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Abstract: This paper proposes a controller for safe lane change manoeuvres of autonomous
vehicles using high-order control barrier and Lyapunov functions. The inputs are calculated
using a quadratic program (CLF-CBF-QP) which admits short calculation times. The controller
allows for adaptive cruise control, lane following, lane switching and ensures collision avoidance
at all times. The novelty of the controller is the decentralized approach to the coordination
of vehicles without switching of controllers. In particular, vehicles indicate their manoeuvres
which influences their own safe region and that of neighboring vehicles. This is achieved by
introducing so-called coordination functions in the design of control barrier functions. In a
relevant simulation example, the controller is validated and its effectiveness is demonstrated.

Keywords: Multi-Vehicle Systems, Autonomous vehicles, Decentralized control and systems,
Cooperative navigation, Motion control

1. INTRODUCTION

The automotive industry evolves towards autonomous ve-
hicles, promising more energy efficient travels, reduced
accidents due to the elimination of human error, and
higher traffic efficiency. Following the taxonomy proposed
in Mariani (2020), lane changing (or ramp merging) can
be classified as competitive and task-oriented, and is one
of the key coordination problems for autonomous vehicles,
for which several approaches are proposed with differing
amount of decision autonomy for the individual vehicles.
Approaches with a centralized controller are often applied
in a platooning scenario, where vehicles communicate with
each other (V2V) or with a coordinator. In Lu (2003) and
Rios-Torres (2017), an automated ramp merging manoeu-
vre is proposed with V2V communication and a centralized
coordinator. In Awal (2013), a centralized approach is used
but all calculations are carried out on a leader vehicle. In
Scholte (2022), the platoon merging is proposed without
coordinator. Instead, a combination of pre-existing pla-
tooning controllers and MPC is used. In Werling (2010),
an optimal trajectory is planned for vehicle following, ve-
locity keeping and collision avoidance. Other works explore
reinforcement learning for decision making and control of
lane changing situations (Shi, 2019).

In order to ensure the satisfaction of safety constraints by
means of ensuring the invariance of the set of ”safe states”,
we use Control Barrier Functions (CBF) (Wieland, 2007).
Control Lyapunov Functions (CLF) can be used in com-
bination with CBFs in a quadratic program (CLF-CBF-
QP) (Romdlony, 2014). Whereas CBFs work as a safety
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filter and guarantee the satisfaction of safety constraints,
CLFs ensure asymptotic stability. For constraints con-
cerning states that cannot be ”directly” controlled, so-
called higher order constraints, Tan (2021) and Xiao and
Belta (2021) propose high-order control barrier functions
(HOCBF).

In the context of vehicle coordination, approaches based on
the combination of CBF and CLF have been considered in
multiple works. A CLF-CBF-QP is used in Ames (2014) for
adaptive cruise control. In He (2021), the CLF-CBF-QP
approach is used in combination with a rule-based control
strategy. In Xiao (2021), CLFs and CBFs are used in
an optimization problem to find a collision-free trajectory
that leads to the least violation in a rule priority structure.

In this paper, we propose a novel coordination approach
for lane switching and adaptive cruise control. It is based
on the assumption made by one vehicle that neighboring
vehicles behave in a particular way. In return, the vehicle
guarantees that it will exhibit the same behavior towards
its neighbors. In order to account for the complexity
of the lane switching task, coordination functions are
introduced such that CLF-CBF-QP approaches become
applicable. The proposed control strategy is completely
decentralized and only relies on sensor measurements or
V2V communication. It can be combined with a high level
traffic coordinator that prescribes reference velocities and
times for lane switching. However, this is not necessary for
the provided safety guarantees.

The remainder is as follows. Sec. 2 reviews CBFs and CLFs
and introduces their higher order version. Sec. 3 presents
the control approach and derives safety guarantees. The
controller’s effectiveness is demonstrated with a simulation
in Sec. 4. Concluding remarks are given in Sec. 5.



2. PRELIMINARIES

We consider an input-affine system

ẋ = f(x) + g(x)u, (1)

with initial condition x(t0) = x0, x ∈ X ⊆ Rn, u ∈ U ⊆
Rm and X , U denote the state and input space, respec-
tively. The functions f : X → Rn and g : X → Rn×m

are continuous and locally Lipschitz. A class K function
α : R≥0 → R≥0 is a continuous and strictly increasing
function with α(0) = 0 (Khalil, 2015). Furthermore, an
extended class K function γ : R → R is continuous and
strictly increasing function with γ(0) = 0. Since higher-
order systems are considered, the relative degree r of a
function is defined.
Definition 2.1. (Relative degree Khalil (2015)): Let b :
X → R be a rth-order differentiable function. The function
b has relative degree r on X with respect to (1) if

Lg L
i
f b(x) = 0, i = 1, 2, ..., r − 2;

Lg L
r−1
f b(x) ̸= 0

(2)

for all x ∈ X .

Lfb(x) and Lgb((x)) denote the Lie derivatives of b(x)
along the vector fields f and g, respectively.

2.1 High-Order Barrier Functions

In order to ensure safety, the concept of High-Order
Control Barrier Functions (HOCBF) is introduced. For a
differentiable function b : X → R, we define the superlevel
set C as

C := {x ∈ X | b(x) ≥ 0}. (3)

Moreover, we define ψi : X × T → R, i = {1, 2, ..., r}, and
T = [t1, t2] ⊆ R as closed time interval, as

ψ0(x) = b(x), (4a)

ψi(x) = ψ̇i−1(x) + γi(ψi−1(x)), (4b)

where γi is an extended class K function. For each function
ψi(x), the corresponding set Ci, i = {1, 2, ..., r}, is defined
as

Ci := {x ∈ X | ψi−1 ≥ 0}. (5)

Definition 2.2 (High-Order Control Barrier Function
(HOCBF)). Let functions ψi(x) and sets Ci, i = {1, 2, ..., r−
1}, be defined by (4b) and (5), respectively. The differ-
entiable function b : X → R with relative degree r is a
High-Order Control Barrier Function (HOCBF) for con-
trol system (1), if there exists an extended class K function
γr such that for all x ∈ X

sup
u∈U

[Lf ψr−1(x) + Lg ψr−1(x)u] ≥ −γr(ψr−1(x)). (6)

If r = 1, we call b(x) a control barrier function (CBF)
(Ames, 2017). The above definition leads us to input sets

UHOCBF(x) := {u ∈ U | Lf ψr−1(x) + Lg ψr−1(x)u

≥ −γr(ψr−1(x))}. (7)

Theorem 1. (Tan, 2021): Consider an HOCBF b for
control system (1). Then any locally Lipschitz continuous
control u(x) ∈ UHOCBF(x) applied to system (1) renders
the set C :=

⋂r
i=1 Ci forward invariant and asymptotically

stable.

2.2 High Order Control Lyapunov Function

Analogously to HOCBFs, we introduce High Order Con-
trol Lyapunov Functions (HOCLF), in order to ensure
asymptotic stability. We define a series of functions ηi :
X → R, i = {1, 2, ..., r},

η0(x) = −V̇ (x)− α(V (x)), (8a)

ηi(x) = η̇i−1(x) + µi(ηi−1(x)), (8b)

where V (x) is a Lyapunov function (Khalil, 2015), α is a
class K function and µi are extended class K functions.
Superlevel sets Si, i = {1, 2, ..., r}, are defined as

Si := {x ∈ X | ηi−1(x) ≥ 0}. (9)

Definition 2.3 (High-Order Control Lyapunov Func-
tion (HOCLF)). Let functions ηi(x) and sets Si, i =
{1, 2, ..., r}, be defined by (8) and (9), respectively. A dif-
ferentiable function V : X → R≥0 with V (0) = 0 and
V (x) > 0 for all x ∈ X , x ̸= 0, is a HOCLF for (1)
if there exist differentiable extended class K functions µi,
i = {1, 2, ..., r}, and a class K function α such that

V̇ (x) ≤ −α(V (x)), (10a)

sup
u∈U

[Lf ηr−1(x) + Lg ηr−1(x)u] ≥ −µr(ηr−1(x)). (10b)

If r = 1, we call V (x) Control Lyapunov Function (CLF)
(Khalil, 2015). For an HOCLF, we define the input set

UHOCLF(x) = {u ∈ U | Lf ηr−1(x) + Lg ηr−1(x)u

≥ −µr(ηr−1(x))}. (11)

Theorem 2. Let the origin be an equilibrium point of (1),
i.e., 0 = f(0) + g(0)u for some u ∈ U . Furthermore,

let V (x) be a HOCLF and V̇ (x(0)) ≤ −α(V (x(0))).
Then, any locally Lipschitz continuous controller u(x) ∈
UHOCLF(x) asymptotically stabilizes the origin.

Proof. As V̇ (x(0)) ≤ −α(V (x(0))) holds initially, the set
where (10a) holds is rendered invariant by (10b) according
to Theorem 1. Then, asymptotic stability follows from
(Khalil, 2015, Thm. 3.3).

2.3 Optimization Problem

Altogether, the optimization problem for computing in-
put u is given as a quadratic program (QP)

min
u ∈ U, δ ∈ R

1

2
uTHu+ p · δ2 (12a)

s.t.
Lf ψr−1(x) + Lg ψr−1(x)u

≥ −γr(ψr−1(x))
(12b)

Lf ηr−1(x) + Lg ηr−1(x)u

≥ −µr(ηr−1(x)) + δ,
(12c)

with a positive-definite matrix H ∈ Rm×m, a scalar
p > 0. Constraint (12b) is a safety constraint; (12c) is
a stabilization constraint relaxed with a slack variable δ.

Next, we generalize the QP for multiple HOCBFs bk ∈
{b1, b2, ..., bq}, q ≥ 1, and HOCLFs Vj ∈ {V1, V2, ..., Vh},
h ≥ 1, such that we can take multiple objectives into
account. For each bk, we denote the input set (7) as
Uk,HOCBF, and for each Vj the input set (11) as Uj,HOCLF.
Similarly for each function bk, the corresponding functions
ψi, i = {1, ..., r}, as defined in (4) are denoted by ψk,i,



and for each function Vj , the corresponding functions
ηi, i = {1, ..., r}, as defined in (8) are denoted by ηj,i.
Moving all terms in (12b)-(12c) to the left-hand side and
summarizing them in stack vectors yields

ψ(x) :=


Lf ψ1,r−1(x) + Lg ψ1,r−1(x)u

+γr(ψ1,r−1(x))
...

Lf ψq,r−1(x) + Lg ψq,r−1(x)u
+γr(ψq,r−1(x))

 , (13a)

η(x, δ) :=


Lf η1,r−1(x) + Lg η1,r−1(x)u

+µ1,r(η1,r−1(x))− δ1
...

Lf ηh,r−1(x) + Lg ηh,r−1(x)u
+µh,r(ηh,r−1(x))− δh

 , (13b)

where δ = [δ1, ..., δh]
T is the vector of all slack variables.

Then, the QP with multiple HOCLFs and HOCBFs is

min
u ∈ U, δ ∈ R

1

2
uTHu+

1

2
δTPδ (14a)

s.t. ψ(x) ≥ 0 (14b)

η(x, δ) ≥ 0, (14c)

with positive-definite matrices P ∈ Rh×h and H ∈
Rm×m. In order to exclude contradicting objectives, we
assume that C := (

⋂q
k=1 Ck) ̸= ∅ and UHOCBF(x) :=

(
⋂q

k=1 Uk,HOCBF(x)) ̸= ∅, ∀x ∈ C. In Tan (2022), such
HOCBFs are called compatible. Analogously, we say that

HOCLFs Vj are compatible if S := (
⋂h

j=1 Sj) ̸= ∅ and

UHOCLF(x) := (
⋂h

j=1 Uj,HOCLF(x)) ̸= ∅ for all x ∈ S.
As a direct consequence of Thm. 1 and 2, we obtain the
following result.
Corollary 1. Consider the optimization problem (14). If
the (HO)CBFs bk, k = {1, ..., q}, are compatible, then
u(x) minimizing (14) renders C forward invariant and
asymptotically stable on X . Let the origin be an equilibrium
point of (1). If additionally δ = 0 and (HO)CLF in (13b)
are compatible, i.e., S ̸= ∅ and UHOCLF(x) ̸= ∅, then the
origin is asymptotically stable.

2.4 Control Problem

We consider a road with three lanes, each of width w, and
vehicles as depicted in Fig. 1. The neighboring vehicles of
the ego-vehicle (E) are denoted with indices according to
their position relative to the ego-vehicle. The ego-vehicle
determines the position of neighbouring vehicles through
its sensors (with omnidirectional sensor range rS) or V2V
communication and decides whether they are in front (F),
in the back (B), on the same lane (0), on a lane to the right
(-1) or on a lane to the left (+1) 1 . For example, index
+1B denotes a vehicle behind the ego-vehicle on the lane
to the left. If in one of these positions no vehicle is within
the sensor range, a mock vehicle is placed at distance rS .
Thereby the worst case is assumed that a neighboring
vehicle might be located just outside of the sensor range.
Moreover, each vehicle has the objective to follow a lane.
Each lane is denoted by an integer ℓ ∈ {1, 2, 3}. All vehicles
are modeled as (nonholonomic) unicycles with dynamics

1 For neighbouring vehicles with identical x-coordinate as the ego-
vehicle: vehicles on the left lane (+1) are considered to be in front (F),
vehicles on the right lane (-1) are considered to be in the back (B).

Fig. 1. Road with three lanes with width w, denoted by
ℓ ∈ {1, 2, 3}: indices and states of the ego-vehicle and
neighboring vehicles.

ẋ = v cos (Ψ)

ẏ = v sin (Ψ)

Ψ̇ = ω

(15)

with states [x, y,Ψ]T , where x, y denote the vehicle’s posi-
tion, Ψ its orientation, and inputs u = [v, ω]T , where v de-
notes the vehicle’s longitudinal velocity and ω its angular
velocity. We denote the states of the ego-vehicle as xE :=
[xE , yE ,ΨE ], of vehicle 0F as x0F := [x0F , y0F ,Ψ0F ] and
correspondingly for the other neighboring vehicles. Fur-
thermore, we define the set of all indices of neighboring ve-
hicles as N := {+1F ,+1B, 0F , 0B,−1F ,−1B}; the states
of the ego-vehicle and its neighbors as x := [xT

E ,x
T
i∈N ]T =

[xT
E , x

T
+1F , x

T
+1B , x

T
0F , x

T
0B , x

T
−1F , x

T
−1B ]

T .

In this paper, the objective is to develop a decentralized
control strategy for

• safe lane switching and lane following: ensure a safe
distance along the x-coordinate between ego-vehicle E
and neighbouring vehicles i ∈ N (mini∈N |xE −
xi| > d, with safety distance d ≥ 0) and manoeuvre
ego-vehicle E to a desired lane (limt→∞ yE = yref);

• adaptive cruise control (ACC): follow a vehicle in a
safe distance (mini∈N |xE − xi| > 0) and adjust the
velocity (limt→∞ vE = min{vref, v0F }).

The longitudinal reference velocity vref and the vertical
reference position on the lane yref are set by the driver or
a high level traffic coordinator.

3. CONTROL APPROACH

3.1 Reference tracking

We use an HOCLF to steer the vehicle to the reference
lane yref and follow it. A candidate for such an HOCLF is

V (x) =
1

2
(yref − yE)

2. (16)

Lemma 1. The function V (x) is a HOCLF for (15) with
relative degree r = 2.

Proof. V (x) is differentiable, V (yref) = 0 and V (x) > 0,
∀x ∈ X , yE ̸= yref. Based on (8a), we get η1,0(x) = (yref−
yE)vE sin (ΨE)− α(V (x)). Since LgV (x) = 0 for ΨE = 0,
it is r ̸= 1. However, LgLfV (x) ̸= 0 ∀x ∈ X , hence r = 2,
and V (x) is a HOCLF based on Def. 2.3.

As the vehicle’s velocity is a control input, we can directly
incorporate the objective on the reference velocity vref by



vE − vref = 0. (17)

Since safety constraints, which are introduced next, have
always precedence over other control objectives, we relax
stability and tracking constraints (16) and (17) below with
slack variables.

3.2 Construction of safety constraints

Safe distance keeping to preceding vehicle: We choose the
continuous differentiable candidate CBF

b1(x) = x0F − xE − τDvE . (18)

Here, τDvE is a safety distance which depends on the
velocity of the ego-vehicle vE and a time constant τD > 0.

Safe distance keeping to vertically neighboring vehicles:
To this end, we introduce a strictly increasing, continu-
ously differentiable function λ : R → [0, 1] as well as a
continuously differentiable function θ : X ×X ×X → R≥0.
The function θ is the input to λ and defined as

θ(x1, x2, v2) :=
x1 − x2
τDv2

, (19)

where x1 and x2 are x-coordinates of two distinct vehicles
with x1 > x2, and v2 is the velocity of the second vehicle.
θ can be viewed as a percentage of safety distance τDv2.
Function λ has the following properties:

θ(x1, x2, v2) = 0 ⇒ λ(θ(x1, x2, v2)) = 0 (20a)

θ(x1, x2, v2) = 0.9 ⇒ λ(θ(x1, x2, v2)) = 0.5 (20b)

θ(x1, x2, v2) ≥ 1 ⇒ 1 ≤ λ(θ(x1, x2, v2)) ≤ 1.01. (20c)

λ can be viewed as a percentage of the lane width. A
feasible choice of λ, fulfilling the assumptions above, is

λ(θ(x1, x2, v2)) :=
0.5

0.9
· θ(x1, x2, v2) if θ(x1, x2, v2) ≤ 0.9

a1(θ(x1, x2, v2) + a2)
3 + a3 if 0.9 < θ(x1, x2, v2) ≤ 1

1

1 + e−β1(θ(x1,x2,v2)+β2)
+ β3 if θ(x1, x2, v2) > 1,

(21)
with design parameters a1, a3, β1, β3 ∈ R>0 and a2, β2 ∈
R<0, chosen such that λ is differentiable. Respectively
for each vehicle -1B, -1F, +1B, +1F, we get candidate
HOCBFs

b2(x) := yE − yℓmin + w · λ(θ(xE , x−1B , v−1B)), (22a)

b3(x) := yE − yℓmin + w · λ(θ(x−1F , xE , vE)), (22b)

b4(x) := w · λ(θ(xE , x+1B , v+1B)) + yℓmax − yE , (22c)

b5(x) := w · λ(θ(x+1F , xE , vE)) + yℓmax − yE , (22d)

where ℓ denotes the lane and w the lane width; the lower
and upper bound of a lane ℓ are yℓmin := w · ℓ − w

2 + ϵ

and yℓmax := w · ℓ + w
2 − ϵ, with ϵ ≥ 0. The parameter ϵ

is introduced in order to prevent collisions exactly at the
middle line between two lanes. We show in Lemma 2 below
that (22) indeed are valid HOCBFs.

Safe distance keeping to vehicles ±1F: Similar to func-
tion λ before, we introduce a strictly decreasing, continu-
ous and differentiable function σ : R → [0, 1], as well as a

continuous and differentiable function ρ : X × X → R≥0.
The function ρ is the input to σ and defined as

ρ(y1, y2) :=
y1 − y2
w

, (23)

where y1 and y2 are the y-coordinates of two distinct
vehicles with y1 > y2. The function ρ can be viewed as a
percentage of lane width w. Function σ has the following
properties:

ρ(y1, y2) ≥ 0.9 ⇒ σ(ρ(y1, y2)) ≤ 0 (24a)

ρ(y1, y2) ≥ 0.5 ⇒ σ(ρ(y1, y2)) ≥ 0.9 (24b)

ρ(y1, y2) ≤ 0.3 ⇒ 1 ≤ σ(ρ(y1, y2)) ≤ 1.01. (24c)

σ can be viewed as a percentage of safety distance τDvE .
A feasible choice for σ is a sigmoid function of the form

σ(ρ(y1, y2)) =
s1

1 + es2(ρ(y1,y2)−s3)
− s4, (25)

with design parameters si ∈ R>0, i = {1, ..., 4}. Then, the
candidate CBFs for keeping a safe distance to vehicles ±1F
are

b6(x) = x−1F − xE − τDvE · σ(ρ(yE , y−1F )) (26a)

b7(x) = x+1F − xE − τDvE · σ(ρ(y+1F , yE)), (26b)

Lemma 2. The functions b2, b3, b4 and b5 are HOCBFs
with relative degree r = 2. b6 and b7 are CBFs. If −π

2 <
ΨE < π

2 , then b1 is a CBF.

Proof. For b2, Lgb(t,x) = 0 when ΨE = 0, hence r ̸= 1
based on Def. 2.1. Then, LgLfb(t,x) ̸= 0 ∀x, hence r = 2
and based on Def. 2.2, b2 is a HOCBF. Analogously for
b3, b4 and b5. For b6 and b7, Lgb(t,x) ̸= 0, ∀x ∈ X . For
b1 only if −π

2 < ΨE < π
2 . Hence, they are CBFs based on

Def. 2.2.

The assumption −π
2 < ΨE < π

2 is reasonable for vehicles
on a highway, since vehicles are not allowed to turn there.
The (HO)CBFs are summarized in Table 1.

3.3 Controller

As in (13), we summarize HOCBFs and HOCLFs as stack
vectors

ψ(x) :=



ḃ1(x) + γ(b1(x))
ψ2,r(x)
ψ3,r(x)
ψ4,r(x)
ψ5,r(x)

ḃ6(x) + γ(b6(x))

ḃ7(x) + γ(b7(x))


, (27a)

η(x, δω) := η1(x) + δω (27b)

where functions ψk,r for HOCBFs bk, k ∈ {2, 3, 4, 5},
are defined by (4), r denotes the relative degree and it
is r = 2 (cf. Lemma 2). Analogously, function η1 for
HOCLF V is defined by (8). The control inputs [vE , ωE ]

T

are determined by the QP

min
vE , δv, ωE , δω

Hvv
2
E +HωωE + pv · δ2v + pω · δ2ω (28a)

s.t. ψ(x) ≥ 0 (28b)

η(x, δω) ≥ 0 (28c)

(vE − vref) + δv = 0 (28d)

vE,min ≤ vE ≤ vE,max (28e)

ωE,min ≤ ωE ≤ ωE,max (28f)



Barrier function Type Description

b1(x) = x0F − xE − τDvE CBF Keeping distance in x-direction to 0F.

b2(x) = yE − yℓmin + w · λ(θ(xE , x−1B , v−1B)) HOCBF y lower bound based on distance to -1B.

b3(x) = yE − yℓmin + w · λ(θ(x−1F , xE , vE)) HOCBF y lower bound based on distance to -1F.

b4(x) = w · λ(θ(xE , x+1B , v+1B)) + yℓmax − yE HOCBF y upper bound based on distance to +1B.

b5(x) = w · λ(θ(x+1F , xE , vE)) + yℓmax − yE HOCBF y upper bound based on distance to +1F.

b6(x) = x−1F − xE − τDvE · σ(ρ(yE , y−1F )) CBF Keeping distance in x-direction to -1F.

b7(x) = x+1F − xE − τDvE · σ(ρ(y+1F , yE)) CBF Keeping distance in x-direction to +1F.

Table 1. Overview of barrier functions.

where Hv, Hω, pv, pω ∈ R≥0. By constraint (28d),
the reference velocity vref is tracked as closely as safety
constraints (28b) admit. Constraints (28e)-(28f) are input
constraints.

3.4 Theoretical guarantees

Consider QP (28). As an immediate consequence of Corol-
lary 1, any locally Lipschitz continuous controller u(x) ∈
UHOCLF(x) to vehicle dynamics (15) guarantees asymp-

totic stability at yE = yref if yref ∈
⋂5

k=1 Ci and [δv, δω] =
0. Furthermore, we can show the following.

Theorem 3. Let bi, i = 1, ..., 7, be (HO)CBFs defined

as in Table 1. Then, C =
⋂7

k=1 Ck is non-empty. More-
over, any locally Lipschitz continuous control u(x) ∈
UHOCBF(x) to the system (15) renders C forward invariant
and asymptotically stable.

Proof. At first, we show that C ≠ ∅. We start by consid-
ering all constraints on the x-coordinate. From b1 ≥ 0, we
obtain that x0F − τDvE ≥ xE and it follows {x | xE ∈
(−∞, x0F −τDvE ]} ⊆ C1. Similarly, we obtain from b6 ≥ 0
that x−1F − τDvE · σ ≥ xE and it follows {x | xE ∈
(−∞, x−1F − τDvE · σ]} ⊆ C6. Analogously, we obtain
from b7 ≥ 0 that {x | xE ∈ (−∞, x+1F − τDvE · σ]} ⊆ C7.
Consequently, as xE is not lower bounded,

⋂
k=1,6,7 Ck ̸= ∅.

Next, we consider the constraints on the y-coordinate.
From b2, we obtain that

b2(x) = yE − yℓmin + w · λ︸︷︷︸
≥0

≥ yE − yℓmin (29)

and thus

{x | yE ∈ [yℓmin, y
ℓ
max]} = {x | yE − yℓmin ≥ 0}

⊆ {x | b2(x) ≥ 0} = C2.
(30)

By proceeding analogously for b3, b4, b5, we obtain
{x | yE ∈ [yℓmin, y

ℓ
max]} ⊆

⋂5
k=2 Ck. Altogether, we have

C =
⋂7

k=1 Ck ̸= ∅.
At last, as functions bk, k = 1, ..., 7, are (HO)CBFs due to
Lemma 2, C is forward invariant and asymptotically stable
according to Corollary 1.

3.5 Coordination principle

In order to illustrate the concept of vehicle coordination,
a lane change manoeuvre is shown in Fig. 2. The ego-
vehicle (red) changes from lane ℓ = 2 (index 0) to lane 3
(index +1). Another vehicle (black) denoted by +1F is
ahead of the ego vehicle on the neighboring lane with
y+1F = (ℓ+1)w. The red area denotes the unsafe region for
the ego-vehicle, i.e., where bk < 0 for some k = {1, ..., 7}.

(a) (b)

(c) (d)

Fig. 2. Safe region of the ego-vehicle (red) during lane
switching.

We define the safe set to bk as Ck := {x = [xE , yE ,ΨE ,

xi∈N ]T | bk(x) ≥ 0} and C :=
⋂7

k=1 Ck.
At first observe that the ego-vehicle can move freely on its
lane independently of the position of neighbouring vehicles
(Fig. 2a), i.e., {x |yE ∈ [yℓmin, y

ℓ
max]} ⊆ C. This has already

been shown in the proof of Thm. 3 in (29)-(30). Thus, we
conclude that the ego-vehicle can always manoeuvre to
yE = yℓmax independently of the states of the neighboring
vehicles.

If the ego-vehicle manoeuvres to yE = yℓmax, then y+1F −
yE = y+1F −yℓmax = (ℓ+1)w−(ℓ+ 1

2 )w = w
2 , and it follows

from (24b) that σ(ρ(y+1F , yE)) ≥ 0.9. Furthermore, we
obtain from b7 ≥ 0 also that x+1F −xE ≥ 0.9 τDvE , which
leads to λ(θ(x+1F , xE , vE)) = 0.5 according to (20b).
Consequently, we have

b5(x) = w · λ︸︷︷︸
=0.5

+yℓmax − yE

and thus

{x|yE ∈ (−∞,
w

2
+ yℓmax], x+1F − xE ≥ 0.9 τDvE}

= {x | 0.5w + yℓmax ≥ yE , x+1F − 0.9 τDvE ≥ xE}
⊆ {x | b5(x) ≥ 0, b7(x) ≥ 0} = C5 ∩ C7.

Hence, we can conclude that once the ego-vehicle reaches
yE = yℓmax, the center of lane 3, which is (ℓ+ 1)w = 3w =
w
2 +yℓmax, is also contained in the safe set C. In Fig. 2b-2d,
the vehicle eventually switches to lane 3.

In summary, the functions λ and σ couple and coordinate
the safe regions in x- and y-direction and are therefore
called coordination functions. Since vehicles are not co-
ordinated by a high level traffic coordinator this control
approach is decentralized.



a1 a2 a3 β1 β2 β3

234.14 -0.872 0.4949 1209.2 -0.9962 0.01

s1 s2 s3 s4 τD rS
1.03 16 0.64 0.02 0.9 [s] 100 [m]

Hv Hω pv pω
1 70,000 1e9 1e9

Table 2. Simulation parameters.

Fig. 3. Scenario 2: adaptive cruise control with lane switch-
ing. The vehicle shadows represent time instances
t = 0, ..., 6.

4. SIMULATION

The proposed controller is validated in a numerical simula-
tion. We consider a highway with two lanes of width w with
2-3 identical autonomous vehicles. The vehicles behave
according to their kinematic model as given in (15). All
vehicles calculate their input via the same CLF-CBF-
QP (28) with parameters as given in Table 2.

A video illustrates the simulation results 2 . The video
shows three scenarios. In each of the scenarios, a further
task is added: Whereas in the first scenario, a vehicle
only needs to follow another vehicle in a safe distance,
in scenario two a lane change is added. In the third
scenario, the neighboring vehicles need to additionally
open a gap before the lane change is completed. Due to
space limitations, we only show the simulation results of
the second scenario in Fig. 3, where a vehicle switches the
lane in front of a neighbouring vehicle. The simulation is
implemented in Matlab and runs on an Intel Core i7 1.3
GHz with 32 GB RAM. The optimization is solved using
the function fmincon. The average computation time for
the control input is 0.096 sec.

5. CONCLUSION

In this work, a decentralized controller based on a CLF-
CBF-QP is presented which does not require to switch
between several controllers. The controller enables au-
tonomous driving on a lane with adaptive cruise control,
and allows for lane switching without collisions. The nov-
elty of the approach is that the vehicles indicate their
objective by manoeuvres. To this end, we introduced co-
ordination functions for coordinating the vehicles’ safe
regions.
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