,2]ψ1,
ϕ2 = F[2,5]ψ2, ϕ3 = (ψ3 ∧ψ4) U[5,10]ψ5 and ϕ4 = F[5,10]ψ6.
The predicate functions corresponding to ψi, i = 1, . . . 6 are
defined as: h1(x) = 1.2−‖x4−pA‖2, h2(x) = 1−‖x1−pB‖2,
h3(x) = 1.2 − ‖x2 − x1 − pup‖2, h4(x) = 1.2 − ‖x3 −
x1 − pdown‖2, h5(x) = 2 − ‖x1 − pC‖2 and h6(x) =

1.5−‖x4−pD‖2 where pA =
[
−0.5 2.5

]T
, pB =

[
0 0

]T
,

pC =
[
−1.5 −1

]T
, pD =

[
2 1

]T
, pup =

[
−0.3 0.3

]T
and pdown =

[
−0.3 −0.3

]T
. Based on φ agent 4 needs

to stay close to pA for 2 sec and agent 1 should approach
pB between 2 and 5 sec. Then, agents 1,2 and 3 move as

a formation until agent 1 approaches pC between 5 and 10
sec while agent 4 eventually approaches pD within the same
time interval. The optimization horizon and sampling rate are
chosen as N = 1 and ∆τ = 0.1 respectively. Observe that
for any i ∈ Ij,FH it holds that b̄li

∆τ ∈ J , hence due to (8d),
ti∗H = b̄li ,∀i ∈ I

j,F
H , and thus the problem becomes a nonlinear

problem with continuous variables. Observe that Assumption
1 is satisfied since B = I8 while du−σmax(A)dx = 19.4737.

In Figure 1b the evolution of bH(x, t;θH) is shown when
θH ∈ ΘH is found as a solution to (16). The jumps shown at
time instants t = 0, 2, 5 and 10 are a result of the deactivation
policy defined in (9). Observe that bH(x, t;θH) ≥ 0.0059 for
any t ∈ [0, 10]. Hence, considering the fact that εj(t) = 0
for any j ∈ J and t ∈ [τj , τj + N ], by Theorem 3 we may
conclude that ρφ(xCL, 0) ≥ minj ρ̄j ≥ 0 where ρ̄j ≥ rj,H .
In Figure 1c it is shown that rj,H ≥ 0.01 for any j ∈ J .
Combining the results above, ρφ(xCL, 0) ≥ 0.01. The agents’
trajectories found by the proposed RHS framework are shown
in Figure 1a.

For comparison we design the feedback controller proposed
in [22], found as a solution to a quadratic program (QP)
where U = R8 when the performance functions γiH(t;θiH)
are linearly defined as in (7). The parameters θiH ∈ Θi

H

are those guaranteeing the initial feasibility of the RHS with
the robustness value r chosen equal to 0.009. In Figure 2
the agents’ trajectories are shown for the QP-based feedback
controller of [22]. Notice that agent 4 after satisfying φ1, being
affected by its dynamics tries to stay away from agent 2 and
3 before heading towards pD. The evolution of the barrier
function b(xfdbk, t) when applying the QP-based controller
is presented in Figure 3. Observe that b(xfdbk, t) ≥ 0.007
implying ρφ(xfdbk, 0) ≥ 0.009 [22, Thm 1]. Based on the
above, we can conclude that the proposed controller ensures a
higher robustness of the STL task while respecting the input
and state constraints of the system at all times. In addition,
the actuation costs are considerably low when compared to
those of the feedback controller with supt∈[0,10] ‖κ(xCL(t))‖
being 53.91% of the corresponding value of the QP-based
controller. On the downside is the average computational time
required for solving the RHS online, being 5.98 sec contrary
to 12.3 msec for the QP. In this work our focus was on the
design of a RHS scheme that ensures STL satisfaction under
input constraints. As part of our future work, we plan to work
towards decreasing the computational time of the problem.

VII. DISCUSSION-FUTURE WORK

A RHS framework is proposed for a linear system under
Signal Temporal Logic Tasks. The STL specifications are en-
coded using time-varying shaped online towards maximizing
the robustness of the STL task. The recursive feasibility of
the proposed scheme is proven by introducing a time-varying
terminal constraint that ensures a worst-case temporal behavior
of the system towards the satisfaction of the task with a pre-
determined robustness. The proposed framework is central-
ized, thus amenable to ”curse of dimensionality” problems
when a large number of robots is considered. Additionally, the
actions of the agents are chosen such that the robustness of the
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Fig. 1: The closed loop trajectory xCL(t), the evolution of the barrier function bH(xCL(t), t;θH) and the robustness rH found
as a solution to the proposed RHS framework.
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Fig. 2: Agent’s Trajectories with the feedback controller
proposed in [22].

STL tasks is maximized with respect to (x, t). As a result the
complexity of the problem is significantly increased compared
to existing CBF-based STL feedback approaches. Future work
will focus on the design of a decentralized framework as also
on reducing the complexity of the problem by for example
exploring alternative ways for encoding the satisfaction of φ.

APPENDIX I
PROOF OF THEOREM 1

For the proof of Theorem 1, we consider the following
lemma:

Lemma 1. For any matrix B ∈ Mn×m(R) with B 6= 0 it
holds: ‖B†‖ = 1

σmin(B) , where σmin(B) is the minimum, non-
zero singular value of B.

Proof. Consider the SVD decomposition of B, i.e., B =
U Σ̃V T . Then, B† can be written as B† = V Σ̃†UT where Σ̃†

is defined by taking the reciprocals of the non-zero diagonal
elements of Σ̃, leaving the zero elements at place and transpos-
ing the resulting matrix [27, Rem. 2.2]. By [28, Thm. 2.1.4]
the Euclidean norm is unitarily invariant. Therefore, ‖B†‖ =
‖V Σ̃†UT ‖ = ‖Σ̃†‖ = σmax(Σ̃†) = 1

σmin(Σ̃)
= 1

σmin(B) . �

The proof of Theorem 1 is divided in 2 parts. In part 1
we the existence and continuity of the terminal controller
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Fig. 3: Barrier Function Evolution with the feedback controller
proposed in [22].

for every (x, t) ∈ Ω × (σsF , σ
s+1
F ) and in part 2 we deduce

ρφ
′
(x, 0) ≥ rF > 0.

Part 1: Let δ1 a known constant chosen as in Assumption 3.
By Assumption 2 and the choice of the parameters θF ∈ ΘF

it holds that δ1 is strictly positive. We may split the analysis
of part 1 considering the following two cases: 1) (x, t) ∈
Ω× (σsF , σ

s+1
F ), σsF ∈ ΣF with

∥∥∂bF
∂x

∥∥ ≤ δ1 and 2) (x, t) ∈
Ω× (σsF , σ

s+1
F ), σsF ∈ ΣF with

∥∥∂bF
∂x

∥∥ > δ1. By Assumption
3, the control law ū = 0 ensures that ∂bF

∂x Ax + ∂bF
∂t ≥

−αF (bF (x, t)) for every (x, t) ∈ Ω× (σsF , σ
s+1
F ), σsF ∈ ΣF

with
∥∥∂bF
∂x

∥∥ ≤ δ1. Next consider the case when (x, t) ∈
Ω × (σsF , σ

s+1
F ), σsF ∈ ΣF with

∥∥∂bF
∂x

∥∥ > δ1. First we show
that (13) has a feasible solution ufeas that lies in the interior of
the solution space defined by (13a) and the constraint ‖u‖ ≤
du. This is an essential requirement for guaranteeing the
existence of the Lagrange multipliers in the KKT conditions
(22) when the linear independent constraint qualification [29,
Thm. 8] is not guaranteed. By assumption 1, B is of full
row rank. Hence, we may define the Moore-Penrose matrix
of B as B† = BT (BBT )−1. A candidate solution of (13)
could be the following: ufeas = B†(−Ax + vfeas) where
vfeas = (Lt − αF (χ))‖∂bF∂x ‖

−2 ∂b
T
F

∂x . Next we show that ufeas
lies in the interior of the solution space of (13). Substituting



u = ufeas to ∂bF
∂x (Ax +Bu) we get:

∂bF
∂x

(Ax +Bufeas) =
∂bF
∂x

vfeas = Lt − αF (χ). (19)

For any (x, t) ∈ Ω × R≥0 the following is true: bF (x, t) ≥
inf(x,t)∈Ω×R≥0

bF (x, t) > χ. Hence, for the class K function
αF (·) it holds:

αF (bF (x, t))− αF (χ) > 0. (20)

By the choice of γiF (t) in (7) we have:

dγiF (t)

dt
=

{
γiF,∞−γ

i
F,0

ti∗F
, t < ti∗F

0, t ≥ ti∗F
.

For every t ≥ 0 and due to the particular choice of θF (i.e.,
θF satisfies (8a)-(8e)) it holds that 0 ≤ dγiF (t)

dt ≤ dγiF (t)
dt |t=0.

Let Lt = Lt(θF ) = maxi∈IF
dγiF (t)
dt |t=0. Then, for every t

the following is true:

∂bF
∂t

=
−
∑
i∈IF o

i
F (t) exp (−biF (x, t))

dγiF (t)
dt∑

i∈IF o
i
F (t) exp (−biF (x, t))

≥ −Lt
∑
i∈IF o

i
F (t) exp (−biF (x, t))∑

i∈IF o
i
F (t) exp (−biF (x, t))

≥ −Lt. (21)

Based on (19)-(21) we may conclude that:

∂bF
∂x

(Ax +Bufeas) +
∂bF
∂t

+ αF (bF (x, t)) > 0,

for any (x, t) ∈ Ω × (σsF , σ
s+1
F ), σsF ∈ ΣF with

∥∥∂bF
∂x

∥∥ >
δ1. Furthermore, considering Lemma 1 and Assumption 2 we
have:

‖ufeas‖ ≤
1

σmin(B)

(
σmax(A)dx +

Lt + |αF (χ)|
‖∂bF∂x ‖

)
<

1

σmin(B)

(
σmax(A)dx +

Lt + |αF (χ)|
δ1

)
< du.

Since ufeas belongs in the interior of the solution space defined
by (13a) and the constraint u ∈ U, Slater’s constraint qualifica-
tion is satisfied. Hence, by [30, Prp 3.3.9] the KKT optimality
conditions imply that for any (x, t) ∈ Ω× (σsF , σ

s+1
F ), σsF ∈

ΣF with
∥∥∂bF
∂x

∥∥ > δ1 there exist λw̄(x, t) ≥ 0, w̄ = 1, 2 such
that ū′ and λw̄(x, t) ≥ 0, w̄ = 1, 2 satisfy:

2(λ2(x, t) + 1)ū′ − λ1(x, t)BT
∂bTF
∂x = 0,

∂bF
∂x (Ax +Bū′) + ∂bF

∂t + αF (bF (x, t)) ≥ 0,

‖ū′‖ − du ≤ 0,

λ1(x, t) = 0, if ∂bF
∂x (Ax +Bū′) + ∂bF

∂t + αF (bF (x, t)) > 0,

λ2(x, t) = 0, if ‖ū′‖ − du < 0.
(22)

Since the problem (13) is convex, these conditions are also suf-
ficient [31]. Therefore, for any (x, t) ∈ Ω×(σsF , σ

s+1
F ), σsF ∈

ΣF with
∥∥∂bF
∂x

∥∥ > δ1 we may define ū′ in closed form as
follows:

ū′ =

{
0, C(x, t) > 0

u1, C(x, t) ∈
[
− du

∥∥∂bF
∂x B

∥∥, 0] ,
where C(x, t) = ∂bF

∂x Ax + ∂bF
∂t + αF (bF (x, t)) and u1 =

− C(x,t)

‖ ∂bF∂x B‖2
BT

∂bTF
∂x . Next, we denote by ū = ū(x, t) the

control input for any (x, t) ∈ Ω × (σsF , σ
s+1
F ), σsF ∈ ΣF .

Consider any (x, t) ∈ Ω × (σsF , σ
s+1
F ), σsF ∈ ΣF with∥∥∂bF

∂x

∥∥ = δ1. By continuity of C(x, t) and for any (x′, t′)
in a neighborhood U around (x, t) it holds C(x′, t′) ≥ 0.
Hence, ū(x′, t′) = 0 holds, implying continuity of ū(x, t) in
x.

Part 2: By continuity of ū in x there exist solutions x :
[0, τmax) → Ω with τmax > 0. Constraint (13a) is equivalent
to ḃF (x, t) ≥ −αF (bF (x, t)) with bF (x(0), 0) ≥ 0. Then,
by [32, Lem. 4.4] and the Comparison Lemma [32, Ch. 3.4]
it follows bF (x, t) ≥ 0 for all t ∈ (0,min(τmax, σ

1
F )). As-

suming that τmax ≥ σ1
F and using similar arguments we may

conclude that bF (x, t) ≥ 0 for all t ∈ (σ1
F ,min(τmax, σ

2
F )).

Note that for x satisfying bF (x, t) ≥ 0 as t →
σ1−
F it holds limt→σ1−

F

∑
i∈IF o

i
F (t) exp (−biF (x, t)) ≥∑

i∈IF o
i
F (σ1

F ) exp (−biF (x, σ1
F )). As a result, we have 0 ≤

limt→σ1−
F

bF (x, t) ≤ bF (x, σ1
F ). This implies that x(t) ∈

CF (t) for any t ∈ [σ1
F ,min(τmax, σ

2
F )). The previous argu-

ments may be repeated unless there exists a σsF ∈ ΣF such
that τmax < σsF . If bF (x, t) ≥ 0 is true for any t ∈ (σsF , σ

s+1
F ),

then, as discussed in Section II-B, biF (x, t) ≥ 0 holds for any
i ∈ IF with oiF (t) 6= 0 implying hi(x(t)) ≥ γiF (t). Since
θF ∈ Θ for any i = p + k, k = 1, . . . , R the relation
hi(x(t)) ≥ γiF (t) implies that ‖xk‖2 ≤ dk 2

x − rF . Hence,
any solution x lies within the compact set X. If τmax < ∞
by [33, Ch. 2, Thm 1.3] there exists a β̄ > 0 such that x
is continued on [0, τmax + β̄) which leads to contradiction.
Hence, the solutions x of (3) are defined for every t ≥ 0.

Next we show ρφ
′
(x, 0) ≥ rF > with rF a design parameter

of bF (x, t). Note that the STL formula φ′ is a conjunction of
always and eventually formulas. By definition of the robust
semantics we have: ρφ

′
(x, 0) = mini∈IF ρ

ϕi(x, 0). If the
formula ϕi is an always formula by the robustness semantics,
the choice of θF , and the non-negativity of biF (x, t) we have:

ρϕi(x, 0) ≥ min
t1∈[ai,bi]

γiF (t) ≥ γiF (ai) ≥ rF .

The above is true since by design of γiF (t) it holds that
γiF (t) ≥ rF for any t ≥ ti∗F = ai. If the formula i is an
eventually formula, it holds:

ρϕi(x, 0) ≥ max
t1∈[ai,ti∗F ]

hi(x(t1)) ≥ max
t1∈[ai,ti∗F ]

γiF (t) ≥ rF .

Based on the above we may conclude that ρφ
′
(x, 0) =

mini∈IF ρ
ϕi(x, 0) ≥ rF . This concludes the proof.

APPENDIX II
PROOF OF PROPOSITION 1

For the proof of Proposition 1 the following lemma will be
useful:



Lemma 2. Consider the initial value problem: ẏ = −α(y)−ε,
y(t1) = y1 where α(ξ) = αξ is a linear, extended class
K function and ε ≥ 0. Then, the solution to this initial
value problem is given by: y(t) = e−α(t−t1)(y1 + α−1(ε)) +
α−1(−ε), t ≥ t1.

Proof. The proof follows standard arguments for solving first-
order differential equations with given initial conditions and
is thus omitted. �

Next, we continue with the proof of Proposition 1. By
Assumption 4 and the feasibility of (16) there exists an
absolute continuous function xj : [τj , τj +N ]→ X satisfying
(3) when uj(t) is applied a.e. in [τj , τj + N ]. Let ΣH =
({ti∗j,H : i ∈ Ij,FH } ∪ {ai, bi : i ∈ Ij,GH , ai 6= 0} ∪ {bi : i ∈
Ij,GH , ai = 0})\{iH} and H = {ηω : ω = 1, . . . , s̄} the points
of discontinuity of bH(x, t;θj,H) and uj(t) respectively. Let
Σ = ΣH ∩ [τj , τj + N). We next consider two cases: 1)
t ∈ [τj , τj + N)\(Σ ∪ H) and 2) t ∈ Σ ∪ H , i.e., t is a
time instant at which either the derivative of bH(x, t;θH)
with respect to (x, t) does not exist or ẋ is not continuous
with respect to t.

Case 1: By feasibility of (16), xj(t) satisfies (16b) for any
t ∈ [τj , τj + N)\(Σ ∪ H). Let εjwc = supt∈[τj ,τj+N) εj(t).
Since αH is a linear, class K function we have α−1

H (−εj(t)) ≥
α−1
H (−εjwc) for any t ∈ [τj , τj+N). As a result, the satisfaction

of (16b) implies the satisfaction of the following inequality:

∂bH
∂x

(Axj +Buj) +
∂bH
∂t
≥ −αH(bH(xj , t;θj,H))− εjwc.

(23)
Applying the Comparison Lemma [32, Ch. 3.4] to (23) and
due to Lemma 2 the following holds:

bH(xj(t), t;θj,H) ≥ e−αH(t−τj)
(
bH(xj(τj), τj ;θj,H)

+ α−1
H (εjwc)

)
+ α−1

H (−εjwc).
(24)

By (16j) and for the linear, class K function αH(ξ) =
αHξ we have α−1

H (εjwc) ≥ 0. Hence, it holds that
bH(xj(τj), τj ;θj,H) +α−1

H (εjwc) ≥ bH(xj(τj), τj ;θj,H). This
implies the following:

bH(xj(t), t;θj,H) ≥ e−αH(t−τj)bH(xj(τj), τj ;θj,H)

+ α−1
H (−εjwc).

(25)

If bH(xj(τj), τj ;θj,H) ≥ 0, the inequality above implies
bH(xj(t), t;θj,H) ≥ α−1

H (−εjwc). If bH(xj(τj), τj ;θj,H) < 0,
given that t ∈ [τj , τj +N), (25) becomes:

bH(xj(t), t;θj,H) ≥ bH(xj(τj), τj ;θj,H)

+ α−1
H (−εjwc).

Setting c = min
(
0, bH(xj(τj), τj ;θj,H)

)
the result follows.

Case 2: By design of bH(x, t;θH) for any σH ∈ Σ it holds
that: limt→σ−H

bH(xj(t), t;θj,H) ≤ bH(xj(σH), σH ;θj,H).
Additionally, for any t ∈ H\Σ the barrier function
bH(xj(t), t;θj,H) is continuous in (xj , t) and xj(t)
is by Definition 1 absolutely continuous in t, thus
limt→η−ω bH(xj(t), t;θj,H) = bH(xj(ηω), ηω;θj,H).
Note that the quantities limt→σ−H

bH(xj(t), t;θj,H) and

limt→η−ω bH(xj(t), t;θj,H) satisfy the conditions of Case 1,
thus are bounded from below by c + α−1

H (−εjwc). Hence,
the result follows also for bH(xj(σH), σH ;θj,H) and
bH(xj(ηω), ηω;θj,H).

APPENDIX III
PROOF OF THEOREM 2

The recursive feasibility of (16) is proven by induction.
Assume that (16) is feasible at τj , j ≥ 1. To prove the
feasibility of (16) at τj+1 given its feasibility at τj , we pro-
pose a candidate solution (uj+1, εj+1,θj+1,H , rj+1,H) over
[τj+1, τj+1 +N ] and show it satisfies (16a)-(16j).

Let uj : [τj , τj + N ] → U, εj : [τj , τj + N ] → R≥0,
θj,H =

[
θij,H

]
i∈IjH

, rj,H denote the control input, the
violating factor, the vector of parameters and the robustness
value respectively, found as a solution of (16) over the time
interval [τj , τj + N ]. Consider θj+1,H =

[
θij,H

]
i∈IjH∩I

j+1
H

and rj+1,H = rj,H the vector of parameters and the robust-
ness value used in the design of bH(x, t;θH) over the time
interval [τj+1, τj+1 + N ]. Note that by feasibility of (16) at
[τj , τj + N ], (θj+1,H , rj+1,H) satisfy the constraints (16c)-
(16d). Furthermore, let the candidate control signal:

uj+1(t) =

{
uj(t), t ∈ [τj+1, τj +N ]

ū(t), t ∈ (τj +N, τj+1 +N ]
,

where ū : (τj + N, τj+1 + N ] → U is the optimal solution
of (13). By Theorem 1, (13) is always feasible with the
resulting control law ū(x̄(t), t) being continuous in (x̄(t), t) ∈
Ω×(σsF , σ

s+1
F ), σsF ∈ ΣF , where x̄ : [τj+N, τj+1 +N ]→ X

is a solution of (3) when ū(x̄(t), t)is applied to the system.
By Definition 1, x̄(t) is an absolutely continuous function
in t. Hence, the feedback control law ū(x̄(t), t) = ū(t) is
piecewise continuous over (τj + N, τj+1 + N ]. Additionally,
by feasibility of (16) at [τj , τj +N ], the feasible control uj(t)
satisfies Assumption 4. As a result the proposed control signal
uj+1(t) satisfies Assumption 4 guaranteeing the existence of
solutions of (3) over the interval [τj+1, τj+1 +N ].

By Theorem 1, bF (x̄(t), t) ≥ 0 is true for all t ∈ [τj +
N, τj+1 +N ]. Therefore, (16f) is satisfied. In addition, since
uj(t), t ∈ [τj+1, τj + N ] is a feasible input for the RHS at
τj , any solution xj of (3) satisfies the state constraints, i.e.,
xj(t) ∈ X for any t ∈ [τj+1, τj+N ]. By design of the terminal
barrier function, if bF (x̄(t), t) ≥ 0, then x̄(t) ∈ X implying
that xj+1(t) = x̄(t) ∈ X, for every t ∈ (τj + N, τj+1 + N ].
Note also that uj+1(t) ∈ U for t ∈ [τj+1, τj+1 + N ]. Hence,
(16h)-(16i) are satisfied.

Let biH(x, t;θij,H), biH(x, t;θij+1,H) be the barrier
functions of ϕi designed over the time interval [τj , τj + N ]
and [τj+1, τj+1 + N ] respectively. At the time interval
[τj+1, τj+1 + N ] it is possible that some formulas ϕi do
not contribute to the construction of bH(x, t;θH) because
bi < τj+1 holds. This implies that Ij+1

H ⊆ IjH . As a
result, θij+1,H = θij,H is true for any i ∈ IjH ∩ I

j+1
H .

If Ij+1
H = IjH = I0

H , then for any (x, t) ∈ X × R≥0

it holds that
∑
i∈IjH

oiH(t) exp (−biH(x, t;θij,H)) =∑
i∈Ij+1

H
oiH(t) exp (−biH(x, t;θij+1,H)). The latter



implies that bH(x, t;θj,H) = bH(x, t;θj+1,H) where
bH(x, t;θj,H), bH(x, t;θj+1,H) denote the barrier functions
designed at [τj , τj +N ], [τj+1, τj+1 +N ], respectively. Since
(16) is feasible at τj , it holds that: bH(x(0), 0;θj,H) ≥ δ2.
Hence, (16e) is satisfied at τj+1.

The proof is completed by introducing a candidate violation
factor εj+1(t) a.e. in [τj+1, τj+1 + N ] and showing that
(16b), (16j) are satisfied. Let βH(t′) = bH(x̄(t′), t′;θj+1,H)
denote the barrier function bH as a function of time with
x̄ : [τj + N, τj+1 + N ] → X the solution of (3) when
applying ū(x, t). Additionally, let β̇H(t′) = dβH

dt |t=t′ =
∂bH(x̄(t′),t′;θj+1,H)

∂x
˙̄x(t′) +

∂bH(x̄(t′),t′;θj+1,H)
∂t a.e. in [τj +

N, τj+1 +N ]. Note that (βH(t), β̇H(t)) can be computed a.e.
in [τj+N, τj+1+N ] since x̄(t),θj+1,H are known. To simplify
notation we will omit the subscript H and the dependence of
ε(t), β̇H(t), βH(t) on t when necessary.

Consider the violation factor εj+1(t) a.e. in [τj+1, τj+1+N ]:

εj+1(t) =

{
εj(t), t ∈ [τj+1, τj +N ]

ε̄(t), t ∈ (τj +N, τj+1 +N ]
,

where ε̄ := ε̄(t) is defined as:

ε̄ =

{
0, (β, β̇) ∈ B1 ∪ B2 ∪ B3

−(β̇ + αH(β)), (β, β̇) ∈ B4 ∪ B5 ∪ B6

,

where the sets Bq, q = 1, . . . , 6 are defined as:

B1 =
{

(β, β̇) ∈ R2 : β̇ ≤ 0, β ≥ 0, αH(β) ≥ −β̇
}
,

B2 =
{

(β, β̇) ∈ R2 : β̇ > 0, β ≥ 0
}
,

B3 =
{

(β, β̇) ∈ R2 : β̇ > 0, β < 0, β̇ ≥ −αH(β)
}
,

B4 =
{

(β, β̇) ∈ R2 : β̇ ≤ 0, β ≥ 0, αH(β) < −β̇
}
,

B5 =
{

(β, β̇) ∈ R2 : β̇ ≤ 0, β < 0
}
,

B6 =
{

(β, β̇) ∈ R2 : β̇ > 0, β < 0, β̇ < −αH(β)
}
.

By feasibility of (16) at τj , it holds that: 1) εj(t) ≥ 0 is true in
[τj , τj +N ] and 2) (16b) is satisfied for any solution xj(t) of
(3) when applying uj(t) a.e. in [τj , τj +N ]. Observe further
β̇+αH(β) < 0 is true for any (β, β̇) ∈ B4 ∪B5 ∪B6. Hence,
ε̄ ≥ 0. For any (β, β̇) ∈ B1∪B2∪B3 we have β̇+αH(β) ≥ 0.
Therefore, choosing εj+1 = 0 implies the satisfaction of (16b).
Finally, setting εj+1 = −(β̇ + αH(β)) when (β, β̇) ∈ B4 ∪
B5 ∪B6 results in εj+1 + β̇+αH(β) = 0. Therefore, (16b) is
satisfied as equality. Based on the analysis above the candidate
solution (uj+1, εj+1,θj+1,H , rj+1,H) satisfies the constraints
(16a)-(16j). As a result, (16) is feasible over [τj+1, τj+1 +N ].
Since the above hold for any j ≥ 1, (16) is recursively feasible
when αH(ξ) = αHξ.

APPENDIX IV
PROOF OF THEOREM 3

By Theorem 2, (16) is feasible for every j ∈ J , i.e., there
always exists a continuous function uj(t) a.e. in [τj , τj +N ]
for every j. This implies that κ(x(t)) is always defined and
due to Assumption 4 it is a continuous function a.e. in [0, τJ ].
Let xCL : [0, τJ ] → X a solution of (3), when κ(x(t)) is
applied for t ∈ [0, τJ ].

The formula φ, defined by (2) is a conjunction of always and
eventually formulas ϕi, i ∈ I0

H . Hence, by definition of the
robust semantics we have: ρφ(xCL, 0) = mini∈I0H ρ

ϕi(xCL, 0).
By construction, for any (xj , t) ∈ X× [τj , τj+N ] it holds that
bH(xj , t;θj,H) ≤ mini∈IjH

biH(xj , t;θ
i
j,H), where θj,H =[

θij,H
]
i∈IjH

is found as the solution of (16) at [τj , τj +N ]. As
a result, hi(xCL(t)) ≥ γiH(t;θij,H) + bH(xCL(t), t;θj,H), t ∈
[ai, bi] ∩ [τj , τj+1), j ∈ JGi , where JGi =

{
j ∈ J : [ai, bi] ∩

[τj , τj+1) 6= ∅
}

. If ϕi is an always formula, by design of
γiH(t;θij,H), at every interval [τj , τj +N ], j ∈ JGi and (8c) we
have:

γiH(t;θij,H) ≥ γiH(ai;θ
i
j,H) ≥ rj,H , t ∈ [ai, bi] ∩ [τj , τj+1)

where rj,H is the robustness value found as a solution to (16)
at [τj , τj+N ]. The inequality above implies that for every j ∈
JGi it holds that hi(xCL(t)) ≥ rj,H + bH(xCL(t), t;θj,H) ≥
rj,H + inft′∈[τj ,τj+N) bH(xj(t

′), t′;θj,H), t ∈ [ai, bi] ∩
[τj , τj+1). Let ρ̄j = rj,H+inft′∈[τj ,τj+N) bH(xj(t

′), t′;θj,H).
Then, we may conclude the following for the robustness value
ρϕi(xCL, 0) of an always formula ϕi:

ρϕi(xCL, 0) = min
t1∈[ai,bi]

hi(xCL(t1)) ≥ min
j∈JGi

ρ̄j ≥ min
j∈J

ρ̄j .

(26)
If the formula ϕi is an eventually formula, the following is
always true for its robustness value:

ρϕi(xCL, 0) ≥ sup
t1∈[max(τj ,ai),ti∗j,H)

hi(xCL(t1)),

for any j ∈ J such that the eventually formula ϕi is active at
[τj , τj +N ]. Due to (8d), there exists ι = d(i) ∈ J such that
ti∗ι,H ≥ τι. By the choice of γiH(t;θiι,H) and its design at the
time interval [τι, τι +N ] we have:

γiH(t1;θiH,ι) ≤ sup
t1∈I

γiH(t1;θiι,H) = rι,H , (27)

for any t1 ∈ I = [max(τι, ai), t
i∗
ι,H). By definition of ι =

d(i) and (8d), I ⊂ [τι, τι+1). Hence, for any closed loop
trajectory xCL(t1) with t1 ∈ I it holds that: hi(xCL(t1)) ≥
γiH(t1;θiι,H) + bH(xCL(t1), t1;θι,H). This in addition to (27)
implies:

ρϕi(xCL, 0) ≥ sup
t1∈I

hi(xCL(t1)) ≥ ρ̄ι ≥ min
j∈J

ρ̄j ,

where ρ̄j = rj,H+inft′∈[τj ,τj+N) bH(xj(t
′), t′;θj,H), j ∈ J .

Considering the aforementioned results for the always and
eventually formulas, we may conclude that ρφ(xCL, 0) =
mini∈I0H ρ

ϕi(xCL, 0) ≥ minj∈J ρ̄j . Note that ρ̄j = rj,H +
inft′∈[τj ,τj+N) bH(xj(t

′), t′;θj,H) holds, irrespective of the
choice of the temporal operator. Due to (16d), rj,H > 0 is true,
thus ρ̄j ≥ inft′∈[τj ,τj+N) bH(xj(t

′), t′;θj,H). By Proposition
1, it is known that bH(xj(t

′), t′;θj,H) ≥ c+α−1
H (−εjwc), t′ ∈

[τj , τj+N). Considering this result and for εwc = maxj∈J ε
j
wc

we have that bH(xj(t
′), t′;θj,H) ≥ c + α−1

H (−εwc). Hence,
ρ̄j ≥ inft′∈[τj ,τj+N) bH(xj(t

′), t′;θj,H) ≥ c + α−1
H (−εwc) is

concluded.
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