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From Partial and Horizontal Contraction to
k-Contraction

Chengshuai Wu∗ and Dimos V. Dimarogonas

Abstract—A geometric generalization of contraction theory
called k-contraction was recently developed using k-compound
matrices. In this note, we focus on the relations between k-
contraction and two other generalized contraction frameworks:
partial contraction (also known as virtual contraction) and
horizontal contraction. We show that in general these three
notions of contraction are different. We here provide new
sufficient conditions guaranteeing that partial contraction implies
horizontal contraction, and that horizontal contraction implies k-
contraction. We use the Andronov-Hopf oscillator to demonstrate
some of the theoretical results.

Index Terms—k-contraction, compound matrix, partial con-
traction, horizontal contraction, virtual contraction, Andronov-
Hopf oscillator

I. INTRODUCTION

Contraction theory is a powerful tool for analyzing the
asymptotic behavior of nonlinear time-varying dynamical sys-
tems [13], [2], [10]. A contractive system behaves in many
respects like a uniformly asymptotically stable linear system:
initial conditions are “forgetten” and any two trajectories
approach each other at an exponential rate.

There exist easy to verify sufficient conditions for contrac-
tion that are based on matrix measures [2] and contraction
analysis has found numerous applications such as control
synthesis for regulation [18] and tracking [32], observer de-
sign [14], [22], [1], optimization [29], synchronization of
multi-agents systems [24], [21], robotics [15], learning algo-
rithm [29], and systems biology [16], [20].

Any two solutions of a contractive system converge to each
other, which implies a unique exponentially asymptotically
stable equilibrium or trajectory. This rules out the existence
of multiple (stable or unstable) equilibriums, limit cycles, and
other oscillatory behaviors. This motivates researchers to in-
troduce generalizations of contraction theory which allow an-
alyzing non-trivial attractors, for example, partial contraction
[28], [7], [24], horizontal contraction [10], and k-contraction
[30].

Roughly speaking, partial contraction is related to the
contractive behavior of an auxiliary system associated with
the studied one, and horizontal contraction studies contractive
properties along some particular “directions”. Despite using
different mathematical formulations, these two generalized
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Fig. 1. Illustration of the main results.

notions of contraction are both effective for analyzing stable
limit cycles or synchronization of networked systems, i.e.,
convergence to certain subspaces. Furthermore, Ref. [27]
showed that both notions (where partial contraction is referred
to as virtual contraction) can be utilized to solve a particular
control problem arising in the immersion & invariance (I&I)
stabilization procedure [4].

Ref. [30] introduced a generalization of contraction theory
called k-contraction based on the seminal work of Mul-
downey [17]. A dynamical system is called k-contractive
if the dynamics contracts k-volumes at an exponential rate.
For k = 1, this recovers the standard contraction theory as 1-
volume is just length. However, k-contraction with k > 1 can
be applied to analyze systems that are not contractive (i.e., not
1-contractive) such as multi-stable systems that are prevalent
in mathematical models of real-world systems. In particular, it
was shown in [30], [31] that k-contraction can also be applied
to chaotic systems, which typically cannot be analyzed using
partial/horizontal contraction.

However, the three notions of contraction are closely related
in certain cases and it is our intention to bring more insights
into the distinctions and the relations. Unlike [30], this current
work considers dynamical systems whose solutions evolve
on a forward invariant and connected, but not necessarily
convex manifold. In our main results, we provide conditions
describing when partial contraction implies horizontal contrac-
tion and when horizontal contraction implies k-contraction.
By combining these results together, sufficient conditions for
partial contraction implying k-contraction are also obtained
(see Fig. 1). Furthermore, some examples are given to show
that these three notions are different in general. These results
are useful since k-contraction and, in particular, 2-contraction
implies strong results on the attractors and asymptotic behavior
of nonlinear time-invariant systems [11], [30]. Therefore, the
same conclusions can be drawn for partially or horizontally
contractive systems if the aforementioned sufficient conditions
hold.
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The remainder of this note is organized as follows. The
next section briefly reviews the definitions of k-contraction,
horizontal contraction, and partial contraction. Section III and
IV detail the main results. The Andronov-Hopf oscillator is
revisited in Section V to validate the proposed results. Section
VI gives the conclusions.

Notation. Here we briefly describe the basic notations and
some mathematical tools including compound matrices and
wedge products are required to define k-contraction, see [5],
[17], [9] for more details and proofs.

For two integers i, j, with 0 < i ≤ j, we denote [i, j] :=
{i, i+1, . . . , j}. For an n-dimensional manifold Ω ⊆ Rn, we
denote the tangent space of Ω at x ∈ Ω by TxΩ, and the
tangent bundle of Ω by TΩ := ∪x∈Ω({x} × TxΩ).

Compound matrices. Given A ∈ Rn×m and k ∈
[1,min{n,m}], the kth multiplicative compound matrix of A,
denoted A(k), is the

(
n
k

)
×

(
m
k

)
matrix that includes all the

minors of order k of A ordered lexicographically. In particular,
A(1) = A, and for A ∈ Rn×n, A(n) = det(A). The
Cauchy-Binet formula (see e.g., [8, Ch. 1]) asserts that for
any A ∈ Rn×p, B ∈ Rp×m, and k = [1,min{n,m, p}],

(AB)(k) = A(k)B(k), (1)

which justifies the term multiplicative compound.

The kth additive compound matrix of a square matrix A ∈
Rn×n is defined by

A[k] :=
d

dε
(In + εA)(k)|ε=0,

where In denotes the n× n identity matrix. This implies that

(In + εA)(k) = Ir + εA[k] + o(ε), (2)

with r :=
(
n
k

)
. The matrix A[k] can be given explicitly in

terms of the entries aij of A as shown in [23], [9]. It follows
from (2) and the properties of the multiplicative compound
that for any A,B ∈ Rn×n

(A+B)[k] = A[k] +B[k], (3)

which justifies the term additive compound.

Wedge products. The multiplicative compound matrix has an
important geometric interpretation in terms of the k-volume of
a k-parallelotope [5]. Pick k ∈ [1, n], and k vectors ai ∈ Rn,
i = 1, . . . , k. The wedge product of these vectors, denoted a1∧
· · ·∧ak, can be represented using the multiplicative compound
as

a1 ∧ · · · ∧ ak =
[
a1 . . . ak

](k)
. (4)

This provides a representation of wedge product as an r-
dimensional column vector, where r :=

(
n
k

)
. We will use

the short-hand notation ∧k
i=1a

i := a1 ∧ · · · ∧ ak throughout
the paper. By the property of the multiplicative compound
matrices, ∧k

i=1a
i = 0 iff a1, . . . , ak are linearly dependent

[17]. The k-parallelotope generated by a1, . . . , ak (and the
zero vertex) is P (a1, . . . , ak) := {

∑k
i=1 cia

i | ci ∈ [0, 1]}. The
k-volume of P (a1, . . . , ak) is |∧k

i=1 a
i|2, where | · |2 is the L2

norm. In the particular case k = n this reduces to the well-
known formula: volume(P (a1, . . . , an)) = |det(a1, . . . , an)|.

II. THREE GENERALIZED NOTIONS OF CONTRACTION

In this section, we briefly review the definitions of k-
contraction, horizontal contraction, and partial contraction.

Consider the nonlinear time-varying (NTV) system

ẋ = f(t, x), (5)

where f : R+ × Rn → Rn is continuously differentiable
w.r.t. its second argument, and let J(t, x) := ∂

∂xf(t, x)
denote the Jacobian of the vector field w.r.t. x. We denote
by x(t, t0, a) the solution to (5) at time t emanating from the
initial condition a ∈ Rn at time t0, that is, x(t0, t0, a) = a.
We assume that the solutions of (5) evolve on a closed
and connected n-dimensional manifold Ω, and that for any
initial condition a ∈ Ω, a unique solution x(t, t0, a) exists
and satisfies x(t, t0, a) ∈ Ω for all t ≥ t0. For the sake
of simplicity, we assume from here on that the initial time
is t0 = 0, and write x(t, a) := x(t, 0, a).

Consider the matrix Φ(t, a) := ∂x(t,a)
∂a . Note that Φ(0, a) =

In. A straightforward computation yields

d

dt
Φ(t, a) = J(t, x(t, a))Φ(t, a). (6)

This is the variational system associated with (5) along x(t, a).
Let δa ∈ TaΩ denote an infinitesimal variation to the initial
condition a ∈ Ω. Then δx(t, a) := Φ(t, a)δa is the infinites-
imal displacement w.r.t. the solution x(t, a) induced by the
initial condition a+ δa. Eq. (6) implies that

δẋ(t, a) :=
d

dt
δx(t, a) = J(t, x(t, a))δx(t, a). (7)

A. k-contraction

For k ∈ [1, n], consider Φ(k)(t, a) := (Φ(t, a))(k), i.e., the
kth multiplicative compound matrix of Φ(t, a). Fix ε > 0.
Eqs. (6) and (1) give

Φ(k)(t+ ε, a) = (Φ(t, a) + εJ(t, x(t, a))Φ(t, a))(k) + o(ε)

= (In + εJ(t, x(t, a)))(k)Φ(k)(t, a) + o(ε).

Combining this with (2) and the fact that Φ(0, a) = In yields
a differential equation for Φ(k)(t, a):

d

dt
Φ(k)(t, a) = lim

ε→0+

Φ(k)(t+ ε, a)− Φ(k)(t, a)

ε

= J [k](t, x(t, a))Φ(k)(t, a), Φ(k)(0, a) = Ir,
(8)

where J [k](t, x(t, a)) := (J(t, x(t, a)))[k], and r :=
(
n
k

)
. In

other words, all the minors of order k of Φ(t, a), stacked
in the matrix Φ(k)(t, a), satisfy a linear dynamics with the
matrix J [k](t, x(t, a)).

Pick k initial conditions δa1, . . . , δak for (7). Define

δxi(t, a) := Φ(t, a)δai, y(t, a) := ∧k
i=1δx

i(t, a). (9)

Note that y(t, a) = 0 iff δx1(t, a), . . . , δxk(t, a) are linearly
dependent. By (1) and (4),

y(t, a) = ∧k
i=1Φ(t, a)δa

i = Φ(k)(t, a)y(0, a), (10)
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and (8) yields

ẏ(t, a) = J [k](t, x(t, a))y(t, a). (11)

This is the kth compound equation of (7) along x(t, a) (see
e.g. [12]). This leads to the following definition.

Definition 1 (k-contraction). Fix k ∈ [1, n] and let r :=
(
n
k

)
.

The NTV system (5) is called k-contractive if the linear time-
varying (LTV) system

ẏ(t) = J [k](t, x(t, a))y(t) (12)

is uniformly exponentially stable for any a ∈ Ω, that is, there
exist c ≥ 1, η > 0, and a vector norm | · | such that

|y(t)| ≤ c exp(−ηt)|y(0)|, for all t ≥ 0. (13)

Note that the above definition is slightly different from
[30, Def. 2] where the value of c is fixed as one. By the
geometric interpretation of wedge products, Eq. (13) implies
that the k-volume of the k-parallelotope generated by the
vertices δx1(t, a), . . . , δxk(t, a) (and the zero vertex) decays
to zero at an exponential rate. For k = 1, k-contraction reduces
to standard contraction.

B. Horizontal contraction
For every x ∈ Ω, suppose that TxΩ can be subdivided into a

horizontal distribution Hx and a vertical distribution Qx which
are orthogonally complementary to each other. That is, there
exist ℓ ∈ [1, n] and C1 mappings hi, qi : Rn → Rn such that

Hx := span{h1(x), . . . , hℓ(x)},
Qx := span{q1(x), . . . , qn−ℓ(x)}.

(14)

Note that if ℓ = n, then Hx = TxΩ. Define the matrices

H(x) :=
[
h1(x) · · · hℓ(x)

]
∈ Rn×ℓ,

Q(x) :=
[
q1(x) · · · qn−ℓ(x)

]
∈ Rn×(n−ℓ).

(15)

Since Hx and Qx are orthogonal to each other, we have

HT (x)Q(x) = 0. (16)

For every δx ∈ TxΩ, there exists a set of uniquely defined
δxh ∈ Rℓ and δxq ∈ Rn−ℓ such that

δx = H(x)δxh +Q(x)δxq. (17)

Note that H(x)δxh ∈ Hx, and Q(x)δxq ∈ Qx. Combin-
ing (17) and (16) gives

HT (x)δx = HT (x)H(x)δxh,

QT (x)δx = QT (x)Q(x)δxq, for all (x, δx) ∈ TΩ.
(18)

Without loss of generality, we assume throughout that both
H(x) and Q(x) are bounded on x ∈ Ω. Based on the above
discussions, horizontal contraction is defined as follows.

Definition 2 (Horizontal contraction). The NTV system (5)
is called horizontally contractive w.r.t. Hx if there exist c ≥
1, η > 0, and a vector norm | · | such that the solution of
(7) for any a ∈ Ω, i.e., δx(t, a) = H(x(t, a))δxh(t, a) +
Q(x(t, a))δxq(t, a), satisfies

|δxh(t, a)| ≤ c exp(−ηt)|δxh(0, a)|, for all t ≥ 0. (19)

In [10], horizontal contraction is formalized via a differen-
tial Lyapunov framework. Specifically, a sufficient condition
is given in terms of a so-called Horizontal Finsler-Lyapunov
function.

Definition 3 (Horizontal Finsler-Lyapunov function [10]).
Consider a manifold Ω and the tangent space TxΩ = Hx⊕Qx,
where ⊕ denotes the direct sum of vector spaces. A C1

function V : TΩ → R+ is called a candidate horizontal
Finsler-Lyapunov function for (5) if there exist constants
d1, d2 > 0, d3 > 1, and a function F : TΩ → R+ such
that

V (x, δx) = V (x,H(x)δxh),

d1(F (x, δx))d3 ≤ V (x, δx) ≤ d2(F (x, δx))d3 ,

for all (x, δx) ∈ TΩ,

(20)

and F satisfies the following conditions:
(i) F (x, δx) = F (x,H(x)δxh) for every (x, δx) ∈ TxΩ;

(ii) F (x, δx) is C1 for all x ∈ Ω and δx ∈ Hx \ {0};
(iii) F (x, δx) ≥ 0 for all (x, δx) ∈ TΩ with equality only

when δx ∈ Qx;
(iv) F (x, λδx) = |λ|F (x, δx) for all (x, δx) ∈ TΩ and any

λ ∈ R;
(v) F (x, δx1 + δx2) ≤ F (x, δx1) + F (x, δx2) for all

(x, δx1), (x, δx2) ∈ TΩ, with equality only when δx1
h =

λδx2
h for some λ ∈ R;

(vi) there exist constants d4, d5 > 0 and a vector norm | · |
such that d4|δxh| ≤ F (x, δx) ≤ d5|δxh| for all (x, δx) ∈
TΩ.

Proposition 1. [10] Consider the NTV system (5) and the
associated variational system (7) with a candidate horizontal
Finsler-Lyapunov function V : TΩ → R+. If there exists λ >
0 such that

∂V (x, δx)

∂x
f(t, x) +

∂V (x, δx)

∂δx
J(t, x)δx ≤ −λV (x, δx),

(21)
for all t ∈ R+ and all (x, δx) ∈ TΩ, then the system (5) is
horizontally contractive w.r.t. Hx.

By taking the derivative of V (x(t), δx(t)) along the trajec-
tories of (5) and (7), we have

V̇ (x, δx) ≤ −λV (x, δx), for all t ≥ 0, (22)

so V (x(t), δx(t)) ≤ exp(−λt)V (x(0), δx(0)). By (20) and
Property (vi) in Definition 3, Eq. (19) holds with c :=

(d2/d1)
1
d3 d5/d4 and η := λ/d3.

If Qx = {0} in Definition 2, i.e., Hx = TxΩ and H(x) =
In, then (19) is the same as (13) in Definition 1 with k = 1,
since y(t) in (13) is a solution of the variational system (7) in
this case. Therefore, Definition 2 with Hx = TxΩ reduces to
the definition for standard contraction. In this case, V (x, δx)
in Definition 3 is called a Finsler-Lyapunov function [10, Def.
2].

C. Partial contraction

The following definition is a time-varying version of partial
contraction as given in [7].
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Definition 4 (Partial contraction). Consider the NTV sys-
tem (5). Assume that there exist functions p(x) : Rn → Rℓ,
with ℓ ∈ [1, n], and g : R+ × Rℓ × Rn → Rn such that

g(t, p(x), x) = f(t, x). (23)

System (5) is called partially contractive w.r.t. p(x) if the
system

ξ̇ = fξ(t, ξ, x) :=
∂p(x)

∂x
g(t, ξ, x) (24)

is contractive w.r.t. ξ for all t ∈ R+, x ∈ Ω, and ξ ∈ Ωξ.
Here, Ωξ ⊆ Rℓ denotes the state-space of (24).

Here, the functions p(·) and g(·) are related to a fac-
torization of f(t, x) [7]. Partial contraction implies that
every solution of (24) converges to p(x(t)) exponentially
since ξ(t) = p(x(t)) is a particular solution of (24). If
ξ(t) = 0 is also a solution of (24), then the contraction
property implies that all the trajectories of (5) converge to
the manifold M := {x ∈ Rn | p(x) = 0}. For the special
case that p(x) = x, the system (24) may serve as an observer
for (5) [28].

Let δξ0 ∈ TΩξ denote an infinitesimal virtual variation
to the initial condition ξ(0) = ξ0 ∈ Rℓ of (24). Define
δξ(t) := ∂ξ(t,ξ0)

∂ξ0
δξ0. This yields the following variational

system associated with (24):

δξ̇(t) = Jξ(t, ξ, x)δξ(t), (25)

where Jξ(t, ξ, x) :=
∂fξ
∂ξ (t, ξ, x). This variational system will

be instrumental in the subsequent analysis.

III. FROM PARTIAL CONTRACTION TO HORIZONTAL
CONTRACTION

The next example shows that partial contraction does not
necessarily imply horizontal contraction. Roughly speaking,
this is due to that the choice of p(x) in Definition 4 is less
conservative than the choice of Hx in Definition 2.

Example 1. Consider the following linear system with a
nonlinear perturbation

ẋ = Ax+ b(t, x), (26)

where A ∈ Rn×n is assumed to be Hurwitz, and b : R+ ×
Rn → Rn. Let p(x) = x, then (24) in this case can be
constructed as: ξ̇ = Aξ+ b(t, x), which is contractive w.r.t. ξ.
That is, the system (26) is partially contractive w.r.t. p(x) = x.

If we let b(t, x) = −Axd(t)+ ẋd(t), and xd : R+ → Rn be
a time parameterized closed curve with self intersections (e.g.,
for n = 2, set xd(t) =

[
sin( 2πt3 ) 1.5 cos(πt3 )

]T
). Note that

x(t) = xd(t) is a system solution in this case. The existence
of self intersections in xd implies that this system is not
contractive in any specified direction, i.e., it is not horizontally
contractive. As another example, let A = −cI3, c ≈ 0.208186,
and b(t, x) =

[
sin(x2) sin(x3) sin(x1)

]
, then (26) reduces

to the chaotic system introduced by René Thomas (see e.g.,
[31, Sec. V]), which admits a strange attractor with no explicit
analytical form. This implies that a horizontal distribution Hx

is difficult to construct in this case and possibly does not
exist. □

The next result specifies a sufficient condition such that
partial contraction implies horizontal contraction.

Theorem 1. Suppose that there exists λ > 0, and a Finsler-
Lyapunov function Vξ : TΩξ → R+ for the system (24) such
that
∂Vξ(ξ, δξ)

∂ξ
fξ(t, ξ, x)+

∂Vξ(ξ, δξ)

∂δξ
Jξ(t, ξ, x)δξ ≤ −λVξ(ξ, δξ),

(27)
for all t ∈ R+, x ∈ Ω, and (ξ, δξ) ∈ TΩξ. That is, the
system (5) is partially contractive w.r.t. p(x). Consider a
distribution Hx as in (14) and the associated matrix H(x) ∈
Rn×ℓ in (15). Assume that there exists a vector norm | · |,
and d6, d7 > 0 such that

d6|y| ≤ |HT (x)H(x)y| ≤ d7|y|, for all x ∈ Ω, y ∈ Rℓ.
(28)

Furthermore, for all t ∈ R+ and all x ∈ Ω, assume that

HT
f (x) +HT (x)J(t, x) = Jξ(t, p(x), x)H

T (x), (29)

where

Hf (x) :=
[
∂h1(x)

∂x f(t, x) · · · ∂hℓ(x)
∂x f(t, x)

]
∈ Rn×ℓ

is the the directional derivative of H(x) along f(t, x). Then,
the system (5) is also horizontally contractive w.r.t. Hx.

Proof: Differentiating HT (x)δx(t) along the trajectories
of (5) and (7) gives

d

dt
(HT (x)δx) =(HT

f (x) +HT (x)J(t, x))δx

=Jξ(t, p(x), x)H
T (x)δx,

(30)

where (29) is used. This implies that δξ(t) := HT (x(t))δx(t)
is a trajectory of (25). Recall that ξ(t) = p(x(t)) is a solution
of (24). Let

V (x, δx) := Vξ(p(x), H
T (x)δx(t)). (31)

By (18), V (x, δx) = V (x,H(x)δxh). Eq. (31) implies that the
derivative of V (x, δx) is equal to the derivative of Vξ(ξ, δξ)
along the trajectories ξ(t) = p(x) and δξ(t) = HT (x)δx(t),
i.e.,

d

dt
V (x(t), δx(t)) =

d

dt
Vξ(ξ(t), δξ(t))|ξ=p(x), δξ=HT (x)δx.

Specifically,

∂V (x, δx)

∂x
f(t, x) +

∂V (x, δx)

∂δx
J(t, x)

=

(
∂Vξ(ξ, δξ)

∂ξ
fξ(t, ξ, x)

+
∂Vξ(ξ, δξ)

∂δξ
Jξ(t, ξ, x)δξ

)
|ξ(t)=p(x), δξ(t)=HT (x)δx(t)

≤− λVξ(ξ, δξ)|ξ(t)=p(x), δξ(t)=HT (x)δx(t)

=− λV (x, δx).
(32)

In order to further show that V (x(t), δx(t)) is indeed a hori-
zontal Finsler-Lyapunov function for (5) w.r.t. Hx, we need to
find an associated function F (x, δx) satisfying Definition 3.

Since Vξ(ξ, δξ) is Finsler-Lyapunov function of the sys-
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tem (24), there exists an associated function Fξ : TΩξ → R+

that satisfies Definition 3 with a zero vertical distribution. Let

F (x, δx) := Fξ(p(x), H
T (x)δx).

Hence,

d4|HT (x)δx| ≤ F (x, δx) ≤ d5|HT (x)δx|,

for some d4, d5 > 0. By (18), this yields

d4|HT (x)H(x)δxh| ≤ F (x, δx) ≤ d5|HT (x)H(x)δx|.

From (28), we have

d4d6|δxh| ≤ F (x, δx) ≤ d5d7|δxh|.

That is, F (x, δx) satisfies property (vi) in Definition 3.
Furthermore, note that V (x, δx) and F (x, δx) satisfy con-
dition (20) and properties (i)-(v) in Definition 3 by directly
inheriting those from Vξ(ξ, δξ) and Fξ(ξ, δξ). Hence, V (x, δx)
is indeed a horizontal Finsler-Lyapunov function for (5). By
Prop. 1, Eq. (32) ensures that the system (5) is horizontally
contractive w.r.t. Hx.

The next example shows that condition (29) generally does
not hold even when p(x) is linear. As suggested by the next
example and Section V, the choice of H(x) in Theorem 1
is closely related to p(x). Specifically, if partial contraction
ensures that all the solutions of (5) converge to the manifold
M := {x ∈ Rn | p(x) = 0}, then it is reasonable to assume
that the system is contractive along the directions orthogonal
to M. That is, a candidate for H(x) can be selected as H(x) =
∂T p(x)

∂x .

Example 2 (Convergence to flow-invariant subspaces [19]).
Let H ∈ Rn×ℓ and Q ∈ Rn×(n−ℓ), such that

HTH = Iℓ, QTQ = In−ℓ,

HTQ = 0, HHT +QQT = In.
(33)

Note that the above conditions hold if the column vectors of H
and Q, i.e., h1, . . . , hℓ, q1, . . . , qn−ℓ, are orthonormal, which
means that they all have Euclidean norm one and are mutually
orthogonal. Let H and Q denote the column subspaces of H
and Q, respectively. Assume that the NTV system (5) satisfies

f(t,Q) ⊆ Q. (34)

That is, Q is flow-invariant. In this case, Eq. (23) naturally
holds with p(x) = HTx and

g(t, p(x), x) := f(t,Hp(x) +QQTx). (35)

Then, the system (24) can be defined as

ξ̇ = fξ(t, ξ, x) := HT g(t,Hξ +QQTx). (36)

Note that ξ(t) = HTx(t) and ξ(t) = 0 are two particular
solutions to (36). Therefore, partial contraction w.r.t. HTx
ensures that all the trajectories of (5) converge to Q.

Then, we study if the above conditions also imply horizontal
contraction. Consider the case when f(t, x) = 0 for all x ∈ Q,
which ensures that (34) holds. In this case, the NTV system
(5) can only be horizontally contractive w.r.t. H. Without loss
of generality, we can choose H(x) in Theorem 1 as H here.

Note that Jξ(t,HTx, x) = HTJ(t, x)H . Then, condition (29)
in this case boils down to

HTJ(t, x) = HTJ(t, x)HHT , (37)

which does not hold in general. According to Theorem 1, if
the system (5) is partially contractive w.r.t. HTx, then (37)
ensures that it is also horizontally contractive w.r.t. H. From
(33), a sufficient condition to ensure (37) is

HTJ(t, x)Q = 0. (38)

Consider a linear system, i.e., J(t, x) = A ∈ Rn×n. Then,
Eq. (38) holds naturally since (34) implies AQ ⊆ Q. □

In general, for a horizontally contractive system (5), the
existence of p(x) as in Definition 4, which depends on the
integrability of H(x), is not ensured. That is, horizontal
contraction does not necessarily imply partial contraction.

IV. FROM HORIZONTAL CONTRACTION TO
k-CONTRACTION

To facilitate the subsequent result, we first prove a useful
property of wedge products. Recall that a vector norm | · | :
Rn → R+ is called monotonic if for any x, y ∈ Rn with |xi| ≤
|yi| for all i, we have |x| ≤ |y| [6]. For example, all the
Lp norms are monotonic.

Lemma 1. Pick k ∈ [2, n]. Consider a set of k time-
varying vectors a1(t), · · · , ak(t) ∈ Rn. Assume that there
exist constants ℓ ∈ [1, k − 1], γ1 ≥ 1, γ2 ≥ 1, β > 0, and
a monotonic vector norm | · | such that

|aj(t)| ≤ γ1 exp(−βt)|aj(0)|, j = 1, . . . , ℓ, (39)

|aℓ+i(t)| ≤ γ2|aℓ+i(0)|, i = 1, . . . , k − ℓ, (40)

for all t ∈ R+. Then, |∧k
j=1a

j(t)| decays to zero exponentially.
Furthermore, for | ∧k

j=1 a
j(0)| ≠ 0, there exists γ̄, β̄ > 0 such

that

| ∧k
j=1 a

j(t)| ≤ γ̄ exp(−β̄t)| ∧k
j=1 a

j(0)|, for all t ∈ R+.
(41)

Proof: Recall that | ∧k
j=1 a

j(t)| is the k-volume of the k-
parallelotope generated by a1(t), · · · , ak(t). Intuitively speak-
ing, (39) implies that at least one edge of this k-parallelotope
shrinks exponentially, and the other edges are uniformly
bounded. Therefore, its k-volume also shrinks exponentially.
Here, we only provide a detailed proof for ℓ = k − 1. The
proof for other cases is based on similar arguments.

By the property of the wedge products, i.e., multiplicative
compound matrices, we have

∧k
j=1a

j =

n∑
i=1

aki
[
a1 . . . ak−1 ei

](k)
. (42)

where aki denotes the ith entry of ak, and ei the ith canonical
vector in Rn. Let zi(t) :=

[
a1 . . . ak−1 ei

](k)
. Note

that zi(t) ∈ Rr, r :=
(
n
k

)
, whose every entry is a minor of

order k of
[
a1 . . . ak−1 ei

]
. By the Leibniz formula for

determinants, zi(t) has at least
(
n−1
k

)
zero entries, and every

nonzero entry is an entry of the vector ∧k−1
j=1a

j multiplied by
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either plus one or minus one. Hence, for any monotonic vector
norm | · | : Rn → R+, we have |zi(t)| ≤ | ∧k−1

j=1 aj(t)| and
thus

| ∧k
j=1 a

j(t)| ≤
n∑

i=1

(|aki || ∧k−1
j=1 aj(t)|)

≤nγ2|ak(0)|| ∧k−1
j=1 aj(t)|,

where we used the fact |aki (t)| ≤ |ak(t)| ≤ γ2|ak(0)|. Then,
by repetitively using the recursive formula (42), we have

| ∧k
j=1 a

j(t)| ≤ (nγ1)
k−1γ2 exp(−(k − 1)βt)

k∏
j=1

|aj(0)|.

That is, | ∧k
j=1 a

j(t)| converges to zero exponentially. For the
case | ∧k

j=1 a
j(0)| ≠ 0, note that there exists a large enough

constant γ3 > 0 such that
∏k

j=1 |aj(0)| ≤ γ3| ∧k
j=1 aj(0)|.

Hence, | ∧k
j=1 a

j(t)| ≤ γ̄ exp(−β̄t)| ∧k
j=1 a

j(0)|, where γ̄ :=
(nγ1)

k−1γ2γ3 and β̄ := (k − 1)β.

In the subsequent analysis, we assume that the vector norms
under concern are monotonic. The next result specifies a
sufficient condition such that horizontal contraction implies
k-contraction. Intuitively speaking, it claims that if a n-
dimensional horizontally contractive system contracts length
in n − k + 1 directions exponentially, and does not expand
length in the remaining k − 1 directions, then it contracts k-
volume exponentially.

Theorem 2. Suppose that the system (5) is horizontally
contractive w.r.t. Hx defined in (14), where we can write
ℓ = n − k + 1 for some k = [1, n]. For the matrices
H(x) ∈ Rn×(n−k+1) and Q(x) ∈ Rn×(k−1) given in (18),
define

M(x) :=

[
HT (x)
QT (x)

]
∈ Rn×n. (43)

Assume that for some vector norm | · |, there exist ci > 0,
i = 1, . . . , 6, such that for all x ∈ Ω

c1|y| ≤ |HT (x)H(x)y| ≤ c2|y|, y ∈ Rn−k+1,

c3|y| ≤ |M(x)y| ≤ c4|y|, y ∈ Rn,

c5|y| ≤ |M (k)(x)y| ≤ c6|y|, y ∈ R(
n
k).

(44)

Furthermore, for any two trajectories of the system (5),
denoted x1(t) and x2(t), there exists a constant γ1 > 1 such
that

|x1(t)− x2(t)| ≤ γ1|x1(0)− x2(0)|, for all t ≥ 0. (45)

Then, the system (5) is also k-contractive on Ω.

Proof: First, we show that the variational system (7) is
uniformly bounded under the condition (45). Pick ε > 0, and
x0, z0 ∈ Rn. Define z(t, ε) := x(t,x0+εz0)−x(t,x0)

ε . By (45),
we have

|z(t, ε)| ≤ γ1|z0|. (46)

Since the solutions of (5) are continuously dependent on the
initial conditions, the limit z(t) := limε→0 z(t, ε) exists and
z(t) = ∂x(t,x0)

∂x0
z0. This implies that z(t) is a solution of the

variational system (7) with the initial condition z(0) = z0.

Thus, (46) reduces to

|z(t)| ≤ γ1|z0|. (47)

That is, the variational system (7) is uniformly bounded.
Since the system (5) is horizontally contractive, Definition 2

implies that there exist γ2 ≥ 1 and β > 0 such that

|δxh(t)| ≤ γ2 exp(−βt)|δxh(0)|, for all t ≥ 0. (48)

Recall that any δx ∈ TxΩ can be rewritten as δx =
H(x)δxh+Q(x)δxq , where δxh ∈ Rn−k+1, and δxq ∈ Rk−1.
Hence,

M(x)δx =

[
HT (x)H(x)δxh

QT (x)Q(x)δxq

]
, (49)

where we use the fact that HT (x)Q(x) = 0. From (44) and
(48), we have

|HT (x(t))H(x(t))δxh(t)| ≤c2|δxh(t)|
≤c2γ2 exp(−β1t)|δxh(0)|,

(50)

for all t ≥ 0. That is, the first (n− k+1) entries of M(x)δx
converge to zero exponentially. By virtue of monotonic vector
norms,

|QT (x(t))Q(x(t))δxq(t)| ≤|M(x(t))δx(t)| ≤ c4|δx(t)|
≤c4γ1|δx(0)|, for all t ≥ 0,

(51)
where (44) and (47) are used. That is, the last (k− 1) entries
of M(x)δx are uniformly bounded.

Then, as defined in (9), consider k trajectories of the
variation system (7) specified by x(t, a) with a ∈ Ω, i.e.,
δ1x(t, a), . . . , δkx(t, a), such that ∧k

i=1δ
ia ̸= 0. Let

A(t) :=
[
M(x(t, a))δx1(t, a) · · · M(x(t, a))δxk(t, a)

]T
.

Note that A ∈ Rk×n. Using (1) and (4), we have

(AT (t))(k) = ∧k
i=1 M(x(t, a))δxi(t, a)

=M (k)(x(t, a))y(t, a),
(52)

where y(t, a) := ∧k
i=1δx

i(t, a) as in (9). Let ai(t) denote the
ith column of A(t). From (50) and (51), |ai(t)| with i =
1, . . . , n− k + 1, converges to zero exponentially, and |ai(t)|
with i = n− k + 2, . . . , n, are uniformly bounded.

Let Qk,n denote the set of increasing sequences of k
numbers from [1, n] ordered lexicographically. With a slight
abuse of notation, we treat such ordered sequences as sets.
The cardinality of Qk,n is r :=

(
n
k

)
. The jth element of Qk,n

is denoted κj . For example, Q2,3 = {κ1, κ2, κ3}, with κ1 =
{1, 2}, κ2 = {1, 3}, κ3 = {2, 3}. Then, ∧i∈κj

ai(t) is the
jth entry of M (k)(x(t, a))y(t, a). Note that any k vectors
ai(t), i ∈ κj , satisfy condition (39) in Lemma 1. Hence,
it is ensured that ∧i∈κja

i(t), j = 1, · · · , r, i.e., all the
entries of M (k)(x(t, a))y(t, a), converge to zero exponentially.
Therefore, there exist γ3 ≥ 1 and η > 0 such that

|M (k)(x(t, a))y(t, a)| ≤ γ3 exp(−ηt)|M (k)(x(0, a))y(0, a)|,
(53)

for all t ≥ 0. Then from (44), we have

|y(t, a)| ≤ c6γ3
c5

exp(−ηt)|y(0, a)|, (54)
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Fig. 2. Trajectories of the Duffing oscillator for two different initial conditions
(black circle).

for all t ≥ 0. This implies that the system (5) is k-contractive
by Definition 1.

Remark 1. Condition (45) actually asserts uniform incre-
mental stability, that is, every solution of (5) is uniformly
stable. By Coppel’s inequality (see e.g., [26]), condition (45)
is ensured if there exists a matrix measure µ : Rn×n → R
and a constant c > 0 such that

∫ t

0
µ(J(s, x(s, a))) ds ≤

c, for all a ∈ Ω, t ≥ 0. As shown in the proof of Theorem 2,
condition (45) can actually be relaxed since it is only required
that the exponential convergence rate of HT (x)H(x)δxh is
larger than the expansion rate of QT (x)Q(x)δxq to conclude
that y(t, a) converges to zero exponentially. For example,
consider the linear system

ẋ1 = c1x1 + x2,

ẋ2 = −c2x2,

where c2 > c1 > 0. This system is 2-contractive, and hor-
izontally contractive w.r.t. Hx := span{

[
0 1

]T }. However,
it is not uniformly stable since x1(t) will go to infinity. Note
also that this system is still horizontally contractive but not
2-contractive with c1 > c2 > 0.

Since k-contraction does not require the existence of the
distributions Hx and Qx. Therefore, k-contraction does not
ensure horizontal contraction in general. This is shown by the
next example.

Example 3 (The forced Duffing oscillator [25]). Consider the
NTV system

ẋ1 = x2,

ẋ2 = θ1x1 − θ2x
3
1 − θ3x2 + θ4 cos(θ5t),

(55)

where θi > 0, i = 1, . . . , 5. For θ1 = θ2 = 1, θ3 = 0.3, θ4 =
0.37 and θ5 = 1.2, this system has an attractor with self
intersections as shown in Fig. 2. Therefore, this system is
not contractive in any specified direction, that is, it is not
horizontally contractive. Indeed, it can have more complicated
attractors with other different parameters. However, the Jaco-
bian J(t, x) of (55), satisfies J [2](t, x) = −θ3 < 0. Therefore,
it is 2-contractive according to Definition 1 and [30, Thm.
4]. □

V. AN EXAMPLE: THE ANDRONOV-HOPF OSCILLATOR

In this section, the Andronov-Hopf oscillator is revisited to
illustrate our results. It is shown that this system is partially
contractive, horizontally contractive, and 2-contractive.

The dynamics of the Andronov-Hopf oscillator is

ẋ1 = −x2 − x1(x
2
1 + x2

2 − 1),

ẋ2 = x1 − x2(x
2
1 + x2

2 − 1). (56)

Note that x = 0 is an unstable equilibrium, and the unit circle
is a stable limit cycle. The associated variational system is

δẋ(t) = J(x(t))δx(t), (57)

where J(x) =

[
1− 3x2

1 − x2
2 −2x1x2 − 1

−2x1x2 + 1 1− x2
1 − 3x2

2

]
.

Proposition 2. Fix 0 < γ1 < 1 < γ2. Consider the
manifold Ω := {x ∈ R2 | γ1 ≤ x2

1 + x2
2 ≤ γ2}. The

system (56) is partially contractive, horizontally contractive,
and 2-contractive on Ω.

Proof: Note that Ω here is forward invariant and con-
nected, but not convex.

(i) Partial contraction: Let p(x) := x2
1 + x2

2 − 1, and
g(ξ, x) :=

[
−x2 − x1ξ x1 − x2ξ

]T
. Then g(p(x), x) =

f(x). That is, condition (23) in Definition 4 is satisfied. In
this case, the system (24) reduces to

ξ̇(t) = −2(x2
1(t) + x2

2(t))ξ(t). (58)

A Finsler-Lypapunov function for (58) can be selected as
Vξ(ξ, δξ) = δξ2, and we have V̇ξ(ξ, δξ) ≤ −4γ1Vξ(ξ, δξ).
Therefore, the system (56) is partially contractive w.r.t. p(x) =
x2
1+x2

2−1. Note that both p(x) and the origin are the solutions
to (58). Therefore, for any a ∈ Ω,

|p(x(t, a))| ≤ exp(−2γ1t)|p(a)|, for all t ∈ R+. (59)

(ii) From partial contraction to horizontal contraction: Let

H(x) = 1
x2
1+x2

2

[
x1

x2

]
. Note that condition (28) in Theo-

rem 1 holds since γ−1
2 ≤ HT (x)H(x) = (x2

1 + x2
2)

−1 <
γ−1
1 , for all x ∈ Ω. Based on a straightforward calculation,

d

dt
(HT (x(t))δx(t)) = −2(x2

1(t) + x2
2(t))H

T (x(t))δx(t),

which implies that condition (29) in Theorem 1 also holds.
Therefore, Theorem 1 implies that this system is also hori-

zontally contractive w.r.t. Hx := span

{
1

x2
1+x2

2

[
x1

x2

]}
. Fur-

thermore, as shown in the proof of Theorem 1, a horizontal
Finsler-Lyapunov function can be constructed as:

V (x, δx) =Vξ(p(x), H
T (x)δx) = (δx)TH(x)HT (x)δx

=

(
x1δx1 + x2δx2

x2
1 + x2

2

)2

.

Indeed, V̇ (x, δx) = −4(x2
1 + x2

2)V (x, δx) ≤ −4γ1V (x, δx)
for all x ∈ Ω.

(iii) From horizontal contraction to 2-contraction: The ma-
trix Jsym(x) := (J(x) + JT (x))/2 has eigenvalues: λ1(x) =
1 − x2

1 − x2
2, λ2(x) = 1 − 3x2

1 − 3x2
2. Hence, µ2(J(x)) =
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1 − x2
1 − x2

2, where µ2(·) is the matrix measure associated
with the L2 norm. By (59), we have

∫ t

0
µ2(J(x(s, a))) ds ≤

max{γ2−1,1−γ1}
2γ1

, for all a ∈ Ω and t ≥ 0. This implies that
condition (45) holds as shown in Remark 1. Let H(x) :=

1
x2
1+x2

2

[
x1 x2

]T
, and Q(x) := 1

x2
1+x2

2

[
−x2 x1

]T
. Condi-

tion (44) holds for all x ∈ Ω since Ω is compact. Therefore,
Theorem 2 ensures that the system (56) is 2-contractive.

In order to show this explicitly, for the 2nd compound
equation of (57), i.e., ẏ(t) = J [2](x(t))y(t), we consider
a change of coordinate ym = M (2)(x)y = y

x2
1+x2

2
with

M(x) :=
[
H(x) Q(x)

]T
. Then,

ẏm(t) =M (2)(x)J [2](x)(M (2)(x))−1ym(t)+

M
(2)
f (x)(M (2)(x))−1ym(t)

=− 2(x2
1 + x2

2)ym(t),

where M
(2)
f (x) denotes the directional derivative of M (2)(x)

along vector field of (56). This implies that |y(t)| decays to
zero exponentially, that is, the system (56) is 2-contractive on
Ω according to Definition 1.

VI. CONCLUSIONS

This note shows that partial contraction, horizontal contrac-
tion, and k-contraction are not equivalent in general. Some
sufficient conditions are specified such that k-contraction is
achieved from partial and horizontal contraction. Since it is
known that partial and horizontal contraction can be used
to solve synchronization problems of networked systems, a
related research direction is to study how k-contraction can
simplify the analysis of synchronization problems. Another
important question is if the specified conditions can become
necessary for certain systems.

As shown by [17] and a recent related work [3], k-
contraction with k = 2 is very effective to study nonlinear
time-invariant systems, in particular, to rule out oscillatory
behaviors, and then almost all trajectories converge to an equi-
librium (not necessary unique). Therefore, for some partially
or horizontally contractive nonlinear time-invariant systems, if
the derived conditions hold and lead to 2-contraction, then we
can draw strong conclusions regarding their global asymptotic
stability. As a straightforward application, this may simplify
the I&I stabilization method in the sense that the target system
there is not required to be specified.
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