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Abstract

The spectral properties of the incidence matrix of the communication graph are exploited to provide solutions to two multi-
agent control problems. In particular, we consider the problem of state agreement with quantized communication and the
problem of distance-based formation control. In both cases, stabilizing control laws are provided when the communication
graph is a tree. It is shown how the relation between tree graphs and the null space of the corresponding incidence matrix
encode fundamental properties for these two multi-agent control problems.

1 Introduction

The spectral properties of the Laplacian matrix of a
graph were extensively used recently to provide conver-
gence results in various multi-agent control problems
(Olfati-Saber and Murray (2004); Cortes et al. (2006);
Arcak (2007); Olfati-Saber and Shamma (2005)). In this
paper we use another matrix namely, the incidence ma-
trix and its spectral properties, in order to study the con-
vergence properties of two multi-agent control problems.
Cycles are not captured by the properties of the Lapla-
cian, but note instead that the incidence matrix has an
empty null space when the communication graph is a
tree. This property is used to show that multi-agent net-
works represented by trees can compensate for bounded
disturbances in the control input. On the other hand,
in a cyclic graph, the error never ceases to propagate in
these cycles. These facts are encoded by the definiteness
properties of the quadratic form of the incidence matrix.
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The first problem we apply the properties of the inci-
dence matrix to is multi-agent state agreement under
quantized communication. The only information each
agent has is a quantized estimate of its neighbors’ rel-
ative positions. We first treat a static communication
topology and show that convergence is achieved in the
case of a tree topology. The results are then extended to
switching topologies. While results for discrete-time sys-
tems appeared recently (Johansson et al. (2005); Carli
et al. (2006); Kashyap et al. (2007)), a continuous-time
model is considered here. The second problem we con-
sider is distance-based formation control. Such forma-
tions have been studied in the context of graph rigid-
ity (Baillieul and Suri (2004); Hendrickx et al. (2005)),
where a common factor is the lack of globally stabiliz-
ing formation control laws. We propose here a control
law that is based on the negative gradient of a potential
function between each of the pairs of agents that form
an edge in the formation graph. We show that the cor-
responding control law stabilizes the system to the de-
sired formation provided that the graph is a tree. A sim-
ilar result for directed acyclic graphs with three agents
appeared in Cao et al. (2008). We then show that it is
necessary with a tree for stabilization to the desired for-
mation.

The rest of the paper is organized as follows: prelimi-
naries and the system model are discussed in Section 2.
Section 3 treats the quantized agreement problem while
Section 4 deals with distance-based formation control.
A summary is given in Section 5.
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2 Preliminaries

2.1 Graph Theory

We first review some elements of algebraic graph the-
ory (Godsil and Royle (2001)) used in the sequel. For
an undirected graph G = (V,E) with N vertices V =
{1, . . . , N} and edges E ⊂ V × V , the adjacency matrix
A = A(G) = (aij) is the N ×N matrix given by aij = 1,
if (i, j) ∈ E, and aij = 0, otherwise. If (i, j) ∈ E, then i, j
are adjacent. A path of length r from i to j is a sequence
of r +1 distinct vertices starting with i and ending with
j such that consecutive vertices are adjacent. For i = j,
this path is a cycle. If there is a path between any two
vertices of G, then G is connected. A connected graph
is a tree if it contains no cycles. The degree di of ver-
tex i is given by di =

∑

j aij . Let ∆ = diag(d1, . . . , dN ).
The Laplacian of G is the symmetric positive semidefi-
nite matrix L = ∆ − A. For a connected graph, L has a
single zero eigenvalue with the corresponding eigenvec-
tor 1 = [1, . . . , 1]T . An orientation on G is the assign-
ment of a direction to each edge. The incidence matrix
B = B(G) = (bij) of an oriented graph is the {0,±1}-
matrix with rows and columns indexed by the vertices
and edges of G, respectively, such that bij = 1 if the ver-
tex i is the head of the edge j, bij = −1 if the vertex i
is the tail of the edge j, and bij = 0 otherwise. We have
L = BBT . If G contains cycles, the edges of each cy-
cle have a direction, where each edge is directed towards
its successor according to the cyclic order. A cycle C is
represented by a vector vC with M = |E| elements. For
each edge, the corresponding element of vC is equal to 1
if the direction of the edge with respect to C coincides
with the orientation assigned to the graph for defining
B, and −1, if the direction with respect to C is opposite
to the orientation. The elements corresponding to edges
not in C are zero. The cycle space of G is the subspace
spanned by vectors representing cycles in G (Guattery
and Miller (2000)).

Let x = [x1, . . . , xN ]T , where xi is a real scalar variable
assigned to vertex i of G. Denote by x̄ the M -dimensional
stack vector of relative differences of pairs of agents that
form an edge in G, where M = |E| is the number of
edges, in agreement with a defined orientation. In par-
ticular, denoting by ei = (hi, ti) ∈ E, i = 1, . . . ,M , the
edges of G, where hi,ti the head and tail of ei respec-
tively, we denote x̄ei

= xhi
− xti

. The vector x̄ is given
by x̄ = [x̄e1

, . . . , x̄eM
]T . It is easy to verify that Lx = Bx̄

and x̄ = BT x. For x̄ = 0 we have that Lx = 0.

Lemma 1 If G is a tree, then BT B is positive definite.

Proof : For any y ∈ R
M , we have yT BT By = |By|2 and

hence yT BT By > 0 if and only if By 6= 0, i.e., the matrix
B has empty null space. For a connected graph, the cycle
space of the graph coincides with the null space of B
(Lemma 3.2 in Guattery and Miller (2000)). Thus, for

G with no cycles, zero is not an eigenvalue of B. This
implies that BT B is positive definite. ♦

2.2 Stability of a Linear System

Let z = [z1, . . . , zM ]T denote a vector of real variables
assigned to each edge of G. We examine the behavior of
the system

ż = −BT B (z + e) (1)

where e is a state error to be defined in the sequel. For

F (z) =
1

2
zT z, we have Ḟ (z) = −zT BT Bz − zT BT Be.

If G is a tree, then by Lemma 1

Ḟ (z) ≤ −λmin

(

BT B
)

|z|2 + |z|
∥

∥BT B
∥

∥ |e| (2)

We can now state the following result:

Lemma 2 Consider system (1) and assume that G is a
tree. Then

• If |e| ≤ Θ, for some Θ > 0, then z converges to a ball

of radius

∥

∥BT B
∥

∥ Θ

λmin (BT B)
in finite time.

• If |e| ≤ θ |z|, for some θ > 0, then z converges expo-

nentially to the origin, provided that θ <
λmin(BT B)

‖BT B‖ .

Proof : For |e| ≤ Θ, (2) yields Ḟ (z) ≤ −λmin

(

BT B
)

|z| (|z|−
‖BT B‖Θ

λmin(BT B)
) so the first statement follows. For the second,

|e| ≤ θ |z| gives Ḟ (z) ≤ − |z|2 (λmin

(

BT B
)

−
∥

∥BT B
∥

∥ θ)

which is negative definite for θ <
λmin(BT B)

‖BT B‖ . ♦

Consider now instead the system

ż = −BT BWz (3)

where W = diag(w1, . . . , wM ) with wj ≥ 0. Note that
(3) is a special case of (1) if Wz − z ≡ e. The particular
structure of (3) will be useful in the study of distance-
based formation control.

Lemma 3 Consider system (3) and assume that G is
a tree. Then z converges to the set {z ∈ R

M : wizi =
0,∀i = 1, . . . ,M}.

Proof : Since BT B is positive definite and W is diag-
onal positive semidefinite, the linear system (3) is sta-
ble. At steady state we have BT BWz = 0, and since
BT B is positive definite due to G being a tree, we get
(

BT B
)−1

BT BWz = Wz = 0 at steady state. The re-
sult follows from W being diagonal. ♦

We note that BT B is defined as the “Edge Laplacian” in
Zelazo et al. (2007) and its properties are used for pro-
viding another perspective to the agreement problem.
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2.3 Multi-agent Control System

Consider N agents. Let qi ∈ R
2 denote the position of

agent i. Let xi, yi denote the coordinates of agent i in the
x and y directions, respectively. Let q = [qT

1 , . . . , qT
N ]T

denote the vector of all agents’ positions. We assume
that agents’ motion obeys the single integrator model:

q̇i = ui, i ∈ V = {1, . . . , N} (4)

where ui denotes the control input for each agent. We
assume that each agent has limited information on the
states and goals of the other group members. In particu-
lar, each agent is assigned a neighbor set Ni ⊂ V , which
is given by the agents with whom it can communicate.

3 Quantized Agreement

The first problem we consider is agreement with quan-
tized communication. We assume that agents aim to con-
verge to a common value in the state space under quan-
tized relative position information of their neighbors. It
will be shown that the matrix BT B plays an important
role in the convergence of the system. Three classes of
communication graphs are considered.

3.1 Quantized Control

Consider system (4) in the x-direction and let x =
[x1, . . . , xN ]T . Without loss of generality, we omit
the notation regarding the x-direction from the con-
trol input. We then have ẋi = ui. We consider the
agreement control laws in Fax and Murray (2002),
Olfati-Saber and Murray (2004), which were given
by ui = − ∑

j∈Ni

(xi − xj). The closed-loop nomi-

nal system (without quantization) is then given by
ẋi = − ∑

j∈Ni

(xi − xj), i ∈ V , so that ẋ = −Lx. Then,

˙̄x = BT ẋ = −BT Lx = −BT Bx̄. Hence the nominal
system is also given by ˙̄x = −BT Bx̄.

In this section, each agent i is assumed to have quantized
measurements Q(xi−xj), Q(yi−yj) of all j ∈ Ni where
Q(.) : R → R is the quantization function. Since the val-
ues of the quantizer are decomposed into the measure-
ments Q(xi − xj), Q(yi − yj) in the x and y coordinates
respectively, we can treat only the behavior of the sys-
tem in the x coordinates. The analysis that follows holds
mutatis mutandis in the y coordinates. We hence exam-
ine the stability properties of the closed-loop system in
the x-coordinates under quantization, namely of the sys-
tem ẋi = − ∑

j∈Ni

Q (xi − xj), with i ∈ V . Two classes of

quantized sensors are considered; uniform and logarith-
mic quantizers. For a given δu > 0, a uniform quantizer
Qu : R → R satisfies |Qu (a) − a| ≤ δu,∀a ∈ R. For a

given δl > 0, a logarithmic quantizer Ql : R → R sat-
isfies |Ql (a) − a| ≤ δl |a| ,∀a ∈ R. We use the notation
Q when we need not specify if it is a uniform or a log-
arithmic quantizer. For a vector v = [v1, . . . , vd]

T ⊂ R
d

of size d, we define Qu(v) , [Qu(v1), . . . , Qu(vd)]
T and

Ql(v) , [Ql(v1), . . . , Ql(vd)]
T . The following bounds

also hold: |Qu (v) − v| ≤ δu

√
d, |Ql (v) − v| ≤ δl |v|.

3.2 Static Communication Graph

We first assume that the communication graph is static,
i.e., that Ni do not vary over time. In the case of quan-
tized information we have ẋi = − ∑

j∈Ni

Q (xi − xj). Since

Q (−a) = −Q (a) for all a ∈ R, we get

˙̄x = −BT BQ (x̄) (5)

where Q(x̄) is the stack vector of all pairs Q (xi − xj)
with (i, j) ∈ E. The system (5) can be written in the
form (1): ˙̄x = −BT B (x̄ + e) with e ≡ Q (x̄) − x̄.

Consider now the quadratic edge function

F (x̄) =
1

2
x̄T x̄ (6)

Note that x̄ = 0 guarantees that x has all its elements
equal, in the case of a connected graph. This is due to
that x̄ = 0, Lx = 0, which implies x1 = x2 = . . . = xN

for a connected graph. The following result is now a
straightforward consequence of Lemma 2:

Theorem 4 Assume that G is static and a tree. Then
system (5) has the following convergence properties:

• When Q = Qu, x converges to a ball of radius
∥

∥BT B
∥

∥ δu

√
M

λmin (BT B)
which is centered at the desired agree-

ment equilibrium x1 = x2 = . . . = xN in finite time.
• When Q = Ql, x converges exponentially exponen-

tially to the desired agreement equilibrium x1 = x2 =
. . . = xN , provided that δl satisfies

δl <
λmin

(

BT B
)

‖BT B‖ (7)

From the previous analysis, for the case of a logarithmic
quantizer we can compute

Ḟ (x̄) ≤ − |x̄|2
(

λmin

(

BT B
)

−
∥

∥BT B
∥

∥ δl

)

(8)

By applying the Comparison Lemma we get the follow-
ing estimates of the convergence rate for the case of a
logarithmic quantizer and a tree structure:

F (x̄ (t)) ≤ e−2(λmin(BT B)−‖BT B‖δl)tF (x̄ (0)) (9)
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so that |x̄ (t) | ≤ e−(λmin(BT B)−‖BT B‖δl)t|x̄ (0) | for all
times t ≥ 0. Using (8) we also get the following relations
for the trajectories of the closed loop system in the case
when the graph is not necessarily a tree:

F (x̄ (t)) ≤ e2‖BT B‖δltF (x̄ (0)) (10)

so that |x̄ (t) | ≤ e‖BT B‖δlt|x̄ (0) |.

3.3 Time-varying Communication Graph

We next treat the case when the communication graph
is time-varying. It is not possible to use F (x̄) = 1

2 x̄T x̄
as a common Lyapunov function for the switched sys-
tem, since x̄ changes discontinuously whenever edges
are added or deleted when the topology changes. We
use instead W = max {x1, . . . , xN} − min {x1, . . . , xN}
as a common Lyapunov function. Denote xmax = xm1

,

xmin = xm2
where m1

∆
= max

i
{i : xi = max

k
{xk}}, and

m2
∆
= min

i
{i : xi = min

k
{xk}}. With this definition,

the system is guaranteed not to exhibit Zeno behavior
(Lygeros et al. (2003)). This is due to that if there ex-
ists an interval [τ, τ + ∆τ ] with ∆τ > 0, for which there
exist two or more agents that simultaneously attain the
maximum (minimum) value, then only the agent with
the largest (smallest) index is considered. The nota-
tion T = {t1, t2 . . . , } is used for the set of switching
instants, i.e., times when a new link is created or an ex-
isting one is lost, or the maximum or minimum element
changes, i.e., a new agent attains the maximum or min-
imum value, xmax or xmin, respectively. We will use the
extension of LaSalle’s Invariance Principle for hybrid
systems (Lygeros et al. (2003)) to check the stability of
the overall system. The main result is stated as follows:

Theorem 5 Assume that the time-varying communica-
tion graph G = G(t) remains a tree for all intervals
[tp, tp+1] and the quantizer is logarithmic. Further as-
sume that the gain of the quantizer δl satisfies

δl < min
B∈T (B)

λmin

(

BT B
)

‖BT B‖ (11)

where the minimization is over all possible incidence ma-
trices that belong to the set T (B) of incidence matrices
corresponding to all possible trees with N vertices. Then
x converges to an agreement point x1 = x2 = . . . = xN .

Proof: We show that W is strictly decreasing in
between switching instances. For the logarithmic
quantizer we have sign(Ql(x)) = sign(x). Since
xmax ≥ xi ≥ xmin for all i ∈ V , the following
equations hold for all t ∈ [tp, tp+1], [tp, tp+1] ∈ T :
ẋmax = − ∑

j∈Nmax

Ql (xmax − xj) ≤ 0, and ẋmin =

− ∑

j∈Nmax

Ql (xmin − xj) ≥ 0. Thus, W is non-increasing

throughout the closed loop system evolution. We now
show that W is strictly decreasing within each subin-
terval [τ, τ + ∆τ ] of [tp, tp+1] with ∆τ > 0 as long as
the graph is a tree and the system has not reached
an agreement point x̄ = 0. This is proved by contra-
diction. Assume first that xmax is constant at each
time instant of the time interval in consideration, i.e.
ẋmax = 0, for all t ∈ [τ, τ + ∆τ ]. This is equivalent to

∑

j∈Nmax

Ql (xmax − xj) = 0, and since xmax ≥ xi for all

i ∈ {1, . . . , N}, the latter implies that xj = xmax for
all j ∈ Nmax. Pick any k ∈ Nmax, where k does not
coincide with the maximum vertex. Then xk ≥ xj , for
all j ∈ Nk and hence ẋk = − ∑

j∈Nk

Ql (xk − xj) ≤ 0.

If ẋk < 0, then necessarily ẋmax < 0 since xk = xmax

for all t ∈ [τ, τ + ∆τ ]. Hence we also have ẋk = 0 and
hence xj = xk = xmax for all j ∈ Nk. We can now
repeat the same procedure for a random l ∈ Nk. Since
the graph is a tree and has finite number of vertices, we
conclude that there exists a finite number of iterations
of the above procedure that propagates to every ver-
tex in the graph. Thus, all vertices in the graph should
have a zero time derivative. By virtue of the above
procedure all vertices then will have a common value
equal to the constant maximum value of xmax. This is
a contradiction to the fact that the function F defined
in (6) is strictly decreasing, by virtue of (8),(7),(11),
as long as the system has not reached agreement. We
thus conclude that there should be at least one vertex
p chosen in the above iterative procedure which has a
strictly negative time derivative at some t ∈ [τ, τ + ∆τ ].
Since the above procedure suggests that xp = xmax, and
therefore ẋp = ẋmax, for all t ∈ [τ, τ + ∆τ ], we conclude
that xmax is strictly decreasing in [τ, τ +∆τ ]. The above
analysis can be used to show -albeit not necessary for
our proof- that xmin is strictly increasing in [τ, τ + ∆τ ].
We conclude that W strictly decreases within each time
interval [tp, tp+1], i.e., W (tp) < W (tp+1), and thus, W
converges to zero as t → ∞. The latter corresponds to
a desired agreement point by definition. This completes
the proof. ♦

3.4 Loss of Connectivity

The above result is useful when the communication
graph retains the tree structure at all switching in-
stances. A different case occurs if we allow for the
tree assumption to be lost for some times. In partic-
ular, we assume that in between moments where the
team switches to a different tree, there are time in-
tervals when the communication graph is not a tree.
Hence we consider a switching sequence of the form
T = {0 = t01, t1, t12, t2, t23, t3, . . .}, where intervals of
the form ∆tp = tp − tp−1,p > 0 correspond to a tree
while the reset intervals ∆tp,p+1 = tp,p+1 − tp > 0
correspond to a switch between two trees. The connec-
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tivity and tree assumptions may not hold in the reset
intervals ∆tp,p+1. We assume that each ∆tp where the
topology is a tree has a minimum dwell time ∆tmin,
i.e., ∆tp > ∆tmin. The following result states that
agreement can still be achieved provided that the reset
intervals are small enough:

Theorem 6 Assume that the time-varying communi-
cation graph G = G(t) is a tree for all time intervals
∆tp = tp − tp−1,p and the quantizer is logarithmic. Fur-
ther assume that there is a path connecting the maximum
and the minimum vertex, for all reset time intervals of
the form ∆tp,p+1 = tp,p+1 − tp. Assume that there exists

an ε, where 0 < ε < min
B∈T (B)

λmin(BT B)
‖BT B‖ , such that the

quantizer gain satisfies δl < min
B∈T (B)

λmin(BT B)
‖BT B‖ − ε. Fur-

thermore, assume that the tree time intervals ∆tp sat-

isfy ∆tmin > 2 ln(N(N−1)/2)
ε· max

B∈T (B)
‖BT B‖ . Then the closed-loop sys-

tem converges to an agreement point x1 = x2 = . . . =
xN , provided that the reset time intervals ∆tp,p+1 sat-

isfy ∆tp,p+1 < ∆trmax = min
p

vp+1∆tmin−2 ln(N(N−1)/2)

‖BT
p,p+1

Bp,p+1‖δl

,

where the minimization is held over all incidence matri-
ces Bp,p+1 corresponding to graphs with N vertices and
vp+1 = λmin

(

BT
p+1Bp+1

)

−
∥

∥BT
p+1Bp+1

∥

∥ δl.

Proof: We consider Wc = W√
N(N−1)

as a common Lya-

punov function for the overall switched system. Since
for all intervals there is a path m1, l1, l2, . . . , lf ,m2

connecting the maximum and minimum vertices,
we have W = xm1

− xm2
= xm1

− xl1 + xl1 −
xl2 + . . . + xlf − xm2

, and using the inequality

n
n
∑

i=1

r2
i ≥

(

n
∑

i=1

ri

)2

,∀ri ∈ R, we have W 2 ≤ N(N−1)
2 ·

[

(xm1
− xl1)

2
+ (xl1 − xl2)

2
. . .

(

xlf − xm2

)2
]

≤ N(N−
1)F , and hence Wc ≤

√
F where F = F (x̄) is the

quadratic function (6) corresponding to the edges of
G(t) at each time instant and N(N − 1)/2 is the max-
imum number of edges at each time instant. Hence
the candidate common Lyapunov function is bounded
from above by F at each time instant, where F = F (x̄)
is the quadratic edge function corresponding to the
vector x̄ of edges at the same time instant. All pairs
i, j ∈ {1, . . . , N} satisfy |xmax − xmin| ≥ |xi − xj | and

thus, M
2 (xmax − xmin)

2 ≥ 1
2

∑

(i,j)∈E

(xi − xj)
2

= F .

Since the maximum number of edges M is N(N − 1)/2

the last equation implies W ≥ 2√
N(N−1)

√
F , so that

Wc ≥ 2
N(N−1)

√
F . We hence have

2

N(N − 1)

√
F ≤ Wc ≤

√
F (12)

for all possible quadratic edge functions F corresponding
either to a tree interval or a reset interval.

With a slight abuse of notation, denote by Fp the
quadratic edge function F corresponding to a random
tree that represents the communication topology in the
time interval ∆tp and by Fp,p+1 the quadratic edge func-
tion F corresponding to the reset time interval ∆tp,p+1.
For two consecutive intervals [tp, tp,p+1], [tp,p+1, tp+1],
using (9),(10),(12) we have

Wc (tp+1) ≤
√

Fp+1 (tp+1)

≤ e−(λmin(BT
p+1Bp+1)−‖BT

p+1Bp+1‖δl)∆tp+1

√

Fp+1 (tp,p+1)

≤ e−(λmin(BT
p+1Bp+1)−‖BT

p+1Bp+1‖δl)∆tp+1
N(N − 1)

2
· Wc (tp,p+1)

≤ e−(λmin(BT
p+1Bp+1)−‖BT

p+1Bp+1‖δl)∆tp+1

· N(N − 1)

2

√

Fp,p+1 (tp,p+1)

≤ e−(λmin(BT
p+1Bp+1)−‖BT

p+1Bp+1‖δl)∆tp+1
N(N − 1)

2

· e‖BT
p,p+1Bp,p+1‖δl∆tp,p+1

√

Fp,p+1 (tp)

≤
(

N(N − 1)

2

)2

e−(λmin(BT
p+1Bp+1)−‖BT

p+1Bp+1‖δl)∆tp+1

· e‖BT
p,p+1Bp,p+1‖δl∆tp,p+1 Wc (tp)

where, in accordance with the defined notation,
Bp+1 ∈ T (B) is an incidence matrix belonging to the set
T (B) of incident matrices corresponding to trees with N
vertices, while Bp,p+1 is an arbitrary incidence matrix
corresponding to a graph with N vertices. It suffices to
show that Wc strictly decreases in tp, tp+1. This is equiv-
alent to−

(

λmin

(

BT
p+1Bp+1

)

−
∥

∥BT
p+1Bp+1

∥

∥ δl

)

∆tp+1
+

∥

∥BT
p,p+1Bp,p+1

∥

∥ δl∆tp,p+1
< −2 ln

(

N(N−1)
2

)

. Us-

ing ∆tp+1 > ∆tmin, an upper bound on the re-
set interval time for which the above inequality

holds is given by ∆tp,p+1
<

vp+1∆tmin−2 ln(N(N−1)/2)

‖BT
p,p+1

Bp,p+1‖δl

,

where the parameter vp+1 = λmin

(

BT
p+1Bp+1

)

−
∥

∥BT
p+1Bp+1

∥

∥ δl is always positive, due to δl satisfying

δl < min
B∈T (B)

λmin(BT B)
‖BT B‖ − ε. Due to the fact that ∆tmin

satisfies ∆tmin > 2 ln(N(N−1)/2)
ε· max

B∈T (B)
‖BT B‖ , there is a strictly posi-

tive upper bound on the reset intervals ∆trmax for which
−

(

λmin

(

BT
p+1Bp+1

)

−
∥

∥BT
p+1Bp+1

∥

∥ δl

)

∆tp+1
+

∥

∥BT
p,p+1Bp,p+1

∥

∥ δl∆tp,p+1
< −2 ln

(

N(N−1)
2

)

holds, i.e.

we have ∆tp,p+1 < ∆trmax for all p, and ∆trmax =

min
p

vp+1∆tmin−2 ln(N(N−1)/2)

‖BT
p,p+1

Bp,p+1‖δl

. Hence for sufficiently
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small reset intervals, Wc is strictly decreasing, i.e.,
Wc(tp+1) < Wc(tp) for all p. The result follows by
allowing p go to infinity. ♦

4 Distance-Based Formation Control

The second multi-agent problem considered is distance-
based formation stabilization. A formation is an
assignment of scalar weights dij = dji > 0 to
each edge (i, j) ∈ E of the communication graph
G. These weights represent the distance to which

agents i, j should converge. Define the set Φ
∆
=

{

q ∈ R
2N | ||qi − qj || = dij , ∀ (i, j) ∈ E

}

of desired
distance-based formations. The desired formation is
called feasible if Φ is non-empty. The problem treated
in this section is summarized as follows: derive control
laws, for which the information available for each agent
i is encoded in Ni, that drive the agents to the desired
formation, i.e., limt→∞ q(t) = q∗ ∈ Φ.

4.1 Control Law and Stability Analysis

Let βij(q) = ‖qi − qj‖2
for any i, j ∈ V . The class Γ of

formation potentials γ ∈ Γ between agents i, j, j ∈ Ni is
defined to have the following properties: (1) γ : R

+ →
R

+ ∪ {0} is a function of the distance between i and j,
i.e., γ = γ(βij), (2) γ(βij) is continuously differentiable,
and (3) γ(d2

ij) = 0 and γ(βij) > 0 for all βij 6= d2
ij . We

also define ρij
∆
=

∂γ(βij)
∂βij

. Note that ρij = ρji, for all

i, j ∈ V, i 6= j. The proposed control law for i ∈ V is

ui = −
∑

j∈Ni

∂γ(βij(q))

∂qi
= −

∑

j∈Ni

2ρij (qi − qj) (13)

Let ⊗ denote the Kronecker product. Then (13) is writ-
ten in stack vector form as u = −2 (R ⊗ I2) q where
u = [uT

1 , . . . , uT
N ]T and the symmetric matrix R is given

by Rij = −ρij , for j ∈ Ni, Rij = 0, for j /∈ Ni, and Rii =
∑

j∈Ni

ρij , for all i ∈ V . Let Vf (q) =
∑

i

∑

j∈Ni

γ(βij(q)).

Its gradient is ∇Vf = 4 (R ⊗ I2) q, so that its time-
derivative is given by

V̇f = −8 ‖(R ⊗ I2) q‖2 ≤ 0 (14)

The following now holds:

Theorem 7 Assume that (4) evolves under (13), and
that G is connected. Then ui(t) → 0 as t → ∞ for all
i ∈ V , and the closed loop system is stable.

Proof: The level sets of Vf are compact and invariant
with respect to the relative positions of adjacent agents.
Specifically, the set Ωc = {q : Vf (q) ≤ c} for 0 < c <

∞ is closed by continuity of Vf . From Vf ≤ c we have
γ(βij) ≤ c for all (i, j) ∈ E. This implies that there is a
ξ, where 0 < ξ < ∞, such that βij ≤ ξ, by definition of
Γ, and thus, ‖qi − qj‖ ≤ √

ξ for all (i, j) ∈ E. Since the
maximum length of the path between any two vertices
of a connected graph is N − 1, we have 0 ≤ ‖qi − qj‖ ≤
(N − 1)

√
ξ for all i, j ∈ V . Equation (14) and LaSalle’s

principle now guarantee that the system converges to the
largest invariant subset of S = {q : (R(q) ⊗ I2) q = 0}.
Since u = q̇ = −2 (R ⊗ I2) q, we have u → 0 as t → ∞
and the result follows. Compactness of Ωc and (14) imply
also that the closed loop system is stable. ♦

We next provide a formation potential that guarantees
formation stabilization for a class of communication
graphs. In particular, we now consider:

γ (βij (q)) =

(

βij − d2
ij

)2

βij
(15)

Note that this potential satisfies all properties of the

set Γ. Moreover, γ(βij) ≤ c ⇒ 0 ≤ (βij−d2
ij)

2

βij
≤

c ⇒ 0 ≤
(

βij − d2
ij

)2 ≤ cβij ⇒ βij ∈ [ξ1, ξ2] where

ξ1,2 = 1
2

(

2d2
ij + c ±

√

4cd2
ij + c2

)

. For this case,

ρij =
∂γ(βij)

∂βij
=

β2
ij−d4

ij

β2
ij

. For this potential, the following

holds:

Lemma 8 Consider system (4) driven by (13) with γ
as in (15), and starting from a set of initial conditions
I (q) = {q| ‖qi − qj‖ > 0,∀(i, j) ∈ E}. Then I (q) is in-
variant for the trajectories of the closed loop system.

Proof: For every initial condition q(0) ∈ I(q), the time
derivative of Vf remains non-positive for all t ≥ 0, by
virtue of (14). Hence Vf (q(t)) ≤ Vf (q(0)) < ∞ for all t ≥
0. When ‖qi − qj‖ → 0 for at least one pair of agents i, j,
with j ∈ Ni, we have Vf (q) → ∞, which is impossible.
We conclude that q(t) ∈ I (q), for all t ≥ 0. ♦

Thus, βij(t) > 0, i.e., qi(t) 6= qj(t), for all t ≥ 0 and all
(i, j) ∈ E. This will be used in the stability analysis of
the closed-loop system. Denote by q̄ the M -dimensional
stack vector of relative position differences of pairs of
agents that form an edge in G, where M is the number of

edges, i.e, M = |E| and q̄ =
[

q̄T
1 , . . . , q̄T

M

]T
, where q̄e =

qi − qj for e = (i, j) ∈ E. Equation q̇ = −2 (R ⊗ I2) q
implies

˙̄q = −
(

BT BWf ⊗ I2

)

q̄ (16)

where Wf = 2 · diag {ρe, e ∈ E} ∈ R
M×M . Note that

(16) is in the form (3) in two dimensions. We then have:

Theorem 9 Assume that (4) evolves under the control
law (13) with γ as in (15), and that the communication
graph is a tree. Further assume the desired formation is
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feasible, i.e., Φ 6= ∅. Then the agents are driven to the
desired formation, i.e., limt→∞ q(t) = q∗ ∈ Φ.

Proof: Since at steady state, q̇ = u = −2 (R ⊗ I2) q = 0,
we also have ˙̄qe = 0 for all e ∈ E and thus ˙̄q = 0.
Equation (16) yields

(

BT BWf ⊗ I2

)

q̄ = 0. By virtue of
Lemma 3 the system converges to a configuration where
ρeq̄e = 0 for all e ∈ E. Since ρe is scalar this implies
ρe = 0 or q̄e = 0. However, for all e ∈ E we have q̄e(t) 6= 0
for all t ≥ 0, due to Lemma 8. We conclude that ρe = 0
for all e ∈ E at steady state and hence βij = d2

ij , i.e,

||qi − qj || = dij for all (i, j) ∈ E, since ρij =
β2

ij−d4
ij

β2
ij

. ♦

4.2 Tree Communication Graph is Necessary

We next characterize the communication graphs for
which a control law of the form (13) leads to the de-
sired formation for any choice of potential γ ∈ Γ. In
particular, for any choice of γ ∈ Γ, the closed-system
dynamics are given by q̇ = u = −2 (R ⊗ I2) q, and
thus by ˙̄q = −

(

BT BWf ⊗ I2

)

q̄ in the edge space.
The analysis leading to Theorem 9 guarantees that
(

BT BWf ⊗ I2

)

q̄ = 0 at steady state. By virtue of

Lemma 1, the matrix BT B is non-singular only when G
contains no cycles. The following result holds:

Theorem 10 Assume that the system (4) evolves under
the control law (13) and that Φ is non-empty. Further
assume that G is connected. Then there exists a formation
potential γ ∈ Γ such that (i) ˙̄q = 0 only for q ∈ Φ, and
(ii) limt→∞ q(t) = q∗ ∈ Φ hold, if and only if the graph
G is a tree.

Proof: The “if” part is shown in Theorem 9, with the
choice of formation potential field (15). For the “only
if” part, we know that the closed-loop system reaches a
steady state at which u = 0, by virtue of Theorem 7.
This implies that ˙̄q =

(

BT BWf ⊗ I2

)

q̄ = 0. We will
show that condition (i) cannot hold if G is not a tree.
If G is not a tree, then BT B is singular and then the
null space of B, and thus BT B, is nonempty. In fact, in
this case, using properties of Kronecker products (Horn
and Johnson (1996)) we have

(

BT BWf ⊗ I2

)

q̄ = 0,

so that
(

BT B ⊗ I2

)

(Wf ⊗ I2) q̄ = 0. Multiply-

ing by (q̄ (Wf ⊗ I2))
T

on the left hand side we get

(q̄ (Wf ⊗ I2))
T (

BT B ⊗ I2

)

(Wf ⊗ I2) q̄ = 0, which

implies q̄T (BWf ⊗ I2)
T

(BWf ⊗ I2) q̄ = 0, so that
(BWf ⊗ I2) q̄ = 0. Denoting by x̄,ȳ the stack vectors of
the elements of q̄ in the x and y coordinates, the last
equation yields BWf x̄ = BWf ȳ = 0, i.e., Wf x̄,Wf ȳ
belong to the null space of B. Since G contains cy-
cles, the null space of B is non-empty. Thus we cannot
reach the conclusion of the proof of Theorem 9 that
(Wf ⊗ I2)q̄ = 0. In fact, equations BWf x̄ = BWf ȳ = 0
have an infinite number of solutions, since BT B is now
singular. Hence in this case,

(

BT BWf ⊗ I2

)

q̄ = 0 does

not hold only when q ∈ Φ, as was the case in Theorem
9. Thus (i) cannot hold if G is not a tree. We conclude
that (i) and (ii) hold only if G is a tree. ♦

The last result states that if G contains cycles, then
we can not design a control law of the form (13) that
stabilizes the agents to the desired relative distances.

5 Conclusions

We used the spectral properties of the incidence matrix
to provide solutions to two multi-agent network control
problems. In particular, we first considered the prob-
lem of state agreement with quantized communication
in continuous systems, and then looked into the problem
of distance-based formation control. In both cases, sta-
bilizing control laws were provided for the case of tree
graphs. This topology is directly related to the null space
of the incidence matrix, thus making its role evident in
these cases of networked control problems.
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