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Abstract— Path integral policy improvement (PI2) is a data-
driven method for solving stochastic optimal control problems.
Both feedforward and feedback controls are calculated based
on a sample of noisy open-loop trajectories of the system and
their costs, which can be obtained in a highly parallelizable
manner. The control strategy offers theoretical performance
guarantees related to the expected cost achieved by the resulting
closed-loop system. This paper extends the single-agent case to
a multi-agent setting, where such theoretical guarantees have
not been attained previously. We provide both a decentralized
and a leader-follower scheme for distributing the feedback
calculations under different communication constraints. The
theoretical results are verified numerically through simulations.

I. INTRODUCTION

As the deployment of robots in real-world scenarios
becomes more and more widespread and technologically
possible, the need for controlling systems where multiple
agents must communicate and cooperate to solve com-
plex problems effectively is increasing as well. Example
applications are cooperative robots in industrial factories,
unmanned aerial vehicles (UAVs) for surveillance and ex-
ploration, traffic control systems, and platooning. The size
and complexity of these system leads to a state-space and
thus computational complexity explosion when tackled with
centralized, single-agent controllers, a problem known as the
curse of dimensionality. This necessitates the development
of multi-agent methods in order to distribute the workload
by having the agents find (sub)optimal solutions using only
locally available information under given communication
constraints. The field has attracted much research, ranging
from analytical [1] to deep reinforcement methods [2]. With
growing levels of computational power and parallelization,
the latter have become state-of-the-art for dealing with more
complex systems in practice, but offer limited theoretical
performance guarantees due to their learning aspect.

Policy improvement with path integrals (PI2) [3] is a
control method for solving stochastic optimal control prob-
lems in a simulation-driven manner while retaining theo-
retical guarantees related to the expected performance. The
method relies on formulating a special form of feedback
that allows control inputs to be calculated from the costs
of open-loop trajectory samples (rollouts). Recent theoretical
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advances have both simplified this feedback calculation [4]
and proposed to apriori find feedforward controls which
optimize the expected closed-loop performance [5]. These
improvements ease the implementation of the method and
decrease the sampling effort required during its real-time im-
plementation, improving its potential practical applicability.
The computational reliance of PI2 on our ability to generate
and evaluate open-loop rollouts makes it of great interest,
as this is highly parallelizable and thus the feasibility of the
method can be expected to increase as technology advances.

While path integral control has enjoyed a broad range of
research [6]–[8] and applications [9]–[13] in the single-agent
case, there is very limited literature on its potential extension
to multi-agent systems. Practical applications of PI2 to
multi-agent systems, such as UAV planning, essentially still
work in a centralized manner [14]. In [15], graph inference
techniques were used in the estimation of the joint system
trajectory distribution. This improves the efficiency of the
calculations, but still relies on global state information across
the agents. In a more recent work [16], the single-agent
theory was applied to an agent and its neighbors (i.e., agents
which contribute to its cost). Agents then compute optimal
controls for their local group, extract their own input, and
implement it in real-time. This loses theoretical guarantees
and only works heuristically under the implicit assumption
that the independently computed actions agree across the
agents, i.e., in a cooperative setting.

This paper extends PI2 to a multi-agent setting where
agents have independent dynamics and their costs depend
on a set of neighboring agents. Our main contributions are:
• First, we show that in order for the feedbacks to be

calculated via open-loop sampling, they must satisfy a
certain linear equation. We give a decentralized scheme
that allows the agents to agree on its solution by
iteratively exchanging locally available information, as
well as a leader-follower scheme that instead relies on
a series of leader-to-follower communications. If the
agent costs are non-conflicting and the system dynamics
permit agents to correct for all costs simultaneously, the
solution exists and theoretical performance guarantees
are retained. Otherwise, the agents find a least-violating
solution and achieve heuristically good performance.

• Second, we derive a (centralized) algorithm for finding
the optimal feedforwards apriori by minimizing the sum
of the expected agent costs.

An extended version of this paper with more detailed deriva-
tions, extended simulation results, and ideas for future work
is provided separately in [17].



The rest of this paper is structured as follows. Section
II introduces functionals in order for the agents to handle
path-dependent costs. Section III outlines the problem for-
mulation, followed by the introduction of the multi-agent PI2

control strategy in Section IV. Section V then discusses the
feedback control calculations. The theory is verified using
simulations in Section VI, and conclusions are given in
Section VII.

II. PRELIMINARIES

Let T > 0 denote the time horizon of an optimal control
problem, and let Λt denote the set of all RCLL (right
continuous, left limit) functions mapping each point s ∈ [0, t]
to Rp for any t ∈ [0, T ]. The value of a trajectory (path)
τt ∈ Λt of length t at time s is then denoted by the vector
τ t(s) ∈ Rp. The set of all possible trajectories for all
possible time intervals is given by Λ :=

⋃
t∈[0,T ] Λt.

A functional V : Λ → R assigns a real number to paths
in the set Λ [18] and allows us to formulate optimal control
problems involving path-dependent final costs. Its space and
time derivatives are defined and operate similarly as those of
traditional functions. To ease the definitions, let us introduce

τh
t (s) =

{
τ t(s), s < t

τ t(t) + h, s = t
and τ t,δt(s) :=

{
τ t(s), s ≤ t
τ t(t), s ∈ (t, t+ δt]

for a path τt ∈ Λt, spacial shift h ∈ Rp, and tem-
poral shift δt > 0. The (directional) space and time
derivatives of the functional V can now be defined as
∆h

xV (τt) = limε→0
1
ε

[
V (τ ε·ht )− V (τt)

]
and ∆tV (τt) =

limδt→0+
1
δt [V (τt,δt)− V (τt)]. By choosing the direction

h as the unit basis vectors ei corresponding to the (i)-th
dimensions of the space Rp, the gradient of V can be formed
as the vector ∆xV (τt) :=

[
∆e1

x V (τt) . . . ∆
ep
x V (τt)

]T
.

The Hessian is then given as the matrix ∆xxV (τt) :=[
∆x (∆e1

x V (τt)) . . . ∆x

(
∆

ep
x V (τt)

)]
.

III. PROBLEM FORMULATION

Consider a group of p = 1, . . . , P agents with indepen-
dent, input-affine dynamics of the form

ẋpt = fp(xpt , t) + gp(xpt )u
p
t +

(
Σp
x,t

)1/2
εpx,t, (1)

where xpt ∈ Rnp is the agent state, upt ∈ Rmp is the
agent input, εpx,t ∈ Rnp is zero-mean white noise included
with covariance Σp

x,t ≥ 0, and the functions fp(·) and
gp(·) describe the autonomous and input-dependent parts of
the agent dynamics. Each agent will implement a control
input composed of a feedforward and a feedback term as
upt := kpt + δupt , the former of which is generated as

k̇
p

t = νpt + (Σp
k,t)

1/2εpk,t. (2)

Here νpt ∈ Rmp is the nominal feedforward derivative and
εpk,t ∈ Rmp is added white noise with covariance Σp

k,t ≥
0. Together, the two equations can be combined into an
extended state zpt ∈ Rnp+mp to give the following state-
space representation of agent p:

żpt =

[
ẋpt
k̇
p

t

]
= F pt (x

p
t ) + Gp(xpt )v

p
t + (Ξp

t )
1/2wp

t , (3)

where the introduced quantities are defined as:

F pt (x
p
t ) =

[
fp(xpt , t)

0

]
, Gp(xpt ) =

[
gp(xpt ) 0

0 I

]
,

vpt =

[
upt
νpt

]
, Ξp

t =

[
Σp
x,t 0
0 Σp

k,t

]
, wp

t =

[
εpx,t
εpk,t

]
.

Note that vpt can be regarded as an abstracted input, and our
goal will be to define a control policy for determining its
value in time such that the entire closed-loop system achieves
optimal performance.

To quantify the performance, we assume that each agent p
aims to minimize a cost that depends on itself and a number
Np of neighboring agents. These are assembled as the set

N p := {p, qp1 , . . . , q
p
Np
}, (4)

where qpi denotes the index of the (i)-th neighbor of agent
p. The joint states of these agents are defined as

z̃pt :=

[(
zpt

)T (
z
qp1
t

)T
. . .

(
z
qpNp

t

)T
]T

, (5)

and their values are assembled into trajectories of length t
as τ̃pt := {z̃ps | 0 ≤ s ≤ t}. Considering a time horizon of
length T > 0, each agent p is then assigned a cost

Spt (τ̃pT ) ≡ Sp(τ̃pT , t) := φp(τ̃pT ) +

∫ T

t

qp(z̃s, s) ds, (6)

where φp : ΛT → R is a path-dependent terminal cost and
qpt (z̃t) ≡ qp(z̃t, t) is an instantaneous running cost. The
expected value of this cost given the trajectories at time t
then depends on the control strategy and is denoted by

V p
θ̃p

(τ̃pt ) = E [Spt (τ̃pT ) | τ̃pt ] , (7)

where θ̃p = {θq | q ∈ N p} is assembled from a given set
{θp}Pp=1 of parameters of each agent’s control strategy.

Our goal is to follow the PI2 control paradigm and design
a feedforward/feedback law for each vpt in (3) of the form

vpt ≡
[
upt
νpt

]
:=

[
kpt

νp0t(θp)

]
+

[
δupt
δkpt

]
:= vp0t(θp) + δvpt , (8)

such that the expected closed-loop costs V p
θ̃p

(τ̃pt ) for each
agent can be approximated by sampling the neighboring
agent dynamics in an open-loop manner. This will allow the
feedbacks δvpt to also be calculated using such open-loop
samples, enabling a computationally parallelizable real-time
implementation. The joint parameters θ = {θ1, . . . , θP } of
the feedforwards vp0t(θp) must be determined such that the
expected joint cost

Vθ(τ
1
0 , . . . , τ

P
0 ) :=

P∑
p=1

αpV
p

θ̃p
(τ̃p0 ) (9)

is minimized for the system for given initial states {τp0 }Pp=1

and weighting coefficients αp > 0 such that
∑
αp = 1.



IV. THE MULTI-AGENT PI2 CONTROL STRATEGY

We derive a linear equation for the agent feedbacks
δvpt in (8) whose satisfaction allows the expected closed-
loop cost (7) of each agent p to be expressed using open-
loop sampling. To this end, we first transform the partial
differential equation (PDE) governing V p

θ̃p
(τ̃pt ) in a way such

that it can be linearized. The condition for this linearizability
across all agents yields the sought-after linear equation for
the feedbacks and enables the expression of each V p

θ̃p
(τ̃pt )

using open-loop sampling via the Feynman-Kac theorem
[18]. This allows us to outline a multi-agent PI2 control
strategy, whose details are discussed in the subsequently.

Since the agent dynamics are decoupled, we consider the
derivations with respect to a given agent p without loss of
generality, and drop the dependency of the value functional
V p
θ̃p

(τ̃pt ) on the feedforward parameterization θ̃p. Using (7),
the PDE governing V p(τ̃pt ) can be derived from the dynamic
programming equation

V p(τ̃pt ) = E [Spt (τ̃pT ) | τ̃pt ]

= E
[
qpt dt+ E

[
Spt+dt(τ̃

p
T )
∣∣ τ̃pt+dt

] ∣∣ τ̃pt ]
= qpt dt+ E

[
V p(τ̃pt+dt) | τ̃

p
t

]
(10)

using the same methods as in previous work [3] to yield:

−∆tV
p(τ̃pt ) = qpt +

∑
q∈Np

(∆zqV p(τ̃pt ))
T

(F qt (x
q
t ) + Gq(xqt )v

q
t )

+
1

2

∑
q∈Np

tr (∆zqzqV p(τ̃pt )Ξq
t ), (11)

with boundary condition V p(τ̃pT ) = SpT (τ̃pT ) = φp(τ̃pT ).
Compared to the single-agent case, the other agents affecting
the cost appear through the summations over q ∈ N p from
(4). The complete derivation is provided in [17].

The PDE (11) will not be linear when substituting in
a given control law for the inputs vqt . The PI2 approach
aims to eliminate such nonlinearities in the PDE governing
a logarithmic transformation of the value functional:

V p(τ̃pt ) = −λp log Ψp(τ̃pt ), (12)

where λp > 0. The partial derivatives can be related as:

∆tV
p(τ̃pt ) = −λp

∆tΨ
p(τ̃pt )

Ψp(τ̃pt )
, ∆zqV p(τ̃pt ) = −λp

∆zqΨp(τ̃pt )

Ψp(τ̃pt )
(13a)

∆zqzqV p(τ̃pt ) = λp
∆zqΨp(τ̃pt ) (∆zqΨp(τ̃pt ))

T

Ψp(τ̃pt )2
− λp

∆zqzqΨp(τ̃pt )

Ψp(τ̃pt )
.

(13b)
To de-clutter the coming derivations, from this point we will
simply write V p for V p(τ̃pt ) and Ψp for Ψp(τ̃pt ). Together
with the feedforward/feedback structure (8) of the inputs,
(12) transforms (11) into

λp
∆tΨ

p

Ψp
= qpt +

1

2
tr Υp

−
∑
q∈Np

λp
(∆zqΨp)

T

Ψp
(F q(xqt , t) + Gq(xqt )(v

q
0t(θq) + δvqt )) ,

(14)

where the term within the trace is given as
Υp =

∑
q∈Np λp

(
∆zqΨp(∆zqΨp)T

(Ψp)2
− ∆zqzqΨp

Ψp

)
Ξq
t .

We can achieve linearization by choosing the feedbacks
δvqt for the agents q ∈ N p affecting this cost such that they
cancel out the quadratic noise component, i.e., such that

−
∑
q∈Np

λp
(∆zqΨp)

T

Ψp
Gq(xqt )δv

q
t

= −1

2

∑
q∈Np

λp tr

(
∆zqΨp (∆zqΨp)

T

(Ψp)2
Ξq
t

)
. (15)

Rearranging the above equation, we therefore

require
∑
q∈Np

(
−λp∆zqΨp

Ψp

)T
Gq(xqt )δv

q
t =

− 1
2λp

∑
q∈Np

(
−λp∆zqΨp

Ψp

)T
Ξq
t

(
−λp∆zqΨp

Ψp

)
, which

can be rephrased from the gradients (13) as:∑
q∈Np

(∆zqV p)
T

Gq(xqt )δv
q
t

= − 1

2λp

∑
q∈Np

(∆zqV p)
T

Ξq
t∆zqV p. (16)

At this point, we introduce the shorthand notation

δpqt := ∆zqV p(τ̃pt ). (17)

As the cost V p(τ̃pt ) does not depend on q /∈ N p, δpq = 0 if
q /∈ N p, and we can write (16) equivalently as:

P∑
q=1

(δpqt )
T

Gq(xqt )δv
q
t = − 1

2λp

P∑
q=1

(δpqt )
T

Ξq
tδ
pq
t . (18)

Satisfying this equation will lead to the linearization of (14)
for a single agent p. However, we need this cancellation
to jointly occur in the PDEs of the transformed value
functionals associated to all p = 1, . . . , P agents, as the
feedbacks δvqt are the same for agent q throughout all the
PDEs. This represents a system of P linear equations for the
combined unknowns

δvt :=
[
(δv1

t )
T . . . (δvPt )T

]T
, (19)

which can be arranged into a linear matrix equation as

AT
t δvt = −Lt, (20)

where the introduced quantities are

AT
t =


(
δ11
t

)T
G1(x1

t ) . . .
(
δ1P
t

)T
GP (xPt )

...
. . .

...(
δP1
t

)T
G1(x1

t ) . . .
(
δPPt

)T
GP (xPt )


(21a)

and

Lt =


1

2λ1

P∑
q=1

(
δ1q
t

)T
Ξq
tδ

1q
t

...
1

2λP

P∑
q=1

(
δPqt

)T
Ξq
tδ
Pq
t

 . (21b)



Compared to the single-agent case, we now have a system
of P linear equations that the feedbacks δvt have to satisfy
instead of a single equation. This was made possible by
requiring the quadratic cancellations (15) independently for
each expected cost V p(τ̃pt ), and relates to our goal for (9)
to minimize the sum of expected agent costs instead of the
expectation of their sums. The latter would also have led to a
single equation and would not allow a decentralized solution.

Assuming the linear equation (20) is solvable, the cancel-
lation (15) does indeed occur, and the transformed PDE (14)
for all agents p = 1, . . . , P finally simplifies to

−∆tΨ
p = −Ψp

λp
qpt −

∑
q∈Np

(∆zqΨp)
T

(F qt (x
q
t ) + Gq(xqt )v

q
0t(θq))

−1

2

∑
q∈Np

tr (∆zqzqΨpΞq
t ) (22)

with the boundary condition Ψp(τ̃pT ) = exp(− 1
λp
φp(τ̃pT )).

Matching this PDE with the Feynman-Kac theorem as in [5],
one can see that the theorem is valid under the condition of
sampling the system from continuations of the τ̃pt trajectories
using the following open-loop dynamics of (3) for each
neighboring agent q ∈ N p:

żqt = F q(xqt , t) + Gq(xqt )v
q
0t(θq) + (Ξq

t )
1/2wq

t . (23)

Denoting this open-loop sampling method by OL, the theo-
rem then states that each Ψp(τ̃pt ) can be expressed as:

Ψp(τ̃pt ) = EOL
[
exp

(
− 1

λp
Spt (τ̃pT )

)
| τ̃pt

]
. (24)

From the definition (12), this implies that the expected
closed-loop cost is

V p
θ̃p

(τ̃pt ) = −λp logEOL
[

exp

(
− 1

λp
Spt (τ̃pT )

) ∣∣∣∣ τ̃pt , θ̃p] ,
(25)

where the dependency on the feedforward parameterization
θ̃p is indicated once again.

Notably, in this final result the sampling dynamics (23) are
independent of the agent p whose value functional V p

θ̃p
(τ̃pt )

another agent q ∈ N p is helping to calculate using (25).
Therefore, all agents q = 1, . . . , P can simply sample their
own dynamics using (23) and share the same results with all
other agents who need it, i.e., all agents p for which q ∈ N p.
Alternatively, if communication is a bottleneck, an agent p
only needs to know the feedforwards, states, and dynamics
of its neighbors q ∈ N p to perform the sampling itself. As
we will see in the next section, determining V p

θ̃p
(τ̃pt ) will

enable the calculation of its gradients which appear in (21)
and thereby allow us to assemble the linear equation (20)
and solve it for the agent feedbacks δvt.

Based on the presented discussion, the two-stage multi-
agent PI2 control strategy can now be formulated as follows:

I. Determine the feedforward parameters θp of each
vp0t(θp) such that the joint expected cost (9) is mini-
mized. This can be done by substituting the obtained
agent costs (25) into (9) and optimizing for the param-
eters using natural gradient descent [19].

II. Assemble the elements of (20) and solve it using
locally available information in order to implement the
feedback controls δvpt during real-time operation.

In the next section, we discuss a decentralized and a leader-
follower scheme to effectively tackle the second stage of this
strategy, i.e., the solution of (20). The details of the first stage
are similar to [5] and are therefore omitted here due to space
constraints and expanded upon separately in [17].

V. FEEDBACK CALCULATION SCHEMES

In this section we discuss a decentralized and a leader-
follower solution scheme to find the closed-loop feedbacks
δvt for the multi-agent system. To this end, we first express
the unknown elements of the matrices and vectors involved in
the linear equation (20), and then show how it can be solved
under the communication assumptions of the two schemes.

A. Elements of the linear equation
The unknown elements of the At coefficient matrix and

the Lt vector in (20) stem from the value functional gradients
δpqt = ∆zqV p(τ̃pt ) for p, q = 1, . . . , P , as seen from (21).
These gradients can be derived from the approximation (25)
of V p(τ̃pt ) using N trajectory rollouts to yield1:

δpqt =
N∑
i=1

w
p(i)

PI2

(
∆zq

t
φp(τ̃

p(i)
T )− lim

∆t→0

λp
∆t

(Ξq
t )
†w̄

q(i)
k

)
, (26)

where the PI2 weights associated to each sample are

w
p(i)

PI2
=

exp
(
− 1
λp
Spt (τ̃

p(i)
T )

)
∑N
j=1 exp

(
− 1
λp
Spt (τ̃

p(j)
T )

) . (27)

In these expressions, † denotes the generalized matrix in-
verse, τ̃p(i)T is the (i)-th sampled joint trajectory assembled
by agent p, and w̄q(i)

k is the (i)-th sampled noise for agent
q with covariance Ξq

t∆t. Note that for an agent p, δpqt can
be calculated based on rollouts from the agents in N p if
q ∈ N p, while δpqt = 0 otherwise.

B. Decentralized scheme
We first consider a decentralized communication scheme

between the agents, as defined by the undirected communica-
tion graph G = (V,E) for vertex set V = {v1, . . . , vP } and
edge set E = {{vp, vq} | q ∈ N p or p ∈ N q} of unordered
vertex pairs. This allows an agent p to communicate with
agents q that affect its cost (q ∈ N p) and those whose cost it
affects (p ∈ N q). We assume G is connected without loss of
generality, and aim to solve (20) for the individual feedbacks
δvpt under the communication constraints given by G.

To begin, note that (20) is an underdetermined linear
equation, because AT

t ∈ RP×(2m1+···+2mP ) is a wide matrix
as it has at least 2P > P columns. In order to obtain a
unique solution, we search for the one which satisfies (20)
while minimizing its norm as measured by a block-diagonal
penalty matrix

R0t = diag
(
R1

0t,R
2
0t, . . . ,R

P
0t

)
, (28)

1The formula presented herein is valid if Ξq
t does not depend on the state

xq
t of agent q; for the more general case and detailed derivations, see [17].



where Rp
0t =

[
Pp

0t 0
0 Qp

0t

]
is constructed from user-

defined positive definite matrices Pp
0t ∈ Rmp and Qp

0t ∈
Rmp for each p = 1, . . . , P . This can be formulated as the
optimization problem

min
δvt

1

2
δvT

tR0tδvt subject to AT
t δvt = −Lt. (29)

Introducing the transformed feedbacks

δv̂t := (R0t)
1/2δvt, (30)

this problem is seen to be equivalent as to finding the
minimum-norm solution to the following linear equation:

AT
t (R0t)

−1/2δv̂t = −Lt. (31)

The solution for δvt can be calculated using the pseudo-
inverse of the coefficient matrix in (31) and (30) to yield

δvt = −R−1
0t At

(
AT
tR
−1
0t At

)−1
Lt, (32)

and our goal is to obtain this solution using only locally avail-
able information. To this end, let us define the transformed
inputs for each agent p as

δv̂pt := (Rp
0t)

1/2δvpt . (33)

and write the coefficient matrix AT
t (R0t)

−1/2 of (31) using
the derived elements (21) as
(
δ11
t

)T
G1(x1

t )(R
1
0t)

1/2 . . .
(
δ1P
t

)T
GP (xPt )(RP

0t)
1/2

...
. . .

...(
δP1
t

)T
G1(x1

t )(R
1
0t)

1/2 . . .
(
δPPt

)T
GP (xPt )(RP

0t)
1/2


Now note that for a given agent p, the vector δpqt =
∆zqV p(τ̃pt ) = 0 if its cost is not influenced by q, i.e., if
q /∈ N p. Therefore, the nonzero entries in the (p)-th row
of the coefficient matrix only contain the quantities δpqt ,
Gq(xqt ), Rq

0t, and Ξq
t for q ∈ N p. This is similarly the case

for the (p)-th row of the right-hand side vector Lt. Thus, the
(p)-th row of (31) can be constructed by agent p using local
information from agents q ∈ N p, which is permitted under
the constraints of the communication graph G.

Optimization methods for iteratively agreeing on the least-
violating solution to a linear equation based on separate
knowledge of the rows of the equation are well studied in the
literature [20]. These allow a decentralized solution of (31)
and thus finding δv̂pt for each p = 1, . . . , P . In particular,
we apply the results of [21] for our case and within the
communication constraints defined by G. The method also
returns the least-norm solution if initialized at the origin. The
final feedback controls can then be recovered individually by
each agent from (33) as δvpt = (Rp

0t)
−1/2δv̂pt .

C. Leader-follower scheme

Let us now consider a leader-follower hierarchy between
the agents in order to find a solution to (20) through a series
of successive calculations. We assume that the indices p =
1, . . . , P of the agents are ordered such that if p < q, then
q /∈ N p. For example, the cost for agent q = 1 only depends

on itself; for q = 2 it can also depend on agent p = 1, and so
on. The leaders of an agent p are then chosen as the set N p.
The communication flow is described by the directed graph
G = (V,E) for vertex set V = {v1, . . . , vP } and edge set
E = {(vq, vp) | q ∈ N p} of ordered vertex pairs, allowing
an agent p to receive information from all agents q ∈ N p.

The above imposed cost assumption implies that the terms
δpqt = 0 if q > p. The matrix At as defined in (21) therefore
has a block lower triangular structure, which potentially
allows the individual agent feedbacks δvpt in (20) to be
solved for row by row. Agent p has to solve

(δppt )
T

Gp(xpt )δv
p
t

= −
∑
q∈Np

1

2λp
(δpqt )

T
Ξq
tδ
pq
t −

∑
q∈Np

q 6=p

(δpqt )
T

Gq(xqt )δv
q
t ,

i.e., the the (p)-th row of the equation. Denoting the block in
row p and column q of a matrix M by [M]pq and the (p)-th
row of a vector v by [v]p, this can be compactly written as:

[AT
t ]ppδv

p
t = −[Lt]p −

∑
q∈Np

q 6=p

[AT
t ]pqδv

q
t . (34)

Similarly to the decentralized case, this equation is in general
underdetermined and we instead solve it in a least-norm
sense as measured by the penalty matrix Rp

0t:

[AT
t ]pp(R

p
0t)
−1/2δv̂pt = −[Lt]p −

∑
q∈Np

q 6=p

[AT
t ]pqδv

q
t , (35)

where δv̂pt = (Rp
0t)

1/2δvpt is defined as in (33). If the agents
solve these equations successively in the order q = 1, 2, . . . ,
then the right hand side is completely known for the coming
agent p from the solutions δvqt previously calculated by its
possible leaders. Solving (35) and inserting (33) allows the
feedback δvpt to then be obtained directly as:

δvpt = (Rp
0t)
−1[At]pp

(
[AT

t ]pp(R
p
0t)
−1[At]pp

)−1

·

−[Lt]p −
∑
q∈Np

q 6=p

[AT
t ]pqδv

q
t

 . (36)

The found solution can then be sent to the following agents
in order for them to calculate their feedbacks, and so on.

Note that even if (20) has a solution for the system as
a whole, it is possible that by successively calculating and
fixing the leaders’ feedbacks in a least-norm manner using
(36), a follower will encounter an unsolvable row equation
(35). It will still solve it in a least-violating manner.

Compared to the decentralized scheme examined previ-
ously, the presented leader-follower scheme avoids the need
for an iterative agreement on the feedbacks between the
agents when solving (20), thereby reducing the required
communication between them. In exchange, there is some
conservatism introduced for the solvability, as well as the
optimality of the solution, since the leaders are not helping
the followers correct for the noise impacting their costs.



VI. SIMULATION STUDY

We present a sample optimal control problem to numeri-
cally verify the correctness of our theoretical results in the
context of the decentralized feedback calculation scheme.

Consider P = 3 single-integrator agents, each with state
xpt ∈ R2, feedforward kpt ∈ R2, and added noise with
covariance Σp

x,t = 0.004I. The control problem has a
horizon T = 10s and is simulated with ∆t = 0.02.

Each agent is assigned a cost with equal weight αp = 1/3
depending on their target behaviors. Agent 1 aims to
reach a goal position g1 = [3.0 1.0]T at time t1 = T/2,
while minimizing its input effort according to the cost
S1
t (τ1

T ) := 2
∥∥x1

t1 − g1

∥∥2
+ 0.2

∫ T
t

∥∥k1
s

∥∥2
ds. Agent 2 aims

to maintain connectivity via a constant distance imposed
between itself and the others, and achieve a triangular
formation at tF = T while minimizing its energy with
the cost definition S2

t (τ1
T , τ

2
T , τ

3
T ) := 0.2

∫ T
t

∥∥k2
s

∥∥2
ds +

5
∥∥x2

tF − x
3
tF −∆x23

∥∥2
+ 5

∥∥x2
tF − x

1
tF −∆x12

∥∥2
+

8
∫ T
t

(∥∥x1
s − x2

s

∥∥− d)2 +
(∥∥x3

s − x2
s

∥∥− d)2 ds, where
∆x12 = [−1.0 0.0]T, ∆x23 = [−0.5 − 0.866]T, and
d = 1. Finally, agent 3 aims to reach a goal position
g3 = [1.0 3.5]T at time tF = T , while minimizing its input
effort using S3

t (τ3
T ) := 2

∥∥x3
tF − g3

∥∥2
+ 0.2

∫ T
t

∥∥k3
s

∥∥2
ds.

The decentralized PI2 control strategy is then implemented
with λ1 = λ2 = 0.1, λ3 = 0.05 using a different number
of N roll-outs for feedback calculation. Table I shows the
comparison with the theoretically expected values from (25),
while Figure 1 shows sample closed-loop trajectories for the
N = 10000 case. The results tend towards the prediction as
N → ∞. Further details about the scenario and additional
simulation examples are given in [17].

TABLE I: Achieved average closed-loop costs for the sim-
ulation case study. The results are approximated from 100
sample runs and include 95% confidence intervals.

p 1 2 3

EOL [Sp] 0.67± 0.00 10.1± 0.06 0.53± 0.00

ECL [Sp, N = 100] 0.72± 0.02 2.17± 0.15 0.32± 0.02

ECL [Sp, N = 10000] 0.65± 0.02 1.75± 0.12 0.37± 0.04

ECL [Sp, theoretical] 0.62± 0.00 1.39± 0.01 0.32± 0.00
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Fig. 1: Sample open-loop (gray) and closed-loop (col-
ored) trajectories with the nominal, noiseless solution drawn
thicker for the simulation case study. The robots aim to reach
respective goal regions at different times while maintaining
a constant distance and ending in a triangle formulation.

VII. CONCLUSIONS

We proposed the first multi-agent extension to PI2 with
theoretical performance guarantees. The resulting control
strategy is simple to implement and can readily benefit from
parallelization, giving potential for practical applications.
Future work could decentralize the offline feedforward cal-
culations and improve the sample efficiency of the method.
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