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Abstract— This paper presents control strategies based on
time-varying convergent higher order control barrier functions
for the coordination of networks of platoons. This network
could be modelled by a class of leader-follower multi-agent
systems, where the leaders have knowledge on the associated
tasks and control the performance of their platoon involved
vehicles. The followers are not aware of the tasks, and do not
have any control authority to reach them. They follow their pla-
toon leader commands for the task satisfaction. Signal temporal
logic (STL) tasks are defined for the platoons coordination.
Robust solutions for the task satisfaction, based on the leader’s
accessibility to the follower vehicles’ states are suggested. In
addition, using the notion of higher order barrier functions,
decentralized barrier certificates for each vehicle evolving in a
formation dynamic structure are proposed. Our approach finds
solutions to guarantee the satisfaction of STL tasks independent
of the agents’ initial conditions.

Keywords: Network of platoons, leader-follower forma-
tion, control barrier functions, signal temporal logic.

I. INTRODUCTION

Vehicle platooning systems in which a group of vehicles
maneuver cooperatively in order to fulfill transportation in
an efficient way with respect to time and energy [1],[2] are
one of the emergent applications of multi-agent systems.
This research area has become popular as multi-vehicle
coordination provides improved capabilities of handling task
complexities and robustness to vehicle failures compared
to single-vehicle performance. Among other works, fault-
tolerant control problem for heterogeneous vehicular pla-
toons with actuator faults and saturation, guaranteeing string
stability [3], and control over ad hoc network with access-
constrained fading channels [4] could be mentioned. How-
ever, the cooperative vehicular maneuvers contain complex
tasks that can not be defined as stand-alone traditional control
objectives and need employing more advanced approaches
in order to define general specifications. Formal verification
approaches that have been originally developed in computer
science community allow to handle more complex tasks by
defining them in temporal logic formulations which induce a
sequence of control actions [5]. Signal temporal logic (STL)
is one of these formulations which is more beneficial as is
interpreted over continuous-time signals [6], allows for im-
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posing tasks with strict deadlines and introduces quantitative
robust semantics [7].

Another important property related to multi-vehicle coor-
dination is scaleability. While assigning the same distributed
control strategy to all vehicles may be suitable for simpler
and more traditional control objectives, our aim here is
to tackle high-level and more complex task specifications
in the form of STL. We choose to consider a leader-
follower approach to the problem due to the computationally
free addition of followers. In addition, the leader-follower
dynamical structure allows for robustness with respect to
failures, and resource usability, since only a subset of the
vehicular team, that act as the leaders, need to be actuated
for the tasks fulfilment. There are a number of challenges
regarding the best choice of the leader vehicles based on the
dynamical structure and the graph topology. Leader selection
to achieve the stabilization and tracking via the notion of
manipulability is considered in [8]. However, majority of
current approaches don’t take into account complex tasks
with space and time constraints prescribed by STL. A class of
time-varying fixed-time convergent CBFs for coupled multi-
agent systems under STL tasks has been introduced in [9]. In
[10], some coordination tasks among platoons are expressed
in STL and a CBF-based approach is employed to satisfy
the STL constraints.

We have applied some theoretical results of our previous
work [11] to network of platoons under STL tasks, where
each platoon is represented by a leader-follower multi-agent
system. In this framework, the leader and its followers
are dynamically connected through a formation structure.
We have formulated different platoon coordination dynamic
structures and address the high relative degree constraints
using time-varying convergent higher order control barrier
functions (TCHCBF). The platoons leader vehicles have the
knowledge of the associated tasks and are responsible for
their satisfaction. The follower vehicles are not aware of the
prescribed tasks and don’t have any control authority to meet
them. They obey their leaders commands according to the
formation dynamic structures of the platoon network.

Based on the partial knowledge of the platoon leaders
from the followers’ states and network topology, relaxed
control barrier certificates are introduced. We assume the
connectedness for the platoons network topology and guar-
antee the convergence and forward invariance of the desired
sets built based on the specifications. Furthermore, in order
to improve scalability of the network control solution and
account for more general STL formulas, we have constructed
individual barrier certificates for each vehicle. We take



care of maintaining the constraints by just using the leader
vehicle’s control input, utilizing the higher order barrier
functions of the follower vehicles according to the formation
dynamic structure of the network. In addition, we consider
coordination tasks between platoons such as merging and
splitting, where more than one leader is involved in the task.
For these cases, we provide decentralized barrier certificates
as functions of the leader vehicles’ control signal. Then, the
task satisfactions are guaranteed for a network of platoons
using the decentralized barrier certificates.

The rest of the paper is organized as follows. Section II
gives some preliminaries on STL, leader-follower platoon
network dynamical structure, time-varying barrier functions,
and relevant results for first order dynamic systems which
are used as a foundation for the main results. In Section III,
the main results for the platoon network dynamic systems
and decentralized barrier certificates are provided. Simulation
results for a network of platoons are provided in Section IV.
Finally, some concluding points are presented in Sections V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Signal temporal logic (STL)

Signal temporal logic (STL) [6] is based on predicates ν
which are obtained by evaluation of a continuously differen-
tiable predicate function h : Rd → R as ν := > (True) if
h(x) ≥ 0 and ν := ⊥ (False) if h(x) < 0 for x ∈ Rd. The
STL syntax is then given by

φ ::= >|ν|¬φ|φ′ ∧ φ′′|φ′U[a,b]φ
′′,

where ¬ and ∧ denote negation and conjunction, respectively
and φ′, φ′′ are STL formulas, and U[a,b] is the until operator
with a ≤ b < ∞. In addition, define F[a,b]φ := >U[a,b]φ
(eventually operator) and G[a,b]φ := ¬F[a,b]¬φ (always
operator). Note that ¬µ can be encoded in the STL syntax
above by defining µ̄ := ¬µ and h̄(ν) := −h(ν). Let
(x, t) |= φ denote the satisfaction relation, i.e., a formula
φ is satisfiable if ∃x : R≥0 → Rd such that (x, t) |= φ. We
consider the STL fragment

ψ ::= >|ν|ψ′ ∧ ψ′′, (1a)
φ ::= G[a,b]ψ|F[a,b]ψ|ψ′U[a,b]ψ

′′|φ′ ∧ φ′′, (1b)

where ψ′, ψ′′ are formulas of class ψ in (1a) and φ′, φ′′ are
formulas of class φ in (1b). It is worth mentioning that these
formulas can be extended to consider disjunctions (∨) using
automata based approaches [11].

B. Dynamical model of network of platoons

Consider a connected undirected graph G := (V, E), where
V := {1, · · · , n} indicates the set consisting of n vehicles
and E ∈ V × V represents communication links between
them. Each vehicle belongs to one platoon which consists
of one leader and a number of followers. Without loss of
generality, we suppose the first nf vehicles as followers
and the last nl ones as leaders, with corresponding vertices
sets Vf := {1, · · · , nf} and Vl := {nf + 1, · · · , nf + nl},
respectively, with nf +nl = n. We will have a time-varying

graph topology which switches among different structures
according to the coordination phases, e.g., merging, splitting,
etc. The overall graph of the multi platoon network can be
specified according to the following Laplacian matrix.

Lpl =

[
Lff Lfl
Llf Lll

]
, (2)

where Lff corresponds to the laplacian matrix of followers
interconnections, Lfl and Llf model the communications
from the leaders to followers and vice versa, respectively,
and Lll demonstrates the communications among the leaders
of platoons. We consider directed communication from the
leaders to their followers. Hence Lfl 6= L>lf and Llf = 0. In
addition, the communication among the leaders of platoons is
assumed to be undirected. In this manner, while each platoon
is subject to its local tasks, there is no coordination between
platoons, i.e., Lll = 0. When the platoon coordinations such
as merging or splitting are considered, the Laplacian matrix
will change according to the new graph topology. Let pi ∈ R,
vi ∈ R and ui ∈ R denote the position, velocity and control
input of vehicle i ∈ V , respectively. Moreover, Ni denotes
the set of neighbors of vehicle i and |Ni| determines the
cardinality of the set Ni. In addition, fi : R2+2|Ni| → R,
gi : R → R are assumed to be locally Lipschitz continuous
functions. We define the stacked vector of all elements in the
set X with cardinality |X |, as [xi]i∈X := [x>i1 , · · · , x

>
i|X|

]>,
i1, · · · , i|X | ∈ X , and write the stacked dynamics for the
network of platoons containing 2nd order dynamics vehicles
i ∈ V , as

ẋ = fpl(x) + gpl(x)u, (3)

where x := [xi]i∈V = [pi; vi]i∈V ∈ S ⊆ R2n, fpl(·) =

[fi(·)]i∈V ∈R2n, fpl(x) :=

[
06×6 I6
−Lpl −Lpl

]
x. In addition,

the local dynamic functions fi,i(xi) correspond to the terms
of fi(x) which are only dependent on xi, and fi,j(xi, xj)
contains the terms of fi(x) which are dependent on agent
j ∈ V, j 6= i as well. For the case of one platoon (one
leader), with follower and leader sets Vf := {1, · · · , n− 1}
and Vl := {n}, respectively, the input matrix and control
input signal are defined as gpl(·) :=

[
0T2n−1×1, gn(·)

]T
,

and u := un ∈ R. In addition, for networks containing more
than one platoon (multiple leaders), with Vf := {1, · · · , nf}
and Vl := {nf + 1, · · · , n}, n = nf +nl, the associated ma-
trices are denoted as gpl(·) :=

[
0Tne+nf×nl , gnl(·)Inl

]T
,

gnl(·) = [gi(·)]i∈{nf+1,··· ,n}, and u := [ui]i∈{nf+1,··· ,n} ∈
Rnl . Hence, the input matrix gpl(·) is not full row rank. We
also denote by mi as the minimum of the length of paths
between vehicle i and its corresponding platoon leader.

We assume that the dynamics of the vehicles are input-
to-state stable (ISS). Then, it could be shown that the ISS
property of the whole platoon network is guaranteed [11].

C. Time-varying barrier functions

In this subsection, we introduce time-varying barrier func-
tions. For the sake of simplicity, we consider 1st order dy-
namic systems and then extend the results to the considered



2nd order dynamic platoons in Section III. Consider the
following 1st order dynamic network:

ẋs = fs(xs) + gs(xs)u, (4)

(4), where fs(·) = [fsi (·)]i∈V ∈ Rn, gs(·) = [gsi (·)]i∈V and
u ∈R, fsi : R1+|Ni| → R, gsi : R → R, corresponds to the
dynamics, input function and the control input of the system,
respectively. Consider formulas φs and φd of the form (1b),
corresponding to the systems (4) and (3), respectively. These
formulas consist of a number of temporal operators and their
satisfaction depends on the behavior of the set of vehicles
V = {1, · · · , n}.

Assumption 1. Predicate functions in φs (resp. φ for the
second order dynamical platoon networks) are concave.

Following the procedure in [12], we construct the barrier
function hs(xs, t) : Rn × R≥0 → R, for the conjunctions
of a number of qs single temporal operators, by using a
smooth under-approximation of the min-operator. Then, the
corresponding barrier function to φs could be constructed as

hs(xs, t) := − 1

ηs
ln(

qs∑
j=1

exp(−ηshsj (x s , t))), (5)

where each hsj (x s , t) is related to an always or eventually
operator specified for the time interval [aj , bj ], and param-
eter ηs > 0 is proportionally related to the accuracy of
this approximation.. Whenever the jth temporal operator
is satisfied, its corresponding barrier function hsj (x s , t) is
deactivated and hence a switching occurs in hs(xs, t). This
time-varying strategy helps reducing the conservatism in the
presence of large numbers of conjunctions [12]. Due to the
knowledge of [aj , bj ], the switching instants can be known
in advance.

Definition 1. [13] (Forward Invariance) The set Cs(t) :=
{xs ∈ Rn|hs(xs, t) ≥ 0} is forward invariant with a
given control law u for (4), if for each initial condition
xs0 ∈ Cs(t0), there exists a unique solution xs : [t0, t1]→ Rn
with x(t0) = xs0, such that xs(t) ∈ Cs(t) for all t ∈ [t0, t1].

Definition 2. We denote the set Cs(t) to be fixed-time
convergent for (4), if there exists a user-defined, independent
of the initial condition, and finite time T s > t0, such
that limt→T s x

s(t) ∈ Cs(t). Moreover, the set Cs(t) is
robust fixed-time convergent if limt→T s x

s(t) ∈ Csrf (t),
where Csrf (t) ⊃ Cs(t), and robust convergent for (4), if
limt→∞ xs(t) ∈ Csrf (t). The set Csrf (t) is characterized as
Csrf (t) := {xs ∈ Rn|hs(xs, t) ≥ −εsmax}, where εsmax is a
bounded and positive value.

The same properties hold for the barrier functions
hd(xd, t) and the set Cd(t) corresponding to the 2nd order
dynamic platoon network (3) under the task φd.

Definition 3. [11, Theorem 1] Consider a network of pla-
toons subject to the dynamics (4) containing one leader,
under STL task φs of the form (1b) satisfying Assumption 1.
Let hs(xs, t) be a time-varying barrier function associated

with the task φs, specified in Section II-C. If for some
constants µs > 1, ks > 1, γs1 = 1− 1

µs , γ2 = 1+ 1
µs , αs > 0,

βs > 0, for some open set Ss with Ss ⊃ Cs(t), ∀t ≥ 0, and
for all (xs, t) ∈ Ss × [τl, τl+1), l ∈ {0, · · · , ps − 1}, there
exists a control law un such that∑

i∈Nn
∂hs(xs,t)
∂xsi

fsi,i(x
s
i ) + (∂h

s(xs,t)
∂xsn

+ ∂hs(xs,t)
∂xsi

)fsn,i(x
s
n, x

s
i )

+
∂hse(x

s,t)
∂xsn

fsn,n(xsn) + ∂hs(xs,t)
∂t + ∂hs(xs,t)

∂xsn
gsn(xsn)un

≥ −αs sgn(hs(xs, t))|hs(xs, t)|γ1

−βs sgn(hs(xs, t))|hs(xs, t)|γ
s
2 ,

(6)
with

T s ≤


µs

αs(cs−bs) log( |1+c
s|

|1+bs| ) ; δs > 2
√
αsβs

µs√
αsβs

( 1
ks−1 ) ; δs = 2

√
αsβs

µs

αsks1
(π2 − tan−1ks2) ; 0 ≤ δs < 2

√
αsβs

≤ min
l∈{0,··· ,ps−1}

{τl+1 − τl}, (7)

where bs, cs are the solutions of γs(s) = αss2 − δss +

βs = 0, ks1 =
√

4αsβs−δs2
4αs2 , ks2 = − δs√

4αsβs−δs2
, and

δs is introduced satisfies ‖
∑
i∈Nn,j /∈Nn

∂hs(xs,t)
∂xsj

fsj(x
s) +

∂hs(xs,t)
∂xsi

fsi,j(x
s
i , x

s
j)‖ ≤ δs, ∀(xs, t) ∈ Ss × [τl, τl+1),

l ∈ {0, · · · , ps − 1}, then, the set Csrf (t) ⊃ Cs(t) defined
by

Csrf (t) := {xs ∈ Rn|hs(xs, t) ≥ −εsmax}

with

εsmax =


(
δs+
√
δs2−4αsβs
2αs )

µs

; δs > 2
√
αsβs

ksµ
s

(β
s

αs )
µs

2 ; δs = 2
√
αsβs

δs

2
√
αsβs

; 0 ≤ δs < 2
√
αsβs,

(8)

is forward invariant and fixed-time convergent within T s time
units, defined in (7).

III. MAIN RESULTS

In this section, we consider second order dynamics platoon
systems and in order to tackle their higher relative degree
specifications, provide a class of higher order control barrier
functions with the property of convergence to the desired sets
and robustness with respect to uncertainties. We first provide
definitions which are used to get the main results.

Definition 4. Consider the autonomous system

ẋ = f(x), (9)

with x ∈ Rn and locally Lipschitz continuous function f :
Rn → Rn. A class Cm function h(x, t) : Rn × [t0,∞)→ R
is a time-varying convergent higher order barrier function
(TCHBF) of degree m for the system (9), if there exist
extended class K functions λk(·), k = 1, · · · ,m − 1,
constants 0 < γ1m < 1, γ2m > 1, αm > 0, βm > 0, and
an open set D with C := ∩mk=1Ck ⊂ D ⊂ Rn such that

ψm(x, t) ≥ 0, ∀(x, t) ∈ D× R≥0,



where the functions ψk : Rn × [t0,∞) → Rn, 0 ≤ k ≤ m,
are given as

ψ0(x, t) := h(x, t),

ψk(x, t) := ψ̇k−1(x, t)

+ λk(ψk−1(x, t)), 1 ≤ k ≤ m− 1,

ψm(x, t) := ψ̇m−1(x, t)

+ αmsgn(ψm−1(x, t))|ψm−1(x, t)|γ1m

+ βmsgn(ψm−1(x, t))|ψm−1(x, t)|γ2m , (10)

and

Ck(t) := {x ∈ Rn|ψk−1(x, t) ≥ 0}. (11)

Definition 5. Consider the system

ẋ = f(x) + g(x)u(x), (12)

with locally Lipschitz continuous functions f and g. A class
Cm function h(x, t) : Rn× [t0,∞)→ R, associated with the
task φ of the form (1b), is called a time-varying convergent
higher order control barrier function (TCHCBF) of degree
m for this system under task φ of the form (1b), if for some
constants 0 < γ1m < 1, γ2m > 1, αm > 0, βm > 0, and
an open set D with C := ∩mk=1Ck ⊂ D ⊂ Rn, Ck, k =
1, · · · ,m, defined as in (11), there exists a control law u(x)
such that

∂ψm−1(x, t)

∂x
(f(x) + g(x)u(x)) +

∂ψm−1(x, t)

∂t
≥ −αmsgn(ψm−1(x, t))|ψm−1(x, t)|γ1m

− βmsgn(ψm−1(x, t))|ψm−1(x, t)|γ2m , (13)

where ψm−1(x, t) is given by (10).

Next, we use the introduced TCHCBFs for 2nd order
platoons.

A. Second order dynamics platoon

Consider a group of n number of vehicles with 2nd order
dynamics as in (3), under the task φ. We will formulate a
quadratic program that renders the set Cpl := ∩2k=1Ck ⊂ S ⊂
R2n corresponding to functions h(x, t) and ψ1(x, t), defined
by (11), robust convergent, under the following Assumption.

Assumption 2. Consider one 2nd order platoon (3) with
the leader i = n. There exists a positive constant δ satisfy-
ing ‖

∑
i∈Nn,j /∈Nn

∂ψ1(x,t)
∂xj

fj(x) + ∂ψ1(x,t)
∂xi

fi,j(xi, xj)‖ ≤ δ,
∀(x, t) ∈ S × [τl, τl+1), l ∈ {0, · · · , p− 1}).

In the following, a control input un will be found such
that for all initial conditions x(t0), and under Assumption 2,
the trajectories of (3) converge to a set Crf (t) ⊃ Cpl(t) in
a fixed-time t ≤ T + t0, T > 0. We provide the statement
of the Theorem based on a quadratic problem formulation
based on our previous work [11, Theorem 2] and present
here for the sake of completeness. We do not provide the
proof as it follows the one in [11].

Theorem 1. Consider a given TCHCBF h(x, t) introduced
in Definition 5 with the associated functions ψk(x, t), k ∈

{1, 2}, as defined in (10). Define z = [un, ε]
T ∈ R2, and

consider the following optimization problem.

min
un∈R,ε∈R≥0

1

2
zT z

s.t. ∑
i∈Nn{

∂ψ1(x,t)
∂xi

fi,i(xi)

+(∂ψ1(x,t)
∂xn

+ ∂ψ1(x,t)
∂xi

)fn,i(xn, xi)}
+∂ψ1(x,t)

∂xn
gn(xn)un + ∂ψ1(x,t)

∂xn
fn,n(xn)

+∂ψ1(x,t)
∂t ≥ −α2 sgn(ψ1(x, t))|ψ1(x, t)|γ12

−β2 sgn(ψ1(x, t))|ψ1(x, t)|γ22 − ε,

(14)

where α2 > 0, β2 > 0, 0 < γ12 < 1, γ22 > 1. Any control
signal un : R→ R which solves the quadratic program (14)
renders the set Cpl(t) robust convergent for the network (3),
under Assumption 2.

Barrier certificates proposed in the previous sections pro-
vide one constraint, which relies on the leader vehicle control
signal as a central coordination unit. This may cause limi-
tations on the network scalability and robustness properties.
Next, we define individual barrier certificates for each vehicle
according to the tasks that it is involved in, and based on the
formation structure of the network, in order to guarantee the
task satisfaction. In particular, according to the length of the
path between each follower and the leader vehicle, higher
order barrier certificate for each follower vehicle is built.

Definition 6. [11, Lemma 2] Individual barrier certificates:
Consider one platoon network (3) containing one leader i =
n, under the task φ of the form (1b) satisfying Assumption
2. Then, the individual barrier certificate for each follower
vehicle i ∈ {1, · · · , n− 1} can be given as

ψmi,i(x, t) ≥ 0, (15)

where

ψ0,i(x, t) := hi(x, t),

ψk,i(x, t) := ψ̇k−1,i(x, t)

+ λk,i(ψk−1,i(x, t)), 1 ≤ k ≤ mi − 1,

ψmi,i(x, t) := ψ̇mi−1,i(x, t)

+ αisgn(ψmi−1,i(x, t))|ψmi−1,i(x, t)|γ1,i

+ βisgn(ψmi−1,i(x, t))|ψmi−1,i(x, t)|γ2,i ,
(16)

with hi(x, t) := ∂h(x,t)
∂xi

fi(x), i ∈ {1, · · · , n − 1}, is the
higher order barrier certificate, λk,i(·), k = 1, · · · ,mi − 1,
(mi − k)th-order differentiable extended class K functions,
and mi the length of path between the follower i and the
leader, as mentioned in Section II-B.

Note that the individual barrier certificates in the network
of platoons are constructed with respect to the closest leader
according to the graph topology.



B. Decentralized barrier certificates for network of platoons

In the previous sections, one platoon of vehicles were
considered, i.e., the network consists of one leader vehicle.
Hence, the satisfaction of specifications had to be achieved in
a centralized way by the only leader vehicle. For the case of
a network of platoons, there exists a larger number of leader
vehicles that are responsible to control the corresponding
followers vehicle within their platoons to satisfy the specifi-
cations in a decentralized fashion. In other words, the leaders
of the platoons communicate with each other according
to the corresponding graph topology in each configuration,
e,g, splitting, merging, etc. We next formulate the barrier
certificates in a decentralized scheme for these scenarios.

Definition 7. [11, Lemma 3] Decentralized barrier certifi-
cates: The decentralized barrier certificates for the platoon
network (3) with the first nf vehicles as followers and
the last nl ones as leaders and the higher order barrier
certificate h(x, t), can be constructed with respect to each
leader vehicle, by the following nl inequalities.∑

i∈Nnf+1
{∂h(x,t)∂xi

fi,i(xi)

+( ∂h(x,t)∂xnf+1
+ ∂h(x,t)

∂xi
)fnf+1,i(xnf+1, xi)}

+ ∂h(x,t)
∂xnf+1

fnf+1,nf+1(xnf+1) + ∂h(x,t)
∂xnf+1

gnf+1unf+1

≥ − τ1∑
j∈{1,··· ,nl} τj

[∂h(x,t)∂t + α sgn(h(x, t))|h(x, t)|γ1

+β sgn(h(x, t))|h(x, t)|γ2 ],
...∑
i∈Nnf+nl

{∂h(x,t)∂xi
fi,i(xi)

+( ∂h(x,t)
∂xnf+nl

+ ∂h(x,t)
∂xi

)fnf+nl,i(xnf+nl , xi)}

+ ∂h(x,t)
∂xnf+nl

fnf+nl,nf+nl(xnf+nl) + ∂h(x,t)
∂xnf+nl

gnf+nlunf+nl

≥ − τnl∑
j∈{1,··· ,nl} τj

[∂h(x,t)∂t + α sgn(h(x, t))|h(x, t)|γ1

+β sgn(h(x, t))|h(x, t)|γ2 ],
(17)

for positive constants τj , j ∈ {1, · · · , nl}.

IV. SIMULATION RESULTS

We consider the problem of coordination among second
order dynamics platoon networks using higher order CBFs.
We consider merging and splitting scenarios for a number
of platoons, specified through STL specifications. The STL
tasks are specified on the position signals. Then, we need
to employ higher order CBFs in order to guarantee the task
satisfactions. Consider three number of platoons as in Figure
1. In this scenario, according to (2) the Laplacian matrix of
the whole network can be specified by

Lindvs =


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Then, the overall dynamics of the platoon network is

1 4

2

3

5

6

Fig. 1: 3 Platoons of vehicles

1 4

2

3

5

6

Fig. 2: Platoons merging

according to (3), where fpl(x) :=

[
06×6 I6
−Lindvs −Lindvs

]
x

and gpl(x) :=
[

0T9 , 1
T
3

]T
. Assume the merging task of the

second platoon (composed of agents 2 and 5), to the first
platoon (composed of agents 1 and 4) and the third platoon
(composed of agents 3 and 6) in the time interval [a, b].
This scenario could be specified using the until operator as
a fragment of STL semantics as below.

Φmerge :=(‖p5 − p6‖ ≤ dcom)

∧ (p4 − p6 > dspace)U[a,b](‖p5 − proad‖ ≤ ε)
∧ (‖p5 − p4‖ < dcom),

where pi is the position of agent i, proad is the lane of
interest, dcom specifies the distance threshold for establishing
the merging, dspace provides a collision avoidance safety
distance, and ε maintains the lane keeping. In this phase,
the Laplacian graph of the whole multi leader network
corresponding to Figure 2 is specified as

Lmerge =


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

 .

which substitutes Lindivs in the network dynamics. This
formula is a function of the positions of the platoon leaders,
which makes it of relative degree 2. Then, the corresponding
barrier function to this task would be of order m = 2.
Furthermore, consider the splitting of the second platoon
from the others in the time interval [c, d], which could be
specified using the eventually operator as

Φsplit := F[c,d](p4 − p5 > dsplit),
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Fig. 3: Third Platoon splitting from the others
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Fig. 4: The evolution of control barrier function.

with the corresponding Laplacian matrix

Lsplit =


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 0 0
0 0 0 −1 0 1


according to Figure 3. Similar to the merging scenario,
this task is also of relative degree 2, which makes the
corresponding barrier function of order m = 2.

For the sake of simulations, consider the merging and
splitting time instants as a = 10, b = c = 30, d = 50. In
addition dcom = 10, dspace = 15, ε = 2, dsplit = 8.5,
proad = 12. The evolution of the control barrier function,
the relative position trajectories of the leader and follower
vehicles of the platoons are presented in Figures 4, 5, and 6,
respectively.

V. CONCLUSION

Based on a class of time-varying convergent higher order
control barrier functions, we have presented feedback control
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Fig. 5: Relative positions of the platoon leader vehicles.
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Fig. 6: Relative positions of the platoon follower vehicles.

strategies to find solutions for the platoon coordination
problem consisting of a number of leader-follower platoons
under STL tasks. Appropriate individual and decentralized
barrier certificates are also introduced to maintain more
general formulas in a simpler framework. Future work will
extend these results to high level specifications including
leader selection methods to find the optimal solution with
respect to task specifications.
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“Strategic hub-based platoon coordination under uncertain travel
times,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 7, pp. 8277–8287, 2021.

[2] V. Lesch, M. Breitbach, M. Segata, C. Becker, S. Kounev, and
C. Krupitzer, “An overview on approaches for coordination of pla-
toons,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 10 049–10 065, 2021.

[3] G. Guo, P. Li, and L.-Y. Hao, “A new quadratic spacing policy
and adaptive fault-tolerant platooning with actuator saturation,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp.
1200–1212, 2020.

[4] G. Guo and L. Wang, “Control over medium-constrained vehic-
ular networks with fading channels and random access protocol:
A networked systems approach,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 8, pp. 3347–3358, 2014.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[6] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[7] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[8] H. Kawashima and M. Egerstedt, “Leader selection via the manipula-
bility of leader-follower networks,” in American Control Conference.
IEEE, 2012, pp. 6053–6058.

[9] M. Sharifi and D. V. Dimarogonas, “Fixed-time convergent control
barrier functions for coupled multi-agent systems under STL tasks,”
in European Control Conference. IEEE, 2021.

[10] M. Charitidou and D. V. Dimarogonas, “Splitting and merging control
of multiple platoons with signal temporal logic,” in 2022 IEEE
Conference on Control Technology and Applications (CCTA). IEEE,
2022, pp. 1031–1036.

[11] M. Sharifi and D. V. Dimarogonas, “Higher order barrier certificates
for leader-follower multi-agent systems,” IEEE Transactions on Con-
trol of Network Systems, 2022.

[12] L. Lindemann and D. V. Dimarogonas, “Barrier function-based collab-
orative control of multiple robots under signal temporal logic tasks,”
IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp.
1916–1928, 2020.

[13] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.


