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2-D Directed Formation Control Based on
Bipolar Coordinates

Farhad Mehdifar, Charalampos P. Bechlioulis, Julien M. Hendrickx, and Dimos V. Dimarogonas

Abstract— This work proposes a novel 2-D formation
control scheme for acyclic triangulated directed graphs
(a class of minimally acyclic persistent graphs) based on
bipolar coordinates with (almost) global convergence to
the desired shape. Prescribed performance control is em-
ployed to devise a decentralized control law that avoids sin-
gularities and introduces robustness against external dis-
turbances while ensuring predefined transient and steady-
state performance for the closed-loop system. Further-
more, it is shown that the proposed formation control
scheme can handle formation maneuvering, scaling, and
orientation specifications simultaneously. Additionally, the
proposed control law is implementable in agents’ arbitrar-
ily oriented local coordinate frames using only low-cost
onboard vision sensors, which are favorable for practical
applications. Finally, a formation maneuvering simulation
study verifies the proposed approach.

Index Terms— Formation Maneuvering; Formation Scal-
ing; Bipolar Coordinates; Prescribed Performance Control;
Leader-Follower Multi-Agent System

I. INTRODUCTION

FORMATION control of multi-agent systems has been
studied extensively during the past decade and depend-

ing on the sensing and controlled variables existing works
can be mainly categorized into [1], [2]: position-based [3],
displacement-based [4], distance-based [5], [6], bearing-based
[7], and angle-based [8]–[11] methods. For more recent classes
of formation control approaches as well as a comparative
literature review on issues related to target formation’s con-
straints, required measurements, and convergence, see [12]–
[15]. Among the above categories, the position-based method
requires agents to have a common knowledge of a global co-
ordinate system while the displacement-based (also known as
consensus-based) and bearing-based methods require agents’
local coordinate frames to have a common orientation (i.e.,
to be aligned). On the other hand, coordinate-free methods
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(e.g., distance-, angle-based, etc., [5], [6], [9]–[12] are more
attractive formation control architectures since they impose
less implementation issues compared to other control methods.
Indeed, in coordinate-free formation control, the desired shape
is defined by a set of coordinate-free variables (e.g., distances,
angles), which specify formation errors for agents. In addi-
tion, agents also require measurements of vectorized relative
information of their neighboring agents (e.g., relative positions
or bearings) in their local coordinate frames to constitute
a control law. Hence, coordinate-free approaches enable us
to design formation control laws in agents’ local coordinate
frames, which do not require global position measurements
(e.g., using GPS) nor the assumption of agents’ aligned
local coordinate frames (e.g., using a compass or orientation
alignment methods through inter-agent communication) [1],
[16], [17].

Most of the existing results on coordinate-free formation
control are developed under the assumption of bidirectional
sensing (undirected sensing graph) among agents, which usu-
ally rely on different types of graph rigidity notions (e.g.,
distance, angle, ratio of the distances, weak, hybrid rigidity,
etc.) [2], [9], [11]–[14]. However, it is often more practical to
consider directed sensing among agents since: (i) the sensing
limitations of the agents may enforce such structures, and
(ii) it inherently avoids the issue of measurement mismatches
in undirected formation control problems [18], [19]. In this
respect, the notion of persistent graphs was developed as
the directed counterpart of distance rigidity [20]–[22]. Some
earlier control designs for persistent formations include [6],
[23], [24].

Unfortunately, most coordinate-free formation control meth-
ods only guarantee local, not global, convergence to the
desired shape. Indeed, they rely on controlling the agents to
satisfy certain shape constraints. But the minimal number of
shape constraints may allow for multiple (but finite) shapes. In
this respect, depending on the initial positions of the agents,
meeting the formation constraints may not necessarily lead
the agents to the correct shape. This is widely known as
reflection, flip and flex ambiguities in distance-based formation
control literature [1], [2], [14]. In particular, distance rigidity
theory (especially when the target formation is not globally
rigid) cannot distinguish shapes under reflections, flip or flex
ambiguities merely with distance constraints between agents,
thus convergence to the desired shape specified only with
inter-agent distances is not guaranteed. These ambiguity and
local convergence issues also remain for angle, ratio of the
distances, and weak rigidity notions as well [9], [11]–[13].
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To tackle these issues, in the context of undirected and
directed 2-D distance-based formations some recent works
have employed extra types of formation constraints (e.g.,
signed area and edge/signed angle) along with the inter-agent
distances for characterizing the desired formation uniquely to
establish (almost) global shape convergence [14], [15], [25]–
[30]. However, it turns out that imposing additional formation
constraints leads to unwanted equilibria. In particular, since
the distance and the auxiliary formation constraint (i.e., signed
area/angle) interfere with each other at certain agent positions,
new undesirable equilibria emerge, limiting the existing results
to desired shapes under certain conditions. In addition, these
approaches usually lead to tedious control gain tuning, which
complicates controller design process and its extension to more
practical formation control problems, where agents may have
more complex tasks or dynamics, etc., [25]–[30]. In contrast
to these works, recently [31] used orthogonal error variables
for characterizing 2-D directed distance-based formations with
(almost) global shape convergence. An extension of this ap-
proach for 3-D directed distance-based formations is proposed
in [32]. A completely different method for global convergence
of directed distance-based formations is proposed in [33] that
relies on calculating desired target points.

Another advantage of coordinate-free control approaches
concerns reducing agents’ costs since they require less com-
plex equipment for sensing and local interactions. Up to now,
most of the coordinate-free formation control methods require
relative position measurements for all agents whereas a few of
them (e.g., [11], [12]) only require bearing (or vision-based)
measurements. In this respect, since bearing information is
easier to obtain through onboard cameras, it is more favorable
in practical applications [34]. To the best of our knowledge,
all coordinate-free formation control methods that have been
developed to deal with global shape convergence also require
all agents to measure the relative positions.

In practical formation control problems, agents are not
only required to maintain the desired shape but also need
to cooperatively move (maneuver) while obtaining certain
formation orientations and scalings. Nevertheless, most results
on coordinate-free formation control focus on stabilization
of stationary formations [1], [11], [12]. On the other hand,
most of the existing formation maneuvering results are mainly
limited by the assumption of aligned local coordinate frames
of agents (or equivalently existence of inter-agent commu-
nications to share velocity-related information) and tracking
constant reference velocities [24], [35]–[39], whereas only a
few results are developed to discard these limitations [40],
[41]. Moreover, the problems of orientation and scaling control
are usually handled separately [42], [43] and are not inte-
grated into the maneuvering task. Recently, [44] has proposed
an angle-based formation maneuvering control with orienta-
tion and scaling adjustment, however, this result is applied
to undirected formations with local shape convergence and
(piece-wise) constant reference velocities. Moreover, [45] has
considered a layered affine formation maneuver problem for
directed (d + 1-rooted) graphs in which the formation scale,
orientation, and also shearing can be adjusted by changing
the configuration among d+ 1 leaders in d-dimensional space

formations. However, this result still relies on the relative
position and velocity measurements and requires a sufficiently
large number of edges (sensing links) in the directed graph
modeling inter-agent interactions, which is far from minimal.

The existence of external disturbances that affect the agents’
dynamics is a significant issue of practical interest for multi-
agent formation applications. It is noteworthy to mention that
in coordinate-free formation control problems, only a few
recent works have taken into account external disturbances
and uncertainties in agents’ dynamics [40], [46], [47], with
these results only applying to local shape convergence. Finally,
another crucial issue concerns the transient response of the
multi-agent formations. In this regard, Prescribed Performance
Control (PPC) [48], [49], proposes a simple and constructive
procedure based on which the transient performance of the
closed-loop system is predetermined by certain user defined
performance bounds. Recently, PPC has been utilized for
displacement-based and tree structure formation control prob-
lems [50]–[52], as well as distance-based formation control
[40].

In this paper, we propose a robust 2-D directed coordinate-
free formation control using bipolar coordinates with (almost)
global shape convergence (i.e., global convergence except for a
zero-measure set of initial conditions) and guaranteed transient
and steady-state performance. The target formation and the
sensing topology among agents are defined by a triangulated
acyclic minimally persistent graph (constructed under As-
sumption 1 in Section II), which constitutes a (distance-rigid)
directed hierarchical leader-follower structure with a minimum
possible number of edges, in which: agent 1 (leader) is only
responsible for formation translations, agent 2 (secondary-
leader) only follows agent 1 and is responsible for formation
scaling and orientation adjustments, and the rest of the agents
(followers), where each of them follows exactly two other
agents, are responsible for generating and maintaining the
desired shape. In particular, given a desired formation, first,
we show that the desired position of each follower agent
can be uniquely characterized with respect to a local bipolar
coordinate system assigned to it, with its two neighbors as the
foci of the bipolar coordinate system [53], [54]. As a result,
this leads to having a unique pair of desired bipolar coordinates
values, i.e., a desired angle and a desired (logarithm of) ratio
of distances w.r.t. the two foci (neighbors), which characterize
each follower’s formation errors (see Fig.2 for illustrations).
Then, leveraging the fact that each follower’s formation errors
can be reduced (independently) by moving along the two
orthogonal directions of its associated bipolar coordinate basis,
we employ the prescribed performance control methodology
to design robust controllers under external disturbances sta-
bilizing the formation errors, thus achieving (almost) global
convergence. In the control design procedure, user-defined
performance guarantees on the system’s response are achieved
by imposing time-varying decreasing performance bounds
(constraints) on the formation errors. It is also important to
note that, keeping the formation errors within some desirable
decreasing performance bounds not only introduces robustness
w.r.t. external disturbance on agents’ motion dynamics, but
also helps us to design the formation controllers of agent 2
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and the followers to handle formation maneuvering (in the
presence of a moving leader) with time-varying scale and
orientation adjustments. Moreover, owing to the usage of local
bipolar coordinates for characterizing the formation errors,
instead of relative position measurements, the proposed control
laws only require bearing and ratio of the distances mea-
surements for the followers, which can be obtained through
onboard vision sensing (see Remark 3 in Section III-B for
more details).

The contributions of this work are summarized as follows:
• For the first time, bipolar coordinates are employed for

solving 2-D coordinate-free formation control problems
with (almost) global shape convergence without introduc-
ing undesired equilibria and gain tuning issues existing
in many previous works, e.g., [25]–[30].

• In contrast to the existing coordinate-free formation con-
trol results with (almost) global shape convergence [14],
[25]–[31], [33], our approach can handle coordinate-
free formation maneuvering (with time-varying reference
velocity) along with scaling and orientation adjustments.
Moreover, while the above-mentioned results require all
agents to measure relative positions, our approach builds
upon bearing and ratio of the distances measurements that
are readily available by vision (camera) sensors and thus
easier to obtain in practical applications. To the best of the
authors’ knowledge, this work is the first one to provide
such results for (almost) globally converging coordinate-
free formation control.

• To the best of our knowledge, there are no previous works
on (almost) globally converging coordinate-free forma-
tions with guaranteed performance and robustness with
respect to external disturbances/dynamical uncertainties.

• In contrast to relevant undirected angle-based formation
control results with local convergence, e.g., [10], [44],
our approach handles robust directed formation control
with (almost) global shape convergence. Moreover, the
method in [10] requires explicit communication among
neighboring agents, while ours is communication-free.

II. PROBLEM FORMULATION

Consider a multi-agent system comprised of n mobile robots
on a 2-D plane governed by the following dynamics:

ṗi = ui + δi(t), i = 1, . . . , n, (1)

where pi ∈ R2 and ui ∈ R2 are the position and the
velocity control input of agent i expressed with respect to a
global coordinate frame, respectively. Let δi(t) ∈ R2 represent
an unknown, bounded and piece-wise continuous external
disturbance on agent i (e,g., wind gusts), which may also
account for model uncertainties. Notice that the upper bound
of the disturbances is not known a priori.

Let the sensing topology among agents be modeled by a
directed graph G = (V, E), where V = {1, 2, . . . , n} is the
set of vertices representing the agents and E = {(j, i)|j, i ∈
V, j 6= i} such that if (j, i) ∈ E ⇒ (i, j) /∈ E is the set
of directed edges depicting the directed sensing among the
agents. More precisely, (j, i) ∈ E denotes an edge that starts

from vertex j (source) and sinks at vertex i, and its direction
is indicated by j → i. For (j, i) we say i is the neighbor of
j. The relative position vector corresponding to the directed
edge (j, i) is defined as:

pji = pi − pj , (j, i) ∈ E , (2)

and its associated relative bearing vector zji ∈ R2 is:

zji =
pji
‖pji‖

, (j, i) ∈ E . (3)

In particular, in this paper the physical meaning of the directed
edge (j, i) ∈ E is that only agent j can measure the relative
bearing of agent i with respect to itself, i.e., zji, and not vice
versa. As will be highlighted in the sequel, we will additionally
assume that for the particular case of agent 2, which we will
call as secondary leader, not only can measure the relative
bearing of agent 1, but also the absolute distance from it.

We also assume that the graph G is triangulated and imposes
a hierarchical structure, where agent 1 is the leader, agent 2 is
the secondary leader with agent 1 acting as its only neighbour,
and agents i ≥ 3 are the followers with each one having
exactly two neighbors to follow with smaller indices. Hence,
we impose the following assumption for constructing G:

Assumption 1: The directed sensing graph G is constructed
such that:

1) out(1) = 0, out(2) = 1, and out(i) = 2, ∀i ≥ 3;
2) If there is an edge between agents i and j, where i < j,

the direction must be j → i;
3) If (k, i), (k, j) ∈ E then (j, i) ∈ E ,

where out(i) denotes the out-degree of vertex i that is the
number of edges in E whose source is vertex i and whose
sinks are in V \ {i}.

We highlight that cases 1) and 2) in Assumption 1 impose
G to be acyclic1 minimally persistent with edge set cardinality
|E| = 2n − 3 [21], [30] (for more information see Remarks
1 and 2 and references therein), while case 3) establishes
triangulation in G. Note that under Assumption 1, G is
composed of acyclic directed triangles (i.e., triangular sub-
graphs as depicted in Fig.1a). Fig.1b shows an example of G
constructed under Assumption 1.

For each follower k in G with two neighbors i and j,
we can define an edge-angle as the angle αkij ∈ [0, 2π)
formed by the edges (k, i), (k, j) ∈ E , measured by convention
counterclockwise from edge (k, i) to edge (k, j) [30]. Fig.1a
shows the edge-angle αkij assigned to the k-th follower in a
(acyclic) directed triangular sub-graph of G, where Assump-
tion 1 establishes the ordering of i < j < k as well. Based
on the bearing vectors zki and zkj , the edge-angle αkij can
be obtained by:

αkij =

{
arccos(zTkizkj) if (z⊥ki)

T zkj ≥ 0,

2π − arccos(zTkizkj) otherwise,
(4)

1Notice that a directed path in a graph is a sequence of vertices of finite
length such that from each of its vertices there is a directed edge to the next
vertex in the sequence. A directed graph is acyclic if there is no directed path
in the graph that starts and ends with the same node.
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Fig. 1: (a) edge-angle in a triangular subgraph. (b) example of a desired
formation (note that d∗31 = d∗52 and d∗42 = d∗43).

in which z⊥ki := Jzki, where

J =

[
0 −1
1 0

]
(5)

denotes the π
2 -counterclockwise rotation matrix.

It is known that based on the directed sensing graph G
(respecting Assumption 1), we can uniquely define a desired
formation characterized by [30]:

(i) A set of 2n − 3 desired distances d∗ji, appointed to the
directed edges (j, i) ∈ E .

(ii) A set of n − 2 desired edge-angles α∗kij , (k, i), (k, j) ∈
E \ {(2, 1)}, i < j < k, (see Fig.1b for an example).

Given a desired formation characterized by a graph G (under
Assumption 1) and the corresponding sets of desired distances
and edge-angles, the objective is to design a decentralized
robust control protocol for (1) such that:

‖pj(t)− pi(t)‖ → d∗ji as t→∞, (6a)

αkij(t)→ α∗kij as t→∞, (6b)

for all (j, i) ∈ E and (k, i), (k, j) ∈ E \ {(2, 1)}, i < j < k,
respectively, while avoiding zero distance among neighboring
agents (i.e., ‖pji‖ 6= 0,∀(j, i) ∈ E ,∀t ≥ 0) so that all edge-
angles are well-defined. It is known that, satisfaction of (6) is
equivalent to strong congruency [29], [30] between the actual
formation of the agents and the desired formation (see Lemma
1 of [30]). This means that if (6) gets satisfied, the agents
can achieve the desired formation only up to rotations and
translations [30].

Remark 1: Assumption 1 indicates that G is a leader-
first-follower type formation [23], which belongs to a class
of acyclic minimally persistent graphs [21], [23]. Persistent
graphs are the directed counterpart of undirected distance rigid
graphs [2], [20]. Rigid graphs and rigidity theory has been
widely used as a tool for studying coordinate-free formations
[2], [5], [11], [12]. In particular, distance rigidity (persistence)
of an undirected (directed) graph ensures that the desired
formation can be characterized merely by a set of desired
distances. However, in general, such formation characteriza-
tion is not unique and suffers from local shape convergence
and reflection issues due to the existence of undesired shapes
(known as reflections, flip and flex ambiguities) satisfying the
given set of desired distances (see [2], [25], [29] for examples).
To tackle these issues, extra types of formation parameters

(e.g., signed area, edge-angle, etc.) have been recently em-
ployed along with the distances to characterize the desired
formation uniquely, which is necessary for having global shape
convergence [25]–[30]. More precisely, the notion of strong
congruency defined in [29], [30] is related to distinguishing
the shape of congruent rigid frameworks (please refer to [2]
for a definition) and thus avoiding reflected frameworks, see
[30, Section II.c]. In other words, in general, congruent rigid
frameworks may have the issue of position reflections and
are not shape-preserving, while strong congruency removes
this issue by exploiting an additional parameter (i.e., edge-
angle or signed area) to characterize the position of each
vertex in a rigid framework. As an example, consider distances
‖pki‖, ‖pkj‖ and the edge-angle αkij in Fig.1a, where 0 <
αkij < π. If the position of vertex k is reflected without
altering its distances with respect to i and j, then π < αkij <
2π. This property will allow us to distinguish the position of
agent k from its reflection with respect to the the line passing
through agents i and j. This is further depicted in Fig.1b by
comparing the desired edge-angles assigned to agents 4 and
5.

Remark 2: From Assumption 1, G is minimally persistent,
meaning that it is a persistent graph with minimum number of
edges. This is favorable in practice since it requires minimum
number of relations (sensing) among agents. This assumption
on G is not restrictive since G can be easily adopted to any
geometrical shape and scaled up to any number of agents
through the Henneberg type I construction [29], [55]. More
precisely, G in our paper is also referred to as a directed
triangulated Laman graph (see [56] for more details).

III. MAIN RESULTS

In this section, we will first introduce two independent
variables based on bipolar coordinates that characterize the
desired positions of the followers within the desired formation.
Then, leveraging the fact that each follower’s formation errors
can be reduced (independently) by moving along the two
orthogonal directions of its associated bipolar coordinate basis,
we use the prescribed performance control (PPC) method to
design proper decentralized robust formation controllers to
meet (6) in the presence of external disturbances with (almost)
global convergence to the desired shape. In particular, for the
controller design procedure, first, a desirable transient and
steady-state performance is imposed by using time-varying
decreasing performance bounds on the formation errors and
it is shown that by fine-tuning the performance bounds one
can also ensure non-collocation of the neighboring agents
so that the edge-angles always remain well-defined. Then, a
nonlinear transformation is used to map the constrained error
to an unconstrained one whose stability merely ensures the
satisfaction of proposed time-varying error constraints. At the
end of this section, the main theorems and stability analysis
are provided along with an extension of agent 2’s controller
for adjusting formation orientation.
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A. Characterization of the Desired Formation Based on
Bipolar Coordinates

Consider a triangular sub-graph of G as in Fig.1a where
i < j < k. If ‖pji‖ 6= 0 one can define a virtual local Cartesian
coordinate frame based on vertices i and j, denoted by {Ck}
as in Fig. 2a, with its origin located in the middle of the i-j
line segment. Note that the position of node k can be uniquely
determined in {Ck} w.r.t. its neighboring agents i and j. It is
also known that agent k’s position in {Ck} can be expressed by
the bipolar coordinates (rk, αkij) ∈ R2 associated with {Ck},
where nodes i and j are the two foci of the bipolar coordinate
system [53]. Recall that the bipolar coordinate variable αkij
(edge-angle) was already introduced in Section II and it is
given by (4). Moreover, rk is the natural logarithm of the
ratio of the distances rkij := ‖pki‖/‖pkj‖, (k, i), (k, j) ∈ E \
{(2, 1)}, i < j < k, between node k and the foci i and j,
expressed by:

rk := ln rkij = ln
‖pki‖
‖pkj‖

, (k, i), (k, j) ∈ E \ {(2, 1)}, (7)

where rk ∈ R. Note that, when agent k approaches one of the
foci i or j (i.e., either ‖pki‖ → 0 or ‖pki‖ → 0), rk tends to
±∞. The bipolar coordinates are related to the {Ck} frame
with the following (almost) one-to-one (except at the foci of
the bipolar coordinates, i and j) transformation [54]:

x
[Ck]
k = ck

sinh rk
cosh rk − cosαkij

, (8a)

y
[Ck]
k = ck

sinαkij
cosh rk − cosαkij

, (8b)

where p[Ck]k = [x
[Ck]
k , y

[Ck]
k ]T ∈ R2 is the position of vertex k

with respect to frame {Ck} and ck = 0.5‖pji‖ > 0, k ≥ 3.
The bipolar coordinate system (rk, αkij) is indeed a 2-D

orthogonal curvilinear coordinate system [53], [54] (similar to
the well-known polar coordinate system), therefore, one can
define a local orthogonal basis at each point in the 2-D plane
of {Ck} showing the directions of increase for αkij and rk.
Fig. 2b shows orthogonal bipolar coordinates basis α̂k ∈ R2

and r̂k ∈ R2 associated with {Ck} at some arbitrary points
of interest as well as some αkij and rk isoquant curves that
create circles centered along the Yk and Xk axis, respectively.

Given a target formation expressed by the graph G along
with the desired edge-angles (i.e., α∗kij) and distances (i.e.,
d∗ji), we can use the desired bipolar coordinates (r∗k, α

∗
kij) ∈

R2 to uniquely determine the desired position of agent k ≥ 3
with respect to its two neighbors i and j (i < j < k), where

r∗k := ln
d∗ki
d∗kj

, (k, i), (k, j) ∈ E \ {(2, 1)}. (9)

In this regard, we propose the following lemma:
Lemma 1: Given a desired formation shape based on a

specific directed sensing graph G = (V, E) under Assumption
1, as well as α∗kij , (k, i), (k, j) ∈ E \ {(2, 1)}, i < j < k and
d∗ji, (j, i) ∈ E , satisfying:

‖p2(t)− p1(t)‖ → d∗21, as t→∞, (10a)
rk(t)→ r∗k, k ≥ 3, as t→∞, (10b)

αkij(t)→ α∗kij , k ≥ 3, as t→∞, (10c)
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Fig. 2: (a) The virtual local Cartesian coordinate frame {Ck} uniquely
characterizes the position of agent k ≥ 3 with respect to its neighbors (agents
i and j). Instead of using the Cartesian coordinates in {Ck} one can adopt
bipolar coordinates (4) and (7) in {Ck} to determine agent k’s position. (b)
Orthogonal bipolar coordinate basis r̂k , α̂k associated with agent k ≥ 3 and
some of their isoquant curves.

is equivalent to the satisfaction of (6).
Proof: (10) ⇒ (6): Recall that due to Assumption

1, G is comprised of triangular sub-graphs. Every acyclic
directed triangular sub graph of G with vertices i, j, and k
defines a triangle denoted by 4ijk. Now consider the triangle
(composed of agents 1, 2 and 3) of the desired formation and
the actual triangle formed by the agents at time instance t ≥ 0,
which are denoted by 4∗123 and 4123(t), respectively. Note
that, owing to the side-angle-side similarity theorem between
two triangles, if the ratio of two sides as well as the angle
included between these sides become identical in 4∗123 and
4123(t), then we can infer that 4123(t) is similar to 4∗123.
Therefore, satisfaction of (10b) and (10c) for agent 3 (i.e.,
r3 → r∗3 and α312 → α∗312) ensures that 4123(t) becomes
similar to 4∗123 in the limit. In addition, satisfaction of (10a)
further ensures that 4123(t) and 4∗123 will have the same
edge lengths in the limit, that is ‖p3(t) − p1(t)‖ → d∗31
and ‖p3(t) − p2(t)‖ → d∗32 as t → ∞. Repeating these
arguments for the rest of the triangular sub-graphs of G in
the desired and the actual formations, i.e., 4∗ijk and 4ijk(t),
(k, i), (k, j) ∈ E\{(2, 1)}, i < j < k, will result in satisfaction
of (6) for all triangular sub-graphs of G. Therefore, (10)
implies (6).

(6) ⇒ (10): Again consider 4123(t) and 4∗123. If (6) is
satisfied for 4123(t), i.e., ‖p3(t) − p1(t)‖ → d∗31, ‖p3(t) −
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p2(t)‖ → d∗32, ‖p2(t) − p1(t)‖ → d∗21, and α312 → α∗312,
then satisfaction of (10) for 4123(t) can be readily deduced.
Similarly to the previous case, by repeating these arguments
for the rest of the triangular sub-graphs in the desired and the
actual formations, one can infer that, in general, (6) implies
(10) and this completes the proof.

Recall that equations (6a) and (6b) indicate that the sec-
ondary leader (i.e., agent 2) is only required to keep a certain
distance with respect to the leader (agent 1), whereas the rest
of the agents (i.e., followers) are required to keep a certain
edge-angle and two specific distances with respect to their
neighbors. Therefore, a direct approach to achieve (6) for each
follower agent is controlling three variables: two distances
and an edge-angle [30]. Alternatively, followers can use the
signed area information (instead of the edge-angle) along
with the distances to achieve the same objective [26]–[29].
However, using an extra shape constraint (i.e., signed area or
edge-angle) for the followers to achieve the desired formation
may introduce new undesirable equilibria as the distance and
signed-area/edge-angle constraints interfere with each other at
certain agent positions (see [25]–[30] for more details and
examples). Indeed, these variables do not always constitute
an orthogonal space, in which each formation variable can be
adjusted independently by moving along orthogonal directions.
Lemma 1 overcomes this issue as it only requires the followers
to control only two orthogonal (i.e., independent) formation
variables (10b) and (10c). In the sequel, we will leverage this
fact to design the formation controllers of the follower agents
(see Subsection III-C.3), which allows for (almost) global
convergence to the desired shape.

The proof of Lemma 1 also reveals that by modifying the
distance of agent 2 with respect to agent 1 (i.e., ‖p2(t) −
p1(t)‖) one can change the scale of the actual formation at the
steady-state (formation scaling means maintaining all angles
in the shape and increasing or decreasing all edge lengths with
the same proportion). Therefore, if the secondary leader alters
its desired distance with respect to the leader, by considering
a time-varying desired distance d∗21(t), then it can control the
formation’s scale, which is of high importance in practical
formation control applications (e.g., passing through narrow
passages, obstacle avoidance, etc.).

B. Formation Errors

To quantify the control objective we define 3 types of error
variables. First, the squared distance error between agents 2
and 1 is defined as:

ed = ‖p21‖2 − (d∗21(t))2, (11)

where d∗21(t) : R→ R>0 is a strictly positive and continuously
differentiable function of time with a bounded derivative
representing the desired (in general, time-varying) distance
between agents 2 and 1. Notice that ‖p21‖ = d∗21(t) if and
only if ed = 0. Secondly, the logarithmic ratio of the distances
error is defined as:

erk = rk − r∗k, k = 3, . . . , n, (12)

where rk and r∗k are defined in (7) and (9), respectively. Third,
the edge-angle error is defined as:

eαk = αkij − α∗kij , (k, i), (k, j) ∈ E \ {(2, 1)}, (13)

where αkij is defined in (4) and i < j < k 2. Note that,
(12) and (13) are independent (orthogonal) error variables
defined only for the followers. More precisely, by moving
along each bipolar coordinates basis, r̂k and α̂k, each follower
can reduce (12) and (13), respectively, without affecting the
other error variable. Finally, due to the above discussion
and Lemma 1, by adopting the bipolar coordinates approach,
the control objective of (6) is met by zero stabilization of
the errors defined in (11), (12), and (13) while maintaining
‖pji(t)‖ 6= 0,∀(j, i) ∈ E ,∀t ≥ 0.

Remark 3: In order to meet (10b) and (10c) in Lemma
1, each follower is only required to sense and adjust its
edge-angle formed by its neighbors, as well as the ratio
of the distances with respect to them. It is known that,
in general, onboard vision-based sensors (e.g., monocular
cameras) give projective measurements that do not contain
distance information. As a consequence, it is possible to obtain
only bearing (direction) information, from which the angle
information can be then retrieved [34] (e.g., by (4)). Moreover,
as explained in [12, Section II.D], the ratio of the distances
can also be extracted from a single image of a camera by
comparing projections of two identical (yet unknown) sized
(spherical or circular) objects/markers (i.e., two neighbors of
a certain follower agent) on the image plane of a camera.
In the absence of spherical (circular) shaped agents/markers,
each robot may use a database of CAD models for obtaining
the ratio of the distances [57]. Therefore, all followers are
required to be equipped only with low-cost vision sensors
to perceive the required information/feedback. This is in
contrast to many related results in coordinate-free formation
control with (almost) global shape convergence, where relative
position measurements for all agents are assumed [25]–[33].

C. Controller Design
In this paper, we will adopt the Prescribed Performance

Control (PPC) method [48] for designing the formation control
laws in order to: i) introduce robustness against external
disturbances (which also allows us to deal with the forma-
tion maneuvering problem), ii) achieve predefined transient
and steady state response for each formation error eh, h ∈
{d, rk, αk}, k = {3, · · · , n}, and iii) avoid singularities in the
edge-angle definition when ‖pji‖ → 0, for a pair (j, i) ∈ E or
when either αkij = 0 or αkij = 2π.

Prescribed performance is achieved when the formation
errors eh(t), h ∈ {d, rk, αk}, with k = {3, · · · , n} evolve
strictly within the predefined regions that are bounded by ab-
solutely decaying functions of time, called performance func-
tions [48], [49]. The mathematical expression of prescribed
performance is formulated by the following inequalities:

−bhρh(t) < eh(t) < b̄hρh(t),

h ∈ {d, rk, αk}, k = {3, . . . , n},
(14)

2We have used the subscription of eαk instead of eαkij for better
readability.
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where bh, b̄h > 0 are arbitrary positive scaling parameters
selected properly to avoid singularities in the control problem,
as presented in the sequel. Moreover, ρh(t) : [0,∞) → R≥0
are user-defined continuously decaying performance functions
with bounded derivatives and strictly positive limit as t→∞
(i.e., limt→∞ ρh(t) > 0). In this work, we will adopt the
following performance functions:

ρh(t) = (1− ρ∞,h) exp(−lht) + ρ∞,h,

h ∈ {d, rk, αk}, k = {3, . . . , n},
(15)

where parameters lh, ρ∞,h > 0 characterize the desired
transient and steady-state performance specifications on eh(t),
respectively. In particular, the decreasing rate of ρh(t), affected
by the constant lh, introduces a lower bound on the speed
of convergence of eh(t), h ∈ {d, rk, αk}, k = {3, . . . , n}.
Furthermore, depending on the accuracy (resolution) of the
sensors, the constants ρ∞,h can be set arbitrarily small, thus
achieving practical convergence of eh(t) to zero.

The task is to synthesize decentralized feedback control
laws such that, given −bhρh(0) < eh(0) < b̄hρh(0), h ∈
{d, rk, αk}, k = {3, . . . , n}, the formation errors eh(t) satisfy
(14) for all t ≥ 0 leading to (practical) stabilization of the
errors in (11), (12), and (13).

1) Selection of the Performance Bounds: We can incorporate
the requirement of ‖pji(t)‖ 6= 0,∀(j, i) ∈ E ,∀t ≥ 0 by choos-
ing the maximum (absolute) values of the performance bounds
−bhρh(t), b̄hρh(t) on eh(t), h ∈ {d, rk, αk}, k = {3, . . . , n}
in (14), appropriately. In particular, from (11) and (14),
choosing bdρd(t) such that inft≥0

(
(d∗21(t))2 − bdρb(t)

)
≥ 0

is sufficient to ensure ‖p21(t)‖ > 0 for all t ≥ 0. On the
other hand, b̄d can be chosen arbitrarily without affecting the
positiveness of ‖p21(t)‖. Furthermore, as boundedness of rk
in (7) implies ‖pki(t)‖, ‖pkj(t)‖ > 0, from boundedness of
r∗k in (12) and the fact that max(ρrk(t)) = ρrk(0) = 1,
setting any bounded arbitrary values for brk and b̄rk in (14)
ensures ‖pki(t)‖, ‖pkj(t)‖ > 0, for (k, i), (k, j) ∈ E \{(2, 1)}
and ∀t ≥ 0. Moreover, notice that since the edge-angles are
defined over the domain αkij ∈ [0, 2π), from (13), by setting
bαk ≤ α∗kij and b̄αk ≤ 2π − α∗kij in (14), we can enforce
this domain for the edge-angles, which avoids sudden changes
from 2π to 0. This further ensures continuous angle errors in
(13) leading to a smooth control action. Finally, notice that
each agent can observe its initial formation errors and select
−bh and b̄h, h ∈ {d, rk, αk}, k = {3, . . . , n} in agreement
with the above conditions to further ensure the requirement of
−bhρh(0) < eh(0) < b̄hρh(0).

2) Transformed Errors: The problem of designing a con-
troller that meets the error constraints in (14) can be trans-
formed into establishing the boundedness of certain modulated
error signals [48], [49]. More specifically, to handle the time-
varying constraints in (14), a time-varying error transformation
technique will be used to convert each of the original error
dynamics ėd, ėrk , and ėαk (given in (36), (41), respectively)
under the constraints (14) into equivalent unconstrained ones,
whose stability merely ensure satisfaction of the constraints
given in (14). First, we define the modulated formation errors

as:

ẽh(t) :=
eh(t)

ρh(t)
, h ∈ {d, rk, αk}, k = {3, . . . , n}. (16)

To transform the constrained error dynamics (in the sense of
(14)) into an equivalent unconstrained one, we introduce the
following error transformation:

σh = Th(ẽh), h ∈ {d, rk, αk}, k = {3, . . . , n}, (17)

where σh, h ∈ {d, rk, αk}, k = {3, . . . , n}, are the trans-
formed errors corresponding to eh. Moreover, Th(.) :
(−bh, b̄h) → (−∞,+∞), denote smooth, strictly increasing
bijective mappings satisfying Th(0) = 0. Note that eh = 0
if and only if σh = 0. Finally, notice that maintaining
the boundedness of σh(t), enforces −bh < ẽh(t) < b̄h,
and consequently the satisfaction of (14). Taking the time
derivatives of (17), yields:

σ̇h = ξh(ėh− ẽh ρ̇h), h ∈ {d, rk, αk}, k = {3, . . . , n}, (18)

where

ξh :=
1

ρh(t)

∂Th(ẽh)

∂ẽh
> 0,

h ∈ {d, rk, αk}, k = {3, . . . , n}.
(19)

In the sequel, we shall consider the following logarithmic
function as a proper choice for the mapping functions in (17):

σh = Th(ẽh) = ln

(
b̄hẽh + b̄hbh
b̄hbh − bhẽh

)
, (20)

where h ∈ {d, rk, αk}, k = {3, . . . , n}. Note that, the specfic
form in (20) satisfies the aforementioned properties for Th(.)
and ẽh ∈ (−bh, b̄h) if and only if σh ∈ (−∞,+∞).

Remark 4 (PPC Design Philosophy): When −bhρh(0) <
eh(0) < b̄hρh(0), h ∈ {d, rk, αk}, k = {3, . . . , n}, based
on the properties of the error transformations (17), prescribed
performance in the sense of (14) is achieved, if σh(t) are kept
bounded. Notice that, although for σh ∈ R the prescribed
performance bounds in (14) are satisfied, the boundedness
of σh is required to guarantee well-defined bounded control
inputs. Moreover, it is important to note that the specific
bounds of σh (no matter how large they are, which is the
key property of the adopted error transformation) do not affect
the achieved transient and steady-state performance on eh(t),
which is solely determined by (14) and thus by the selection
of the performance functions ρh(t) as well as the scaling
constants b̄h and bh.

3) Proposed Control Laws: The following lemma is useful
for the control design and stability analysis.

Lemma 2: For a given triangular directed sub-graph as
in Fig.1a, the bipolar coordinates basis r̂k, α̂k (see Fig.2b)
associated with the virtual Cartesian frame {Ck} in Fig. 2a
can be expressed with respect to the global coordinate system
as follows:

α̂k = −f1(rk, αkij)zji + f2(rk, αkij)J
T zji , (21a)

r̂k = f2(rk, αkij)zji + f1(rk, αkij)J
T zji , (21b)
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for k ≥ 3, (k, i), (k, j) ∈ E \ {(2, 1)}, i < j < k, where zji
is the bearing vector associated with edge (j, i), JT is the π

2
clockwise rotation matrix, and

f1(rk, αkij) =
− sinh rk sinαkij
cosh rk − cosαkij

, (22a)

f2(rk, αkij) =
cosαkij cosh rk − 1

cosh rk − cosαkij
. (22b)

Proof: See Appendix I.
Notice that in the proposed formation control setup the

leader (agent 1) does not participate in forming the desired
shape, thus its behaviour is independent from the other agents.
In this respect, the leader’s control law uL(t) is designed for
objectives such as trajectory tracking, position stabilization,
etc., in the presence of external disturbances/uncertainties
δ1(t). Note that, the response of the leader should be stable,
therefore, in the following we will assume uL(t) is uniformly
bounded and designed such as to achieve a desired high-level
formation coordination task.

We propose the following formation control laws:

u1 = uL(t) (23a)
u2 = ξd σd p21 (23b)
uk = −ξrk σrk r̂k − ξαk σαk α̂k, k = 3, . . . , n, (23c)

where α̂k and r̂k are the bipolar coordinates basis associated
with agent k ≥ 3 obtained in (21), and from (19) and (17),
ξh, h ∈ {d, rk, αk}, k = {3, . . . , n} is given by:

ξh =
1

ρh(t)

(
1

ẽh + bh
− 1

ẽh − b̄h

)
, (24)

which is lower bounded by a positive constant over its domain
ẽh ∈ (−bh, b̄h) owing to strict positiveness of ρh(t).

Remark 5: The control law (23c) indicates that the motion
of the follower k ≥ 3 results by the superposition of the
motions along each of the orthogonal bipolar coordinate basis
r̂k, α̂k ∈ R2 to compensate the formation errors erk , eαk with
the given constraints in (14). In this respect, notice that one can
select the performance bounds (error constraints) on erk , eαk
in (14) arbitrarily without any constraint infeasibility issues
since these two error variables can vary independently along
their respective bipolar coordinate basis (i.e., erk , eαk are not
interdependent). Moreover, notice that for implementing (23c),
from (21), agent k should know zji, which is the relative
bearing between its neighbours i < j ∈ N. We argue that
agent k can obtain zji by direct measurements of zki, zkj , and
the ratio of the distances rkij , i < j < k, which are available.
First, notice that pji = pki − pkj = ‖pki‖zki − ‖pkj‖zkj . Let
zk := rkijzki − zkj ∈ R2. One can verify that zk is parallel
with pji; consequently, normalizing zk gives zji.

Remark 6: Although the proposed control laws (23) are
given with respect to a global coordinate frame (only for the
sake of analysis), we emphasize that the proposed formation
controller can be implemented in any arbitrarily oriented local
coordinate frame (i.e., in a coordinate-free fashion). First,
notice that according to the leader’s objective (e.g., going
to a specific position or following a trajectory, etc.), since
it is not involved in the process of generating the desired
shape, the leader can perform the required calculations for

its control law with respect to its own local coordinate frame.
Second, let gh(eh) := ξhσh, h ∈ {d, rk, αk}, k = {3, . . . , n}
in (23b), (23c), where all gh(eh) are scalar functions of the
formation errors. Now let the superscript [k], k ≥ 2, indicates
a quantity expressed in the local coordinate frame of the
k-th agent. Furthermore, suppose that Rk ∈ SO(2) is the
transformation (rotation) matrix from the k-th local frame
to the global frame. Notice that, we have uk = Rku[k]k ,
pki = Rkp[k]ki = Rk(p

[k]
i − p

[k]
k ), and consequently from (3)

we get zki = Rkz[k]ki , i < k ∈ N. Considering (23c), we have:

u
[k]
k = R−1k uk = −R−1k (−grk(erk)r̂k − gαk(eαk)α̂k)

= −grk(erk)R−1k r̂k − gαk(eαk)R−1k α̂k

= −grk(erk)r̂
[k]
k − gαk(eαk)α̂

[k]
k , (25)

where from (21) we get:

α̂
[k]
k = R−1k α̂k = f2R−1k zji + f1J

TR−1k zji

= f2z
[k]
ji + f1J

T z
[k]
ji , (26a)

r̂
[k]
k = R−1k r̂k = f2R−1k zji + f1J

TR−1k zji

= f2z
[k]
ji + f1J

T z
[k]
ji , (26b)

in which the permutation property between R−1k and JT

is employed to achieve the right-hand sides (since both of
them are rotation matrices). Note that, the values of the
scalar functions f1(αkij , rk), f2(αkij , rk) as well as gh(eh) :=
ξhσh, h ∈ {d, rk, αk}, k = {3, . . . , n} do not depend on the
coordinate systems since their arguments (i.e., edge-angles,
logarithm of ratio of distances, and their errors) are the same
in any coordinate system. One can verify that (26) and (25)
have the same form as (21) and (23c), respectively, where
all the quantities are expressed with respect to the kth local
coordinate frame. This indicates that the decentralized control
law (23c) can be implemented in arbitrarily oriented local
coordinate frame of agent k. The same claim can be verified
in a similar manner for the control law of agent 2 (secondary
leader) in (23b).

D. Stability Analysis
The main results of this work are summarized in the

following theorems. Theorem 1 indicates that the secondary
leader (i.e., agent 2) can keep a certain (in general time-
varying) distance with respect to the leader (which can move
freely). Compensation of the formation errors assigned to the
followers (agents k ≥ 3) are derived in Theorem 2.

Theorem 1: Consider agents 1 and 2 with dynamics (1) and
a desired formation given by a directed graph G = (V, E)
under Assumption 1 with a desired (time-varying) distance
inft≥0 (d∗21(t)) > 0 between agents 1 and 2. Given that
−bdρd(0) < ed(0) < b̄dρd(0), where bdρd(t) and b̄d are cho-
sen as explained in Section III-C.1, the decentralized control
protocols (23a), (23b) guarantee −bdρd(t) < ed(t) < b̄dρd(t)
and ‖p21(t)‖ > 0, for all t ≥ 0 as well as boundedness of all
closed-loop signals.

Proof: The proof is provided in Appendix II. The
proof proceeds in three phases: First, we show that ẽd(t)
remains within (−bd, b̄d) for a specific time interval [0, τ2,max)
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(i.e., the existence and uniqueness of a maximal solution)
by noticing to the fact that the closed-loop system of ˙̃ed is
Lipschitz continuous. Next, by establishing boundedness of the
mapped error σd we prove that the proposed control scheme
guarantees, for all [0, τ2,max): a) the boundedness of all closed
loop signals as well as b) that ẽd(t) remains strictly in a
compact subset of (−b2, b̄2), which leads to τ2,max =∞ (i.e.,
forward completeness), thus finalizing the proof.

Theorem 2: Consider a group of n agents with dynamics
(1) in a 2-D plane. Let the desired formation be given by a
directed graph G = (V, E) under Assumption 1 along with
the sets of logarithms of the desired ratio of distances r∗k
and desired edge-angles α∗kij , (k, i), (k, j) ∈ E \ {(2, 1)},
i < j < k, assigned to agents 3 ≤ k ≤ n. Assume that
−bhρh(0) < eh(0) < b̄hρh(0), h ∈ {rk, αk}, k = {3, . . . , n},
where bh and b̄h are chosen as in Section III-C.1. Under
the stability results of Theorem 1, the decentralized control
protocol (23c) guarantees, −bhρh(t) < eh(t) < b̄hρh(t) and
‖pki(t)‖, ‖pkj(t)‖ > 0, (k, i), (k, j) ∈ E \ {(2, 1)}, for all
t ≥ 0, as well as boundedness of all closed-loop signals.

Proof: See Appendix III for the proof. The proof follows
an organization similar to that of Theorem 1. In particular, first,
we establish the results for agent 3’s formation errors (i.e., for
the first triangular subgraph of the desired formation). Next, by
leveraging the established results for agent 3 and Theorem 1,
as well as exploiting the hierarchical leader-follower structure
of the formation control system, we extend the results to all
of the agents by induction.

Remark 7: We highlight that our results in Theorems 1 and
2 indicate almost global convergence to the desired formation.
In particular, satisfaction of −bdρd(0) < ed(0) < b̄dρd(0) in
Theorem 1 as well as satisfaction of −brkρrk(0) < erk(0) <
b̄rkρrk(0) in Theorem 2 along with choosing bdρd(t), b̄d, brk ,
and b̄rk according to Section III-C.1 require agents not to
be collocated initially with their neighbors (i.e., ‖p21(0)‖ 6=
0, ‖pki(0)‖ 6= 0, ‖pkj(0)‖ 6= 0, (k, i), (k, j) ∈ E \{(2, 1)}, i <
j < k). Moreover, satisfaction of −bαkραk(0) < eαk(0) <
b̄αkραk(0) in Theorem 2 along with choosing bαk and b̄αk
according to Section III-C.1 requires 0 < αkij(0) < 2π
which affects the acceptable initial positions for agent k ≥ 3
with respect to its neighbors, i.e., agent k should not be
initially collinear with agents i and j while locating on left-
or right-hand side of them (being in the middle is feasible).
Additionally, note that the target formation should respect the
aforementioned conditions as well. Finally, we argue that the
above restrictions only constitute a zero-measure set to avoid
global convergence.

E. Formation Control with Orientation Adjustment

Followed by (10), owing to the above results and the
proposed control laws in (23), the leader determines the
position of the formation (e.g., by tracking a reference ve-
locity/trajectory that leads to formation maneuvering), the
secondary leader determines the formation scale by tracking
a time-varying desired distance d∗21(t), and the followers con-
tribute to obtain the desired shape based on the defined errors
in bipolar coordinates. In this section, we shall extend the
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Fig. 3: Given a desired sensing graph G as in Fig.1b, in each case the desired
formation is characterized by different desired relative positions between
agents 2 and 1, whereas the sets of desired edge-angles and ratio of the
distances for followers (i ≥ 3) are the same. The dashed arrows show the
local coordinate frame of agent 2 in which the formation orientation can
be characterized by the desired bearing angle β∗. p∗21,a and p∗21,b have the
same orientation but different length while p∗21,a and p∗21,c have different
orientations with the same length.

aforementioned results to formation control with orientation
adjustment, where by using an extended control law for the
secondary leader, we can obtain a certain (in general, time-
varying) desired orientation for the formation as well.

Let β := arctan2(z21,y, z21,x) ∈ (−π, π] be the bearing
angle between agents 2 and 1, where z21 = [z21,x, z21,y]T

denotes the corresponding bearing vector3. Now consider the
following new control requirement in addition to the ones in
(10):

β(t)→ β∗, as t→∞ (27)

where β∗ is a desired bearing angle associated with a desired
bearing vector z∗21 between agents 2 and 1. Note that β∗

determines the desired orientation for the formation. In this
regard, β∗ and d∗21 determine a desired relative position vector
p∗21 between agents 2 and 1, since p∗21 = d∗21z

∗
21. Indeed satis-

faction of (10a) and (27) is equivalent to: p2(t)−p1(t)→ p∗21,
as t → ∞, see Fig.3 for further illustrations. In this way the
secondary leader not only controls the scaling of the desired
formation at the steady-state, but also alters the formation
orientation by modifying its bearing angle with respect to
the leader. In other words, satisfaction of (27) along with
(10) achieves the desired formation only up to translations.
Note that, given a p∗21 in a global coordinate system, one
can always find d∗21 and β∗. Having p∗21 defined in a global
coordinate system is not restrictive since it is only required
to be accessible to agent 2, hence, as it is shown in Fig.3,
one can always consider agent 2’s local coordinate frame
as the reference frame in which the formation orientation is
determined. Let us define the bearing angle error between
agent 2 and 1 as:

eβ = β(t)− β∗(t), (28)

where β∗(t) : R → (−π, π) is a continuously differentiable
function of time with a bounded derivative representing the
desired (in general, time-varying) orientation between agents
2 and 1 (which is equivalent to the desired formation orien-
tation). Similarly to Section III-C, the PPC method can be
adopted to design a robust control law for practical stabiliza-

3arctan2 is the two argument arc tangent function [58, Appendix A].
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tion of eβ such that:

−bβρβ(t) < eβ(t) < b̄βρβ(t) (29)

by utilizing an unconstrained transformed error σβ = Tβ(ẽβ),
where bβ , b̄β > 0, and ρβ , ẽβ , σβ , ξβ are defined simi-
larly to (15), (16), (20), and (24), respectively. Moreover,
akin to Section III-C.1, to ensure β ∈ (−π, π) and avoid
potential singularities (i.e., β = π or −π) we should have
bβρβ(t) ≥ π + β∗(t) and b̄βρβ(t) ≤ π − β∗(t) for
all t ≥ 0. Hence, inft≥0

(
π + β∗(t)− bβρβ(t)

)
≥ 0 and

inft≥0
(
π − β∗(t)− b̄βρβ(t)

)
≥ 0 are sufficient to ensure

β ∈ (−π, π) for all t ≥ 0. We thus propose the following
extended control law for agent 2:

u2 = ξd σd p21 + ξβσβJz21 (30)

which indicates that the motion of secondary leader is resulted
from the superposition of the motions along orthogonal direc-
tions z21 and Jz21 = z⊥21 to compensate the distance error ed
and the bearing angle error eβ , with the given constraints in
(14) and (29), respectively.

The aforementioned results are summarized in Corollary 1,
which along with Theorem 2 extends the results to formation
control with scaling and orientation adjustment.

Corollary 1: Consider agents 1 and 2 with dynamics (1)
and a desired formation given by a directed graph G = (V, E)
under Assumption 1 with a desired (time-varying) distance
inft≥0 (d∗21(t)) > 0 and a desired bearing angle−π < β∗(t) <
π between agents 1 and 2. Given −bhρh(0) < eh(0) <
b̄hρh(0), h ∈ {d, β}, where bhρh(t) and b̄h are chosen as
explained in Sections III-C.1 and III-E, the decentralized con-
trol protocols (23a) and (30) guarantee −bhρh(t) < eh(t) <
b̄hρh(t) and ‖p21(t)‖ > 0, for all t ≥ 0 as well as boundedness
of all closed-loop signals.

Proof: The proof is similar to Theorem 1 and thus
is omitted for brevity. Notice that based on the control law
(30), ed and eβ can also be independently treated (due to
orthogonality of the control directions).

IV. SIMULATIONS RESULTS

In this section, a simulation example of robust formation
maneuvering with orientation and scaling control is presented
to demonstrate the effectiveness of the proposed decentralized
control protocols (23a), (30), and (23c)4.

Consider a group of six agents modeled by (1) in a two-
dimensional space. Suppose that the desired formation is an
equilateral triangle composed of four equilateral sub-triangles
(see Fig.4), where its underlying sensing graph G satisfies
Assumption 1 with the following directed edge set E =
{(2, 1), (3, 1), (3, 2), (4, 2), (4, 3), (5, 2), (5, 4), (6, 3), (6, 5)}.
Let the desired formation be characterized by the
following sets of desired logarithmic ratio of the distances
and edge-angles: r∗3 = r∗4 = r∗5 = r∗6 = 0, and
α∗312 = α∗634 = π/3, α∗423 = α∗524 = 5π/3, where
d∗31 = d∗32 = d∗42 = d∗43 = d∗52 = d∗53 = d∗63 = d∗64 = 1.875.
Moreover, assume that the local coordinate system of agent

4A short video demonstrating the following simulation results can be found
at: https://youtu.be/jtsiU9DLp1k

2 (secondary leader), in which the formation orientation
is defined, is aligned with the X-Y global coordinate
system. Fig.5 shows the continuously differentiable time-
varying reference signals d∗21(t) and β∗(t) of agent 2 that
adjust the formation scale and orientation as times goes
on. Note that d21(t) and β∗(t) are initially constant, and
d∗21(0 ≤ t ≤ 16) = 1.875 and β∗(0 ≤ t ≤ 13) = 0.
Without loss of generality, in the simulation we have
assumed that the disturbance input to agent 1 (leader) is zero,
δ1(t) = 0, and the leader follows a sinusoidal trajectory under
the velocity control input of uL(t) = [1.25, π4 cos(π6 t)]

T .
The external disturbances of agents δk := [δkx, δky]T ,
k = 2, . . . , 6, in the simulation are assumed to be:
δ2x(t) = δ6y(t) = 0.75 sin(4t+ π

5 )+0.5 sin(2t+ 3π
4 ), δ2y(t) =

δ4y(t) = δ5x(t) = 0.25 cos(3t+π
3 )+0.75 sin(2t−π5 ), δ3x(t) =

0.75 sin(t), δ3y(t) = 0.25 cos(t + π
6 ) + 0.25 sin(2t + π

4 ),
δ4x(t) = 0.5 cos(5t+ π

8 )+0.5 sin(t+ π
5 ), δ5y(t) = 0.5 cos(t),

δ6x(t) = 0.5 sin(2t + π
4 ). Furthermore, the parameters of

the performance functions (15) are considered as lh = 0.5,
ρ∞,h = 0.04, h ∈ {β, rk, αk}, k = {3, . . . , 6}, and ld = 0.5,
ρ∞,d = 0.03. Moreover, the positive constants bh, b̄h,
h ∈ {d, β, rk, αk}, k = {3, . . . , 6} of the performance bounds
are selected according to the guidelines in Sections III-C.1
and III-E.

Considering the aforementioned setting as well as a set
of arbitrary initial positions for the agents, the results are
summarized in Fig.4, which depicts consecutive snapshots
of the agents’ trajectories towards the desired formation as
the leader follows its reference trajectory. Note that agent
2 starts tracking a time-varying bearing angle with respect
to agent 1 from t > 13 (see Fig.5) such that it follows
the angle of the leader’s velocity direction with an offset
of −π/6 radians. In addition, the evolution of d∗21(t) during
16 < t < 26 allows agents to pass through a narrow passage
without colliding with obstacles when following the leader
and maintaining the desired shape. The evolution of the edge-
angle (13) and the logarithmic ratio of the distances (12)
errors for agents 3 ≤ k ≤ 6 are depicted in Fig.6 and Fig.7,
respectively, where the dashed lines indicate the user-defined
performance bounds. Moreover, Fig.8 shows the evolution of
bearing angle error (28) as well as the squared distance error
(11) of agent 2. Notice that, the formation errors remain within
the pre-defined performance bounds for all time. Hence, the
results indicate that the proposed formation control scheme is
capable of handling the problem of coordinate-free (stationary
or maneuvering) formation control with adjustable scaling
and orientation as well as global shape convergence under
prescribed performance specifications that further introduce
robustness to external disturbances.

V. CONCLUSIONS

In this paper, we proposed a novel 2-D directed forma-
tion control approach with (almost) global convergence using
bipolar coordinates for desired shapes that are modeled by
acyclic triangulated directed graphs (also known as a class of
minimally acyclic persistent graphs). Bipolar coordinates were
used to characterize the desired formation to avoid undesired
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Fig. 4: Starting from arbitrary initial positions, agents converge to the desired shape while following the leader’s (agent 1’s) motion. The scale and orientation
of the formation is adjusted by agent 2 along the way. In particular, roughly around t = 14 agent 2 starts following a time-varying desired bearing and
distance w.r.t. agent 1 that leads the formation to pass through a narrow passage (black curves).

*

Fig. 5: Agent 2’s desired (time-varying) distance d∗21(t) and bearing angle
β∗(t).

Fig. 6: Evolution of the edge-angle errors αk, k ≥ 3. The magnified subplots
provide the details of error evolution in the steady-state.

equilibria in 2-D coordinate-free directed formations. Then
the prescribed performance control method was adopted for
designing the formation control laws to introduce robustness
against external disturbances/model uncertainties as well as
ensuring user-defined transient and steady-state performance
guarantees. We further showed that the proposed approach
is capable of handling formation maneuvering with time-
varying reference velocities along with scaling and orientation
adjustment. Moreover, it was argued that the control approach
can be easily implemented in arbitrarily oriented local co-
ordinate frames of the (follower) agents by using onboard
vision sensors, which are favorable for practical applications.
Future research efforts will be devoted to extending the results
for 3-D formations as well as dealing with inter-agent colli-
sion avoidance of non-point agents. Moreover, handling the
problem of connectivity maintenance for the proposed control
methodology is also an important direction of research for
the future. Finally, considering more complex agent dynamics
(i.e., higher-order and nonlinear) and also taking into account

Fig. 7: Evolution of the logarithmic ratio of the distance errors rk, k ≥ 3.
The magnified subplots provide the details of error evolution in the steady-
state.

Fig. 8: Evolution of agent 2’s squared distance (ed) and bearing angle (eβ )
errors. The magnified subplots provide the details of error evolution in the
steady-state.

sensing noise in the feedback control are among other inter-
esting topics for future work.

APPENDIX I
PROOF OF LEMMA 2

From (8) recall that the position of node k w.r.t. {Ck} is
p
[Ck]
k = [x

[Ck]
k , y

[Ck]
k ]T . Let x̂[Ck]k , ŷ

[Ck]
k ∈ R2 be the (unit)

orthogonal bases of {Ck} that are expressed in {Ck}, hence:

p
[Ck]
k = x

[Ck]
k x̂

[Ck]
k + y

[Ck]
k ŷ

[Ck]
k , (31)

where, x[Ck]k and y
[Ck]
k are given in (8). It is known that

for the bipolar coordinates (that is an orthogonal curvilinear
coordinate system) associated with {Ck}, the two vectors
α̂
[Ck]
k , r̂[Ck]k form a local basis at any nonsingular point p[Ck]k ,

where the following hold [53]:

∂p
[Ck]
k

∂αkij
= qαk α̂

[Ck]
k , and

∂p
[Ck]
k

∂rk
= qrk r̂

[Ck]
k , (32)
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in which
qαk = qrk =

ck
cosh rk − cosαkij

, (33)

are the scaling (metrical) factors [53], [54] and ck was defined
in (8). From (8), (31), (32), and (33) one can obtain:

α̂
[Ck]
k = f1(rk, αkij) x̂

[Ck]
k + f2(rk, αkij) ŷ

[Ck]
k , (34a)

r̂
[Ck]
k = −f2(rk, αkij) x̂

[Ck]
k + f1(rk, αkij) ŷ

[Ck]
k , (34b)

where f1, f2 are given in (22). Notice that:

x̂
[Ck]
k = − pji

‖pji‖
= −zji, (35a)

ŷ
[Ck]
k = −J pji

‖pji‖
= −Jzji = JT zji, (35b)

which provide the basis of {Ck} in the global coordinate
frame. Finally, (34) and (35) yield (21).

APPENDIX II
PROOF OF THEOREM 1

Phase I. First notice that agent 2’s formation error dynamics
can be obtained invoking (1), (11), (23a) as follows:

ėd = 2pT21ṗ21 − 2d∗21ḋ
∗
21 = 2pT21(uL − u2 + δ21)− 2d∗21ḋ

∗
21

= 2pT21(Λ2 − u2)− Γd, (36)

where δ21 := δ1 − δ2 ∈ R2, Λ2 := uL + δ21 ∈ R2, Γd :=
2d∗21ḋ

∗
21 ∈ R are uniformly bounded signals (δ21,Λ2,Γd ∈

L∞) by assumption. Now differentiating ẽd(t) in (16) and
employing (36), (23b), yields:

˙̃ed := Eẽd(t, ẽd) = ρ−1d (t) (ėd − ẽdρ̇d(t))
=ρ−1d

(
2pT21Λ2 − 2ξdσd‖p21‖2 − Γd − ẽdρ̇d

)
. (37)

Let us also define the open set Ωẽd as: Ωẽd := (−bd, b̄d). Note
that, Ωẽd is nonempty and open by construction. Moreover,
followed by the discussion in Section III-C.1, agent 2 can
always initially select bd, b̄d > 0 to ensure ẽd(0) ∈ Ωẽd . Ad-
ditionally, Eẽd(t, ẽd) is continuous on t and locally Lipschitz
on ẽd over the set Ωẽd . Therefore, the hypotheses of Theorem
54 in [59, p. 476] hold and the existence and uniqueness of a
maximal solution ẽd(t) of (37) for a time interval [0, τ2,max)
such that ẽd(t) ∈ Ωẽd ,∀t ∈ [0, τ2,max) is guaranteed. Based
on this, we can further infer that ed(t) is bounded as in (14)
for all t ∈ [0, τ2,max).

Phase II. Owing to ẽd(t) ∈ Ωẽd ,∀t ∈ [0, τ2,max), the error
σd, as defined in (17), is well-defined for all t ∈ [0, τ2,max).
Therefore, consider the following positive definite and radially
unbounded Lyapunov function candidate: V2 = (1/4)σ2

d.
Taking the time derivative of V2, invoking (18), (36), (23b),
and the positivity of ξd, we get:

V̇2 = −ξ2dσ2
d‖p21‖2 + ξdσdp

T
21Λ2 − ξdσd

1

2
(Γd + ẽdρ̇d)

≤ −ξ2dσ2
d‖p21‖2 + ξd|σd|‖p21‖‖Λ2‖+ ξd|σd||Ψ2|, (38)

where Ψ2 := 0.5(Γd + ẽdρ̇d) ∈ R, which is bounded for
all t ∈ [0, τ2,max) owing to the boundedness of ρ̇d(t),Γd(t)
and ẽd(t) for ∀t ∈ [0, τ2,max) (as it was shown in Phase I).

Let 0 < θ2 < 1 be a constant; thus adding and subtracting
θ2ξ

2
2σ

2
2‖p21‖2 to the right-hand side of (38) yields:

V̇2 ≤− (1− θ2)ξ2dσ
2
d‖p21‖2

− ξd|σd|
(
θ2ξd|σd|‖p21‖2 − ‖p21‖‖Λ2‖ − |Ψ2|

)
≤− (1− θ2)ξ2dσ

2
d‖p21‖2,

∀ |σd| ≥
‖Λ2‖‖p21‖+ |Ψ2|

θ2ξd‖p21‖2
, ∀t ∈ [0, τ2,max).

(39)

Recall that Λ2(t),Ψ2(t), θ2 ∈ L∞,∀t ∈ [0, τ2,max). No-
tice that ξd is lower bounded by a positive constant. In
addition, since ẽd(t) ∈ Ωẽd = (−bd, b̄d),∀t ∈ [0, τ2,max),
followed by (16), (11), (14), and Section III-C.1, ‖p21(t)‖2 >
inft∈[0,τ2,max)

(
(d∗21(t))2 − bdρd(t)

)
> 0 and ‖p21(t)‖2 <

supt∈[0,τ2,max)

(
(d∗21(t))2 + bdρd(t)

)
for all t ∈ [0, τ2,max).

Therefore, (39) indicates that σd(t) is Uniformly Ultimately
Bounded (UBB) [60], and one can show that there exists an
ultimate bound σ̄d independent of τ2,max such that |σd(t)| ≤ σ̄d
for ∀t ∈ [0, τ2,max).

Phase III. Owing to the properties of Td(ẽd) in (17), we
have: −bd < T−1d (σd) = ẽd < b̄d. Furthermore, since
T−1d (σd) is strictly increasing and |σd(t)| ≤ σ̄d there exist
−b∗d(σ̄d), b̄∗d(σ̄d) such that:

−bd < −b
∗
d(σ̄d) ≤ ẽd ≤ b̄∗d(σ̄d) < b̄d. (40)

As a result ẽd(t) ∈ Ω′ẽd ,∀t ∈ [0, τ2,max) where Ω′ẽd =
[−b∗d, b̄∗d] is a nonempty compact subset of Ωẽd . Hence, as-
suming a finite τ2,max <∞ and since Ω′ẽd ⊂ Ωẽd , Proposition
C.3.6 in [59, p. 481] dictates the existence of a time instant
t′ ∈ [0, τ2,max) such that ẽd(t′) /∈ Ω′ẽd , which is a contra-
diction. Therefore, τ2,max =∞. Thus, all closed loop signals
remain bounded and moreover ẽd(t) ∈ Ω′ẽd ⊂ Ωẽd ,∀t ≥ 0.
Multiplying (40) by ρd(t) results in: −bdρd(t) < −b

∗
dρd(t) ≤

ed(t) ≤ b̄∗dρd(t) < b̄dρd(t) for all t ≥ 0, which further ensures
(14) and thus ‖p21(t)‖ > 0, for all t ≥ 0, due to selection of
bd, b̄d according to Section III-C.1.

APPENDIX III
PROOF OF THEOREM 2

First note that, using (1), (7), (12), and (13), the formation
error dynamics of agent k ≥ 3 is given by:

ėrk =
pTkiṗki
‖pki‖2

−
pTkj ṗkj

‖pkj‖2

=
zTki
‖pki‖

(ui − uk + δki)−
zTkj
‖pkj‖

(uj − uk + δkj)

=
zTki
‖pki‖

(Λki − uk)−
zTkj
‖pkj‖

(Λkj − uk), (41a)

ėαk =
zTki
‖pki‖

J(ui − uk − δki)−
zTkj
‖pkj‖

J(uj − uk + δkj)

=
zTki
‖pki‖

J(Λki − uk)−
zTkj
‖pkj‖

J(Λkj − uk), (41b)

where (k, i), (k, j) ∈ E \ {(2, 1)}, i < j < k, and δki :=
δi− δk, δkj := δj− δk, Λki := ui+ δki, Λkj := uj + δkj . Note
that (41b) is obtained by using the arc length formula (see
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Appendix IV). Define ek := [erk , eαk ]T ∈ R2, k = 3, . . . , n,
as the stacked formation errors for agent k. Based on (41) we
have:

ėk = HkΛk +Gkuk, k = 3 . . . , n, (42)

where Λk := [Λki,Λkj ]
T ∈ R4×1, and Hk ∈ R2×4, Gk ∈

R2×2 are as follows:

Hk :=

 zTki
‖pki‖ − zTkj

‖pkj‖

zTki
‖pki‖J − zTkj

‖pkj‖J

 , Gk :=


zTkj
‖pkj‖ −

zTki
‖pki‖(

zTkj
‖pkj‖ −

zTki
‖pki‖

)
J

 .
Moreover, defining the stacked transferred formation errors as
σk := [σrk , σαk ]T , k = 3, . . . , n, and employing (18) gives:

σ̇k = ξk(ėk − ρ̇kẽk), (43)

where ξk := diag(ξrk , ξαk) ∈ R2×2, ρk := diag(ρrk , ραk) ∈
R2×2, and ẽk := [ẽrk , ẽαk ]T = ρ−1k ek. Finally notice that, the
control law (23c) can be re-written as follows:

uk = −Bkξkσk, k = 3 . . . , n, (44)

where Bk := [r̂k | α̂k] ∈ R2×2, k = 3 . . . , n, are matrices
whose columns are the orthogonal bipolar basis associated
with agent k ≥ 3. In the following, we shall first establish the
results for agent 3 and then extend the proof for all 3 < k ≤ n
by induction. Similarly to the proof of Theorem 1, we will
proceed in three phases.

Phase I. Differentiating ẽr3 and ẽα3
, gives:

˙̃er3 := Eẽr3 (t, ẽr3) = ρ−1r3 (t) (ėr3 − ẽr3 ρ̇r3(t)) , (45a)
˙̃eα3

:= Eẽα3
(t, ẽα3) = ρ−1α3

(t) (ėα3 − ẽα3 ρ̇α3(t)) (45b)

Define Eẽ3(t, ẽ3) := [Eẽr3 (t, ẽr3), Eẽα3
(t, ẽα3

)]T . Using
(42) and (44), the closed-loop dynamical system of ẽ3 =
[ẽr3 , ẽα3 ]T = ρ−13 e3 with ρ3 = diag(ρr3 , ρα3) may be written
in compact form as:

˙̃e3 = Eẽ3(t, ẽ3) = ρ−13 (t)(ė3 − ρ̇3(t)ẽ3)

=ρ−13 (t) (HkΛk −GkBkξkσk − ρ̇3(t)ẽ3) . (46)

Let us also define the open set: Ωẽ3 := Ωẽr3 × Ωẽα3
, where

Ωẽr3 := (−br3 , b̄r3), and Ωẽα3
:= (−bα3

, b̄α3
). Note that

Ωẽ3 is nonempty and open by construction. Followed by
the discussion in Section III-C.1, agent 3 can initially select
br3 , b̄r3 , bα3

, b̄α3
> 0 to ensure ẽ3(0) ∈ Ωẽ3 . Since Eẽ3(t, ẽ3)

is continuous on t and locally Lipschitz on ẽ3 over the set Ωẽ3 ,
the hypotheses of Theorem 54 in [59, p. 476] dictates existence
and uniqueness of a maximal solution ẽ3(t) of (46) for a time
interval [0, τ3,max) where ẽ3(t) ∈ Ωẽ3 ,∀t ∈ [0, τ3,max) is
guaranteed. This further ensures that ẽr3(t) and ẽα3

(t) are
bounded as in (14) for all t ∈ [0, τ3,max).

Phase II. Owing to ẽ3(t) ∈ Ωẽ3 ,∀t ∈ [0, τ3,max), the
stacked transformed errors σ3 = [σr3 , σα3 ]T , where σr3 , σα3

are defined in (17), are well-defined for all t ∈ [0, τ3,max).
Therefore, consider the following positive definite and radially
unbounded Lyapunov function candidate V3 = (1/2)σT3 σ3.
Differentiating V3 with respect to time, using (42), (43), and
(44), gives:

V̇3 =− σT3 ξ3 (G3B3) ξ3σ3 + σT3 ξ3H3Λ3 − σT3 ξ3ρ̇3ẽ3, (47)

≤−m3‖σT3 ξ3‖2 + ‖σT3 ξ3‖‖H3‖‖Λ3‖+ ‖σT3 ξ3‖‖Ψ3‖,

where m3 > 0 is a positive constant related to M3 := G3B3

(see Appendix V for details), and Ψ3 := ρ̇3ẽ3 ∈ R2, which
is bounded for ∀t ∈ [0, τ3,max) owing to the boundedness
of ρ̇3(t) for all t ≥ 0 and the boundedness of ẽ3(t) for
∀t ∈ [0, τ3,max) (as it is shown in Phase I). Moreover, note
that due to the boundedness of δ31, δ32, u1 = uL(t) ∈ L∞ as
well as boundedness of u2(t) ∈ L∞ (owing to Theorem 1),
we have that Λ31,Λ32 ∈ L∞, which leads to the boundedness
of Λ3 ∈ L∞. Let 0 < θ3 < m3 be a constant, adding and
subtracting θ3‖σT3 ξ3‖2 to the right-hand side of (47), and
invoking diagonality and positive definiteness of ξ3, yields:

V̇3 ≤− (m3 − θ3)‖σT3 ξ3‖2

− ‖σT3 ξ3‖
(
θ3‖σT3 ξ3‖ − ‖H3‖‖Λ3‖ − ‖Ψ3‖

)
≤− (m3 − θ3)λmin(ξ23)‖σ3‖2, (48)

∀ ‖σT3 ξ3‖ ≥
‖H3‖‖Λ3‖+ ‖Ψ3‖

θ3
, ∀t ∈ [0, τ3,max),

where λmin(ξ23) is the minimum eigenvalue of the diagonal
positive definite matrix ξ23 ∈ R2×2. Note that, ẽ3(t) ∈ Ωẽ3 =
(−br3 , b̄r3)× (−bα3

, b̄α3
),∀t ∈ [0, τ3,max), hence followed by

(7), (12), (16), (14), and Section III-C.1 for the selection of
br3 , b̄r3 , we can infer that ‖p31(t)‖, ‖p32(t)‖ are bounded away
from zero for ∀t ∈ [0, τ3,max). Moreover, since J, z31, z32 ∈
L∞, the elements of matrix H3 are all bounded for ∀t ∈
[0, τ3,max), thus ‖H3‖ ∈ L∞,∀t ∈ [0, τ3,max). Finally, as
‖H3(t)‖, ‖Λ3(t)‖, ‖Ψ3(t)‖, θ3 ∈ L∞,∀t ∈ [0, τ3,max), and ξ3
is a diagonal positive definite matrix, (48) implies that σ3 is
uniformly ultimately bounded [60]. Therefore, one can show
that there exists an ultimate bound σ̄3 independent of τ3,max
such that ‖σ3(t)‖ ≤ σ̄3 for ∀t ∈ [0, τ3,max).

Phase III. Owing to ‖σ3(t)‖ ≤ σ̄3 we have |σr3(t)| ≤ σ̄3
and |σα3(t)| ≤ σ̄3. Similarly to Phase III in the proof of
Theorem 1, due to properties of Th(ẽh) in (17) and its inverse,
there exist −b∗r3(σ̄3), b̄∗r3(σ̄3),−b∗α3

(σ̄3), b̄∗α3
(σ̄3) such that:

−br3 < −b
∗
r3

(σ̄3) ≤ẽr3 ≤ b̄∗r3(σ̄3) < b̄r3 , (49a)
−bα3

< −b∗α3
(σ̄3) ≤ẽα3

≤ b̄∗α3
(σ̄3) < b̄α3

. (49b)

As a result ẽ3(t) ∈ Ω′ẽ3 := Ω′ẽr3
× Ω′ẽα3

,∀t ∈ [0, τ3,max)

where Ω′ẽr3
= [−b∗r3 , b̄

∗
r3 ], Ω′ẽα3

= [−b∗α3
, b̄∗α3

] are nonempty
compact subset of Ωẽr3 and Ωẽα3

, respectively. Hence, assum-
ing a finite τ3,max < ∞, since Ω′ẽ3 ⊂ Ωẽ3 , Proposition C.3.6
in [59, p. 481] leads to the existence of a time instant t′ ∈
[0, τ3,max) such that ẽ3(t′) /∈ Ω′ẽ3 , which is a contradiction.
Therefore, τ3,max = ∞. Thus, all closed loop signals remain
bounded, and ẽ3(t) ∈ Ω′ẽ3 ⊂ Ωẽ3 ,∀t ≥ 0. Multiplying
(49a) and (49b) by ρr3(t) and ρα3

(t), respectively, gives:
−br3ρr3(t) < −b∗r3ρr3(t) ≤ er3(t) ≤ b̄∗r3ρr3(t) < b̄r3ρr3(t)
and −bα3

ρα3
(t) < −b∗α3

ρα3
(t) ≤ eα3

(t) ≤ b̄∗α3
ρα3

(t) <
b̄α3

ρα3
(t) for t ≥ 0, which ensure (14) for er3(t) and eα3

(t).
This also leads to ‖p31(t)‖, ‖p32(t)‖ > 0, for all t ≥ 0 due to
the selection of br3 , b̄r3 according to Section III-C.1.

Induction Step: Now let us assume that the stability results
of Theorem 2 holds for agents 3, . . . , k− 1 (i.e., boundedness
of all signals and satisfaction of (14) for all agents 3, . . . , k−
1). Hence, one can verify that the results of Phase I for agent
k still holds. Moreover, by employing the radially unbounded
Lyapunov function candidate Vk = (1/2)σTk σk, and since
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agent k has its arbitrary two neighbors from the set 1, . . . , k−
1, we can establish existence of an ultimate bound σ̄k for σk(t)
in the same way as in Phase II. Finally it is straightforward to
repeat Phase III and establish satisfaction of (14) for erk , eαk
along with ‖pki(t)‖, ‖pkj(t)‖ > 0, (k, i), (k, j) ∈ E \ {(2, 1)}
for all t ≥ 0, which finalizes the proof.

APPENDIX IV
DERIVATION OF ėαk IN (41b)

Consider a triangular sub-graph of G, where i < j < k. An
alternative way of calculating the edge-angle αkij is given by
[30]:

αkij = mod{αkj − αki, 2π}, (k, i), (k, j) ∈ E \ {(2, 1)},
(50)

where αki and αkj are the angles of the edges (k, i) and
(k, j) measured counterclockwise from the x-axis of the global
coordinate frame (see Fig.9a). Taking the time derivative of
(13) based on (50) yields:

ėαk = α̇kj − α̇ki. (51)

where α̇ki and α̇kj should be calculated explicitly. In this
regard, consider p+

ki = pki + dpki, where p+
ki represents the

new relative position vector associated with edge (k, i) subject
to the infinitesimal changes in the positions of agents k and i
that are captured by dpki. Notice that the infinitesimal motions
of agents k and i modeled by dpki can be seen as if only agent
i is moving. Therefore, for a better geometric representation,
without loss of generality we assume that only agent i has an
infinitesimal motion as illustrated in Fig.9b. Moreover, assume
that dαki represents the infinitesimal variation of αki, and dski
shows the infinitesimal variation of its corresponding curve
with radius of ‖pki‖. Since αki is in radians, from the arc
length formula5 we get:

dski = ‖pki‖dαki. (52)

For the infinitesimal right triangle 4ii′ i+ we also have:

dski = (Jzki)
T dpki, (53)

that is the projection of dpki on the infinitesimal arc dski.
Invoking (52) and (53), α̇ki is given by:

α̇ki =
dαki
dt

=
zTki
‖pki‖

JT ṗki. (54)

A similar expression can also be obtained for α̇kj . Therefore,
using (1), (51), and (54) followed by the fact that JT = −J ,
yields (41b).

APPENDIX V
QUADRATIC FORM FOR Mk := GkBk ∈ R2×2

Consider matrices Bk = [r̂k | α̂k] ∈ R2×2 and Gk ∈ R2×2,
k = 3, . . . , n, as defined in the proof of Theorem 2. Let ηk :=

5It holds ds = rdθ, where r is the radii, dθ is the variation of the angle,
and ds is the variation of its corresponding arc length.
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Fig. 9: (a) Alternative edge-angle calculation. (b) Infinitesimal variation of
edge (k, i)’s angle.

(zkj/‖pkj‖)− (zki/‖pki‖) ∈ R2 then Gk = [ηTk |ηTk J ]T . Now
Mk := GkBk gives:

Mk =

[
ηTk r̂k ηTk α̂k

ηTk Jr̂k ηTk Jα̂k

]
=

[
ηTk r̂k −ηTk Jr̂k
ηTk Jr̂k ηTk r̂k

]
(55)

where orthogonality of the bipolar basis is employed to obtain
the right-hand side, that is: r̂k = Jα̂k along with the fact that
J−1 = JT = −J . Let x = [x1 x2]T ∈ R2, then it one can
verify that:

xTMkx = mk(x21 + x22) = mk‖x‖2 (56)

where mk := ηTk r̂k. Since r̂k, zki, zkj are unit vectors, from
the (geometric) inner product formula we get:

mk = ηTk r̂k =
cos γkj
‖pkj‖

+
− cos γki
‖pki‖

, (57)

where γki represents the (smallest) angle formed between zki
and r̂k, and γkj shows the (smallest) angle formed between
zkj and r̂k. In the sequel we will prove that mk > 0, which
ensures positiveness of (56). Consider three cases for agent k’s
position with respect to its neighbors in the virtual Cartesian
coordinate frame {Ck} that are: (a) left half-plane, (b) right
half-plane, and (c) on the Yk axis, as illustrated in Fig.10. First,
note that γkj ≤ γki always holds. Without loss of generality,
let us also assume that ‖pki‖, ‖pkj‖ are bounded.

Case (a): Note that in this case r̂k is always directed
outwards the rk = constant curves. Moreover it always holds
that π/2 < γki ≤ π, 0 ≤ γkj ≤ π, and ‖pki‖ < ‖pkj‖. In
this regard, whenever 0 ≤ γkj ≤ π/2 then the first term in
the right-hand side of (57) is always positive or zero whereas
the second term is always positive, thus mk > 0 is ensured.
Now consider when π/2 < γkj ≤ π. In this case the first term
in the right-hand side of (57) is always negative whereas the
second term is always positive, however, due to γkj ≤ γki
and ‖pki‖ < ‖pkj‖ the second term always dominates the
first term, thus we will always have mk > 0. As a result we
can conclude that for bounded ‖pki‖, ‖pkj‖, we always have
mk > 0, whenever agent k is in the left-half plane of {Ck}.

Cases (b) and (c): Using similar arguments, we can also
show that mk > 0 whenever agent k is on the Yk axis or in
the right-half plane of {Ck} for bounded ‖pki‖, ‖pkj‖.

Note that when ‖pki‖, ‖pkj‖ become unbounded, mk may
approach to zero in all three cases (a), (b), and (c). However,
unboundedness of ‖pki‖, ‖pkj‖ is avoided in the proof of



F. MEHDIFAR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (SEP 2022) 15

Xk

Yk

ji

k̂r

kiz
kjz

k̂r

k̂r
kjz

kiz

kjzkiz

( )a ( )b( )c

{ }kC

ki

kj

( )ak

( )bk

( )ck

Fig. 10: Configuration of zki, zkj , and r̂k in three arbitrary positions of agent
k with respect to its neighbors.

Theorem 2. In particular, for k = 3, from Phase I of Theorem
2, we have ẽ3(t) ∈ Ωẽ3 = (−br3 , b̄r3) × (−bα3

, b̄α3),∀t ∈
[0, τ3,max), hence followed by (13), (16), (14), and Section
III-C.1 for the selection of bα3

, b̄α3
, we ensure that the edge-

angle α312 is positively lower bounded away from zero and
its upper bound is less than 2π, ∀t ∈ [0, τ3,max), which is
sufficient to have ‖p31(t)‖, ‖p32(t)‖ bounded ∀t ∈ [0, τ3,max).
Note that similarly we can show that this property also holds
for k > 3, as explained in the induction step in the proof
of Theorem 2. Therefore, there always exists a positive lower
bound mk (depending on the choice of bαk , b̄αk ) such that
0 < mk < mk.
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