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Abstract— We address the agreement-based coordina-
tion of first-order multi-agent systems interconnected over
arbitrary connected undirected graphs and under transient
and steady-state constraints. The system is in a leader-
follower configuration where only a part of the agents, the
leaders, are directly controlled via an external control input,
in addition to the agreement protocol. We propose a control
law for the leaders, based on the gradient of a potential
function, that achieves consensus and guarantees that the
trajectories of the inter-agent distances of the entire system
remain bounded by a performance function. Relying on the
edge-agreement framework and Lyapunov’s first method,
we establish strong stability results in the sense of asymp-
totic stability of the consensus manifold and, in the lead-
erless case, nonuniform-in-time input-to-state stability with
respect to additive disturbances. A numerical simulation
illustrates the effectiveness of the proposed approach.

Index Terms— Multi-agent systems, distributed control,
Lyapunov methods.

I. INTRODUCTION

MULTI-AGENT systems are commonly subject to inter-
agent and output constraints such as, e.g., (local) con-

nectivity maintenance, collision and obstacle avoidance [1].
Besides these, in many applications the transient and steady-
state behavior of the trajectories of the multi-agent system
must also satisfy some performance specifications in terms of
time of convergence, overshoot, etc. For this purpose, since the
seminal paper of [2] in which the evolution of the system’s
output is prescribed within some predefined region, numerous
prescribed-performance- and funnel-control approaches have
been developed for multi-agents systems. In [3] a controller is
proposed that achieves agreement of second-order systems and
guarantees that the evolution of the consensus error satisfies
a performance bound. A similar result is presented in [4]
for average consensus of agents modeled by single-integrator
dynamics. Funnel-control approaches for multi-agent systems
are proposed, e.g., in [5]–[7].

In these Lyapunov-based design methods, a nonlinear trans-
formation is applied on the system’s output or on the errors
so that the constrained system is transformed into an uncon-
strained one. Then, the analysis of the closed-loop system
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reduces to showing that the trajectories of the unconstrained
system are bounded, implying that the trajectories of the
original (constrained) system satisfy the performance bounds.
From the latter, it is then concluded that the trajectories of the
system ultimately converge to a small region defined by the
steady-sate values of the performance functions. Hence, most
of the works in the literature only establish convergence of the
multi-agent system to a small neighborhood of the agreement
manifold rather than asymptotic stability.

A workaround to the latter has been achieved by mak-
ing the performance bounds asymptotically converge to the
origin [8]–[10]. However, this might result in undesirable
large inputs. Indeed, the funnel- and prescribed-performance-
control approaches rely on the magnitude of the input growing
unbounded as the trajectories go near the bounds of the
performance function. Moreover, although establishing bound-
edness of the trajectories is sufficient for guaranteeing practical
convergence to consensus, in the presence of uncertainties or
disturbances this property alone does not guarantee that, with-
out violating the constraints, the trajectories do not oscillate or
asymptotically converge to the performance bounds, making
the control inputs grow unbounded at steady-state. Therefore,
when considering more complex high-order and nonlinear sys-
tems and/or disturbances and uncertainties, stronger stability
properties are usually needed in order to guarantee consensus
while guaranteeing the fulfillment of the transient constraints.
Asymptotic stability under prescribed performance constraints
has been established in [11], [12], albeit for single-agent
systems. In [13] asymptotic synchronization is established for
heterogeneous multi-agent systems, with bounded inputs at
steady state, using asymptotically convergent bounds.

From an implementation perspective, in the works men-
tioned above the funnel- and prescribed-performance-control
laws are applied by all the agents in the system and a single
leader, if existent, is given as reference to the followers.
However, a more general and less costly approach is to
consider that only one or more agents, selected as leaders, are
directly controlled via external inputs in addition to the first-
order agreement protocol; the remaining agents are followers
evolving only under the agreement protocol. In this setting,
the objective is to design the control inputs of the leaders so
that the performance bounds for the entire system are satis-
fied. Leader-follower relative-position-based formation control
under prescribed performance constraints is addressed in [14]



for first- and second-order systems, using the edge-agreement
transformation, albeit for tree graphs, and only convergence to
a neighborhood of the consensus manifold is established.

In this letter we address the problem of leader-follower
consensus-based control of multi-agent systems interacting
over arbitrary connected (fixed) undirected graphs and under
transient inter-agent constraints. For that purpose, our control
design and analysis rely on the edge-agreement framework
introduced in [15], which allows us to recast the consensus
problem as one of stabilization of the origin and constitutes a
more natural setting to consider inter-agent constraints.

With respect to the existing literature, our contribution
is to propose a control design for the problem of leader-
follower consensus-based coordination of multi-agent systems
under transient and steady-state constraints, establishing strong
stability results. Although restricted to first-order systems, we
establish asymptotic stability of the consensus manifold in the
leader-follower case, via Lyapunov’s direct method. Then, in
the leaderless (homogeneous) case, that is, when all the agents
apply the funnel-based control law, we establish robustness
in the sense of nonuniform-in-time input-to-state stability in
addition to asymptotic stability. This differs from the exist-
ing results where only ultimate boundedness and practical
convergence to a neighborhood of the consensus manifold is
guaranteed. Establishing asymptotic stability and disposing of
a strong Lyapunov function, even for just first-order linear
systems, is an important step towards extending our results
to networks of complex high-order nonlinear systems and
considering disturbances or uncertainties.

The remainder of this letter is organized as follows. In Sec-
tion II the model and the problem statement are presented. The
main results are presented in Section III and are illustrated via
numerical simulations in Section IV. Finally, some concluding
remarks are given in Section V.

II. MODEL AND PROBLEM STATEMENT

In this work we present an approach to the control design
and stability analysis for the consensus-based control of a
multi-agent system, in a leader-follower configuration, subject
to transient and steady-state performance bounds.

The agents interact over a topology described by an
undirected graph G(V, E) where the set of nodes V :=
{1, 2, . . . , N} corresponds to the labels of the agents and
the set of edges, E ⊆ V × V , of cardinality M , represents
the communication between a pair of nodes, that is, an edge
ek := (i, j) ∈ E , k = {1, . . . ,M}, is an unordered pair
indicating that agent j has access to information from node
i and vice-versa. Moreover, we consider that the multi-agent
system is composed of leader and follower agents. Without
loss of generality, suppose that the first NF < N agents are
followers while the last NL < N are leaders with VF :=
{1, . . . , NF } ⊂ V and VL := {NF + 1, . . . , NL +NF } ⊂ V ,
with N = NF +NL.

All the agents are governed by a consensus-based
protocol—cf. [16], but only the leader agents, i.e., i ∈ VL can
be directly controlled via an additional control input. More
precisely, we have that for each agent i ∈ V its evolution is

governed by the first-order system1

ẋi = −c
∑
j∈Ni

[
(xi − xj)− (xd

i − xd
j )
]
+ biui, (1)

where (xd
i − xd

j ) is a desired displacement between agents i
and j, ui is an external input and bi = 1 if i ∈ VL and bi = 0
otherwise.

Let us define an edge state as

zk := (xi − xj)− (xd
i − xd

j ) ∀k ≤ M, ek ∈ E . (2)

Then the coordination problem under transient and steady-state
constraints consists in guaranteeing that the edge-variables de-
fined in (2) remain bounded by a positive smooth performance
function ρk : [t0,∞) → R>0, k ≤ M , i.e.,

|zk(t)| < ρk(t), ∀k ≤ M, (3)

that satisfies the following assumption.
Assumption 1: For each edge ek ∈ E , there exists constants

ρ̄k > ρ
k
> 0 and φ̄k > 0 such that the performance function

ρk : [t0,∞) → R>0 and its derivative satisfy

ρ
k
≤ ρk(t) ≤ ρ̄k, |ρ̇k(t)| ≤ φ̄k, ∀t ≥ t0. (4)

The goal is to design the inputs of the leaders ui, i ∈ VL, so
that the agents reach consensus and fulfill the inter-agent per-
formance bounds given by (3). Mathematically, the consensus
problem translates into making (xi − xj) − (xd

i − xd
j ) → 0,

or equivalently, zk → 0 in the relative coordinates, while
respecting the performance bounds (3).

To address the problem at hand we use a modified version
of the control-design and analysis methodology for consen-
sus under constraints presented in [17] based on the edge-
agreement framework. In an edge-based representation we
consider the states of the interconnection edges in the graph
at each mode, instead of those of the nodes. Let us denote
the so-called incidence matrix of the graph by E ∈ RN×M ,
which is a matrix with rows indexed by the nodes and columns
indexed by the edges. Its (i, k)-th entry is defined as follows:
[E]ik := −1 if i is the terminal node of edge ek, [E]ik := 1
if i is the initial node of edge ek, and [E]ik := 0 otherwise.
Then, the edge states in (2) satisfy

z := E⊤(x− xd) (5)

where x⊤ = [x1 · · · xN ] ∈ RN , xd⊤ =
[
xd
1 · · · xd

N

]
∈ RN ,

and z⊤ := [z1 . . . zM ] ∈ RM .
Now, let us decompose the incidence matrix into the rows

corresponding to the followers and the rows corresponding to
the leaders, i.e., E =

[
E⊤

F E⊤
L

]⊤
. Then, collecting the inputs

of the leaders into the vector u⊤ = [uNF+1 · · · uNL+NF
] ∈

RNL and taking the time derivative of (5), using (1), the edge
dynamics take the form

ż = −cE⊤Ez + E⊤
L u. (6)

As observed in [15], the dynamics of the whole system is
captured by that of a spanning tree GT ⊂ G. Specifically, using

1Throughout this note we consider 1-dimensional agents. However we note
that the results presented herein hold also for n-dimensional agents using the
properties of the Kronecker product.



an appropriate labeling of the edges, the incidence matrix
is expressed as E = [ET EC ], where ET ∈ RN×(N−1)

denotes the full-column-rank incidence matrix corresponding
to an arbitrary spanning tree GT and EC ∈ RN×(M−N+1)

represents the incidence matrix corresponding to the remaining
edges not contained in GT . Then, defining

R := [IN−1 T ] , T :=
(
E⊤

T ET
)−1

E⊤
T EC , (7)

one obtains a relation between the incidence matrix of G and
that of the spanning tree GT as

E = ET R. (8)

Moreover, from the row decomposition into leaders and fol-
lowers, the incidence matrix is partitioned as

E =

[
EFT EFC
ELT ELC

]
. (9)

Then, from (8), the following identities hold:

EF = EFT R, EL = ELT R. (10)

The identities (8) and (10) are useful to derive a reduced-
order dynamic model. Indeed, the edges’ states may also be
split as

z =
[
z⊤T z⊤C

]⊤
, zT ∈ RN−1, zC ∈ RM−N+1 (11)

where zT are the states corresponding to the edges of an
arbitrary spanning tree GT and zC denotes the states of the
remaining edges, ek ∈ G\GT . Thus, from (7) and (11), we
obtain

z = R⊤zT . (12)

Using the identities (8) and (12) into (6) we obtain the reduced-
order system

żT = −cE⊤
T ET RR⊤zT + E⊤

LT u, (13)

where E⊤
T ET is positive definite [15].

Note that, asymptotic stability for the origin of (13) im-
plies asymptotic stability for the origin of (6). Therefore, the
consensus objective is achieved if the origin is asymptotically
stabilized for the reduced-order system (13).

III. MAIN RESULT

A. Control approach

To address the problem at hand we propose a control law
based on the gradient of a potential function encoding the
performance constraints (3). For that purpose let us rewrite,
for each k ≤ M , the inter-agent constraints using the set

Dk := {zk(t) ∈ R : |zk(t)| < ρk(t)}. (14)

Then, for each k ≤ M , we define a positive function Wk :
R≥0 ×Dk → R≥0, of the form

Wk(t, zk) =
1

2
ln

(
ρk(t)

2

ρk(t)2 − z2k

)
, (15)

that satisfies Wk(t, 0) = 0 and Wk(t, zk) → ∞ as |zk| →
ρk(t), and denote

∇Wk(t, zk) :=
∂Wk(t, zk)

∂zk
=

z2k
ρk(t)2 − z2k

, (16)

which satisfies ∇Wk(t, 0) = 0 and ∇Wk(t, zk) → ∞ as
|zk| → ρk(t), for all t ≥ t0. Moreover, from the properties of
the logarithm function, the bounds

1

2ρ̄2k
z2k ≤ Wk(t, zk) ≤

ρ̄2k
2
|∇Wk(t, zk)|2, (17)

hold for all zk(t) ∈ Dk and for all t ≥ t0.
In order to satisfy the prescribed performance constraints

(3), the leaders’ inputs are set to

ui := −c
∑
k≤M

[EL]ik∇Wk(t, zk), i ∈ VL, (18)

where c > 0 is a control gain and [EL]ik denotes the (i, k)-
th entry of EL. Now, denote EL as the set of edges that are
connected to at least a leader node. That is, EL := {ek =
(i, j) ∈ E : i ∈ VL ∨ j ∈ VL}. Moreover, denote ML ≤ M
the cardinality of EL. Similarly, denote EF as the set of edges
that are not connected to any leader node, and denote MF ≤
M the cardinality of EF , where ML + MF = M . Then, in
compact form, using (18), the leader inputs are rewritten as

u := −cEL∇WL(t, z), (19)

where

WL(t, z) =

MF+ML∑
k=MF+1

Wk(t, zk), ek ∈ EL. (20)

Recalling the identity (12), denote ∇WL(t, zT ) :=
∂WL

(
t, R⊤zT

)
/∂zT . Using the chain rule, we have that

∇WL(t, zT ) =

[
∂z

∂zT

]⊤
∂WL (t, z)

∂z
= R∇WL(t, z). (21)

Replacing (19) into (13) and using (8) and (21) we obtain

żT = −cE⊤
T ET RR⊤zT − cE⊤

LT ELT ∇WL(t, zT ). (22)

B. Main result

Theorem 1: Consider the leader-follower multi-agent sys-
tem (1) interconnected over a connected undirected graph and
in closed loop with the control law (18). Then, given perfor-
mance functions ρk(t), k ≤ M , satisfying Assumption 1, for
all initial conditions such that zk(t0) ∈ Dk, k ≤ M , where
zk and Dk are defined, respectively, in (2) and (14), if the
following condition holds

γ̄ ≥ κ̄

c
=:

1

c
max

k

{
φ̄k

ρ
k

}
, (23)

where γ̄ is the largest value of γ that ensures that the
symmetric matrix

Γ :=

[
γE⊤

T ET
1
2

(
E⊤

T ET − γ
(
(RR⊤)−1 − E⊤

LT ELT
))

⋆ E⊤
LT ELT

]
(24)



is positive semi-definite, i.e., Γ ≥ 0, then the trajectories of
the closed-loop system satisfy the performance bounds (3),
∀k ≤ M , ∀t ≥ t0, and the origin of the closed-loop system
(22) is asymptotically stable with domain of attraction D :=⋂

k≤M Dk. □
Proof: First let us denote a potential function for all the

edges ek ∈ E

W (t, z) =

M∑
k=1

Wk(t, zk). (25)

Let a candidate Lyapunov function be given by

V1(t, zT ) =
γ

2
z⊤T RR⊤zT +W (t, zT ), (26)

where, with a slight abuse of notation, we have written W
as a function of zT since W (t, z) = W (t, R⊤zT ). From the
definition of W in (25) and (17), V1 satisfies the bounds

α1|zT |2 ≤ V1(t, zT ) ≤ β|∇W (t, zT )|2, α1, β > 0. (27)

Note that, from the structure of ELT , (22) may be equiva-
lently written as

żT = −cE⊤
T ET RR⊤zT − cE⊤

LT ELT ∇W (t, zT ). (28)

Then, the derivative of (26) yields

V̇1(t, zT ) = − cγz⊤T RR⊤E⊤
T ET RR⊤zT

− cγz⊤T RR⊤E⊤
LT ELT ∇W (t, zT )

− c∇W (t, zT )
⊤E⊤

LT ELT ∇W (t, zT )

− c∇W (t, zT )
⊤E⊤

T ET RR⊤zT

+
∑
k≤M

zk∇Wk(t, zk)ϕk(t), (29)

where

ϕk(t) := − ρ̇k(t)

ρk(t)
and |ϕk(t)| ≤

φ̄k

ρ
k

. (30)

Adding and subtracting cγz⊤T RR⊤∇W (t, zT ) to the right-
hand side of (29), choosing γ = γ̄ satisfying (23), and defining
y⊤ =

[
z⊤T RR⊤ ∇W (t, zT )

⊤], (29) becomes

V̇1(t, y) = − cy⊤Γy ≤ 0, (31)

with Γ given in (24).
Now, we establish invariance of the set D. We proceed

by contradiction. Assume that there exists T > t0 such that
for all t ∈ [t0, T ), zk(t) ∈ Dk and zk(T ) /∈ Dk. More
precisely, we have |zk(t)| → ρk(t) as t → T for at least one
k ≤ M . From the definition of Wk in (15), this implies that
V1(t, zT (t)) → ∞ as t → T which is in contradiction with
(31). Indeed, (31) implies that V1(t, zT (t)) is bounded, i.e.,
V1(t, zT (t)) ≤ V (t0, zT (t0)) < ∞ for all t ≥ t0. Therefore,
Dk, and consequently, D is forward invariant, which in turn
implies that (3) is satisfied for all t ≥ t0 and all k ≤ M .

Now, from the forward invariance of D we know that
|zk(t)| ≤ ρk(t) for all t ≥ t0 and all k ≤ M , hence, it is possi-
ble to deduce the boundedness of żT (t). Then, from the bound-
edness of ρk(t), ρ̇k(t) we have that V̈1(t, zT (t)) is bounded.
The latter implies uniform continuity of V̇1(t, zT (t)), which in

turn, applying Barbălat’s Lemma, implies that V1(t, zT ) → 0
as t → ∞. Hence, convergence to consensus is achieved.

In order to show that the origin of (22) is asymptotic stable,
let us define the Lyapunov function

V2(t, zT ) =
1

2
z⊤T RR⊤zT , (32)

satisfying

1

2
|zT |2 ≤ V2(t, zT ) ≤

λmax(RR⊤)

2
|zT |2. (33)

Its derivative yields

V̇2(t, zT ) = − c z⊤T RR⊤E⊤
T ET RR⊤zT

− c z⊤T RR⊤E⊤
LT ELT ∇WL(t, zT ). (34)

Denote zL ∈ RM as the vector with zeros in the position
of the edges is EF , i.e., [zL]k = zk if ek ∈ EL and [zL]k = 0
otherwise. Then, from (12), (10), and the structure of EL, we
have that the right-hand side of (34) may be rewritten as

V̇2(t, zT ) = − c z⊤T RR⊤E⊤
T ET RR⊤zT

− c z⊤LE⊤
LEL∇WL(t, zL). (35)

Hence, from the definition of Wk(t, zk) and the forward
invariance of D, we have that

V̇2(t, zT ) ≤ − c z⊤T RR⊤E⊤
T ET RR⊤zT

≤ − c′ V2(t, zT ) < 0, (36)

where c′ := 2cλmin(E
⊤
T ET ), and c′ > 0 from [15].

Then, from (33), (36), and forward invariance of D it
follows that the origin of (22) is asymptotically stable with
domain of attraction D.

Remark 1: A direct consequence of Theorem 1 is that the
fulfillment of the bounds (3) depends on the topology of the
leader-follower network. Indeed, the condition (23) implies
that, for a fixed control gain c, given the matrices ET and
ELT , or equivalently, a graph topology, there exists a max-
imum rate φ̄k/ρk, characterizing the performance functions,
so that the entire system satisfies the transient constraints. •

C. Homogeneous case

We now show that, in the homogeneous configuration, that
is, when all agents are directly controlled by the external
input given in (18), stronger stability properties are established
following the same analysis as in the main statement.

Let us consider that all the agents are labeled as leaders,
that is, V = VL. Therefore, we have that EL = E. Moreover,
defining the function

W̃ (t, z) =
∑
k≤M

1

2
z2k +Wk(t, zk), ek ∈ E , (37)

the closed-loop system becomes

żT = −cE⊤
T ET ∇W̃ (t, zT ). (38)

Then, we have the following result.
Theorem 2: Consider the multi-agent system (1) intercon-

nected over a connected undirected graph with V = VL and in



closed loop with the control law (18). Then, given performance
functions ρk(t), k ≤ M , satisfying Assumption 1, for all initial
conditions such that zk(t0) ∈ Dk, k ≤ M , where zk and
Dk are defined, respectively, in (2) and (14), the consensus
manifold is asymptotically stable with domain of attraction
D :=

⋂
k≤M Dk and the trajectories of the closed-loop system

satisfy (3), ∀t ≥ t0. □
Proof: Let a candidate Lyapunov function be given by

V1(t, zT ) =
γ

2
z⊤T (E⊤

T ET )
−1zT + W̃ (t, zT ), (39)

where, with an abuse of notation, we write W̃ as a function
of zT since W̃ (t, z) = W̃ (t, R⊤zT ). Note that, akin to (27),
from (37) and (17), V1 in (39) satisfies the bounds

α′
1|zT |2 ≤ V1(t, zT ) ≤ β′|∇W̃ (t, zT )|2, α′

1, β
′>0. (40)

Now, the derivative of (39) yields

V̇1(t, zT )=−cγ z⊤T ∇W̃ (t, zT ) +
∑
k≤M

zkWk(t, zk)ϕk(t)

−c∇W̃ (t, zT )
⊤E⊤

T ET ∇W̃ (t, zT ), (41)

where ϕk was defined in (30). Therefore, setting γ ≥ κ̄/c,
where κ̄ := max{φ̄k/ρk}, we obtain

V̇1(t, zT ) ≤ − (cγ − κ̄)
∑
k≤M

zkWk(t, zk)

− cλmin(E
⊤
T ET )|∇W̃ (t, zT )|2

≤− c̄ V1(t, zT ) < 0 (42)

with c̄ :=
cλmin(E

⊤
T ET )

2α′
1β

′ > 0.
Forward invariance of D follows from (42) and from the

same arguments as in the proof of Theorem 1.
Next, note that V1(t, zT ) is positive definite on D and it

satisfies the bounds (40). This means that V1(t, zT ) → 0 as
zT → 0. Therefore, from (40) and (42) it follows that all
trajectories of (38) starting in D converge to the origin. Hence,
the origin is attractive for all trajectories zT (t) starting in D.
It follows from the attractivity of the origin and the forward
invariance of D that the origin of the closed-loop system
(38) is (non-uniformly) asymptotically stable with domain of
attraction D.

Corollary 1: Consider the closed-loop system (38) under
an additive essentially bounded disturbance d(t), i.e.,

żT = −cE⊤
T ET ∇W̃ (t, zT ) + E⊤

T d(t). (43)

Then, under the same assumptions of Theorem 2, (43) is non-
uniformly-in-time input-to-state stable. □

Proof: The time derivative of the Lyapunov function V1

in (39) along (43) yields

V̇1(t, zT )=−cγ z⊤T ∇W̃ (t, zT ) +
∑
k≤M

zkWk(t, zk)ϕk(t)

−c∇W̃ (t, zT )
⊤E⊤

T ET ∇W̃ (t, zT )

+∇W̃ (t, zT )
⊤E⊤

T d(t) + cγ z⊤T d(t). (44)

Let c̃ :=
[

(c−δ1)
2max ρ2

k

− γδ2
2

]
and δ :=

(
1

2δ1
+ γ

2δ2

)
, where δ1,

δ2 are small positive constants so that c̃ > 0. Then, setting

γ ≥ κ̄/c, applying Young’s inequality to the last two terms of
the right-hand side of (44), and using (42) and (40), we have
that

V̇1(t, zT ) ≤ −c̃ V1(t, zT ) + δ|d(t)|2. (45)

To assert the fulfillment of the performance bounds in the
presence of additive disturbances, we show that in the proxim-
ity of the limits imposed by the performance function, the first
term on the right-hand side of (45) dominates over the bounded
disturbance. To that end, let d̄ := supt≥0 |d(t)| and let ε(t) ∈
(0, ρk(t)) be a small constant to be determined. Without loss
of generality, let zT be such that for at least one edge ek we
have |zk(t)| ≥ ρk(t)− ε(t). Then, |zT (t)| ≥ ρk(t)− ε(t) and
since V1 is continuous, non-decreasing, and V1(t, s) → ∞ as
s → ρk(t), for all t, it follows that there exists ε∗(t, d̄) such
that if ε(t) ≤ ε∗(t, d̄), V̇1(t, zT ) < 0. The latter holds along
trajectories starting from any initial condition zT (t0) ∈ D
which implies that zT (t) cannot approach the boundary of D
so the performance bounds are fulfilled for all t.

Now, note that from (16) and (40), and for all zT (t) ∈ D,
it holds that

α′
1|zT |2 ≤ V1(t, zT ) ≤ α2(µ(t)|zT |), (46)

where α′
1 > 0, α2(s) = κs2, with κ > 0, and µ(·) is a

continuous positive function µ : R≥0 → R>0 given by

µ(t) =
1

min
k

{ρ
k
} max

k

{
1√

1− ςk(t)2

}
, ςk(t) :=

zk(t)

ρk(t)
.

Therefore, from (45) and (46), invoking [18, Proposi-
tion 3.1], it follows that the closed-loop system (43) is non-
uniformly-in-time input-to-state stable.

IV. NUMERICAL SIMULATION

We illustrate the theoretical results via a numerical ex-
ample. The simulation involves the formation control of six
agents evolving in two dimensions and modeled by (1) in
closed-loop with (18), where the desired displacements zdk :=[
E⊤ ⊗ I2

]
(xd

i − xd
j ), for each k ≤ 7, are set to (0.6, 0.3),

(−0.6, 0.9), (−0.6, 0.3), (0, 0.6), (−0.6, 0.9), (0,−0, 6), and
(−0.6, 0.3). The interconnection topology is given by the
connected undirected graph in Fig. 1. The set of leaders is
given by VL = {2, 4, 6}, represented in gray in Fig. 1. The
objective is for the agents to reach the desired formation in a
prescribed time, that is, the formation errors must satisfy the
performance constraints in (3) with

ρk(t) = 4.6 e−(0.5t)2 + 0.2, ∀k ≤ 7,

where only the leaders apply the control law in (18). The initial
conditions of the six agents in the simulation are presented in
Table I. The controller gain is set to c = 1.2.

It is also assumed that the leader agents are subject to
an essentially bounded disturbance modeled as a smoothed
vanishing step, that is,

θi(t) =− σi(t) [0.2 0.3]
⊤
, i ≤ VL

σi(t) =− tanh(2(t− 5))− 1.



TABLE I: Initial conditions

Index 1 2 3 4 5 6
x [m] 1.9 -2 5.5 -5.5 5.5 -5.5
y [m] 0 0 2 2 -2 -2
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6

e2

e3

e1

e4

e5

e6 e7

Fig. 1: Connected undirected graph representing the network topol-
ogy with the leaders in gray.
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Fig. 2: Paths of the agents. The circles and the crosses represent,
respectively, the initial and final positions.
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Fig. 3: Trajectories of the formation errors. The dashed line repre-
sents the performance bound.

It can be seen from Figs. 2 and 3 that the agents suc-
cessfully reach the desired formation while satisfying the
inter-agent performance bounds. Moreover, as seen in Fig. 3,
the formation errors converge to the origin as soon as the
disturbance vanishes. Although not proven in this letter, it may
be conjectured, from the simulation results, that the input-to-
state stability properties established in Corollary 1 may be
extended to the leader-follower case under the assumptions of
Theorem 1. The proof of this claim is under research.

V. CONCLUSIONS

Strong Lyapunov stability and robustness results for multi-
agent systems under consensus-based controllers and with

transient and steady-state constraints are considered in this
letter. We propose a gradient-based agreement controller for
leader-follower multi-agent systems that ensures the satis-
faction of inter-agent transient constraints for all pairs of
agents. We establish asymptotic stability of the agreement
manifold in the leader-follower and, in the homogeneous case,
nonuniform-in-time input-to-state stability. Although restricted
to first-order systems, we argue that our preliminary results
pave the way towards considering complex high-order nonlin-
ear systems and more general cooperative tasks, which is the
focus of our current research.
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