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Abstract: This paper addresses the problem of cooperative control of leader-follower multi-
agent systems under local signal temporal logic (STL) tasks in a distributed fashion, where the
overall system is composed of several leader-follower subsystems with coupled dynamics. In this
work, only the leaders know the related STL specifications and are designed to drive the followers
in a way such that the STL specifications are globally satisfied. Under the local feasibility
assumption, we propose a funnel-based control approach for each leader-follower subsystem
such that the local STL specifications are achieved, which further implies the global satisfaction
of all STL specifications. In order to enforce the satisfaction of the STL formulas, the funnel
parameters are appropriately designed to prescribe certain transient behavior that constrains
the closed-loop trajectories. The proposed approach is illustrated by a simulation example.
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1. INTRODUCTION

Temporal logics show the ability to express more complex
and high-level task specifications that expand beyond the
standard control objectives. Compared with the formal
methods (Belta et al., 2017) based approaches for single
agent systems, e.g., (Kress-Gazit et al., 2009), the con-
sideration in a multi-agent setup can include more real
world applications such as multi-robot coordination. The
multi-agent case needs further analysis on the couplings
with respect to dynamics or task specifications. Signal
Temporal Logic (STL) (Maler and Nickovic, 2004) which is
based on continuous-time signals can be used to deal with
quantitative spatiotemporal constraints for multi-agent
systems since it allows both time and space constraints.

In this paper, we consider a leader-follower setup where
a group of agents with advanced capabilities is selected
as leaders in order to drive the remaining follower agents
in a way such that the specified tasks are satisfied. Such
complex and high-level tasks are represented by STL spec-
ifications which characterize both time and space con-
straints. In order to tackle the couplings with respect to the
dynamics and STL specifications, a leader-follower multi-
agent system is treated as a composition of several leader-
follower subsystems through their coupled dynamics. For
each subsystem, only the leaders know the STL speci-
fications and their controllers are designed to fulfill the
tasks, while the followers are indirectly guided through
the dynamic couplings with the controlled leaders.
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Prescribed performance control (PPC) (Bechlioulis and
Rovithakis, 2008) or funnel control (Berger et al., 2018;
Ilchmann et al., 2005) is utilized in this work in order to
enforce the satisfaction of the STL formulas by prescribing
certain transient behavior of the funnels that constrain the
closed-loop trajectories. Related research within a similar
leader-follower framework mainly focuses on controllabil-
ity (Ji et al., 2006) or leader selection problems (Fitch
and Leonard, 2016). When it comes to the control de-
sign aspects, (Chen and Dimarogonas, 2020) proposes a
distributed prescribed performance control strategy for
leader-follower multi-agent systems to achieve formation
tasks within predefined transient constraints. On STL
specifications for multi-agent systems, a robust funnel-
based control strategy is proposed in (Lindemann and
Dimarogonas, 2019) for coupled multi-agent systems. In
our previous work (Chen and Dimarogonas, 2022), we have
considered control of leader-follower multi-agent systems
under a single global STL task in a centralized manner. In
this work, we instead consider leader-follower multi-agent
systems which are composed of several leader-follower sub-
systems through dynamic couplings. Each subsystem may
have multiple leaders and each leader is equipped with
a local STL specification. We aim to design only leader
controllers and in a distributed fashion such that all local
STL specifications are satisfied, which further guarantees
the global satisfaction of the STL tasks under the presence
of dynamic couplings and task dependency.

The rest of the paper is organized as follows. In Section
2, we introduce preliminaries and formulate the problem.
Section 3 presents the main result by proposing a funnel-
based approach for coupling leader-follower multi-agent
systems under certain fragments of local STL formulas.



The results are verified by a simulation example in Section
4. Section 5 includes conclusions and future work.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Leader-follower Multi-agent Systems

We consider M leader-follower multi-agent subsystems Si
under undirected communication graphs (Mesbahi and
Egerstedt, 2010) Gi = (Vi, Ei), i ∈ I = {1, . . . ,M} with
the cardinality of Vi as |Vi| = ni and

∑
i∈I ni = N .

Then, the respective vertices sets are indexed as Vi ={
(
∑i
j=1 nj)− ni + 1, . . . ,

∑i
j=1 nj

}
. The edge sets are

Ei = {(a, b) ∈ Vi × Vi | b ∈ Na ⊂ Vi} where
Na ⊂ Vi denotes the neighbor of agent a in set Vi.
Suppose that for each subsystem we have nLi leaders and
nFi followers with the respective vertices set as VLi ={
(
∑i
j=1 nj)− nLi + 1, . . . ,

∑i
j=1 nj

}
and VFi = Vi \ VLi

such that ni = nLi + nFi . Suppose that the overall system
S is composed of the above leader-follower subsystems
under the connected and undirected graph G = (V, E) with
V = ∪i∈IVi and E = ∪i∈IEi∪Ec, where Ec = {(a, b) ∈ Vi×
Vj | b ∈ Na ⊂ V, i ̸= j} is the edge set that connects
different subsystems Si,Sj , i ̸= j. G is connected in the
sense that for any subsystems Si,Sj , i ̸= j, there exists a
path from Gi to Gj . We can further define the respective
leader and follower agents sets of G as VL = ∪i∈IVLi ,
VF = ∪i∈IVFi and V = VL ∪ VF . Now the neighbor of
agent a in set V is defined as Na = {b ∈ V | (a, b) ∈ E}.
Let xk ∈ Rn be the state of agent k ∈ V, and the state
evolution of agent k is governed by the following dynamics:

ẋk =
∑
l∈Nk

(xl − xk) + bkuk, (1)

with bk = 1 if k ∈ VL, and bk = 0 if k ∈ VF . For
each leader-follower subsystem Si, i ∈ I, we derive the
dynamics of Si by stacking (1) for k ∈ Vi:

Si : ẋi = −(Li ⊗ In)xi + (Ci ⊗ In)x+ (Bi ⊗ In)ui, (2)

where xi ∈ Rnni is the stacked state of all xk, k ∈ Vi,
ui ∈ RnnLi is the input for Si by stacking uk, k ∈ VLi ,
x = [x1, . . . ,xM ]T ∈ RnN , Li ∈ Rni×ni is the graph
Laplacian (Mesbahi and Egerstedt, 2010) for Gi, Ci ∈
Rni×N represents the dynamic couplings between Si and

Sj indicated through Ec, j ∈ I \ {i}, and Bi =
[
0
nF
i

×nL
i

I
nL
i

]
.

According to (2), the overall dynamics of the leader-
follower multi-agent system S are derived as follows:

S : ẋ = −(L⊗ In)x+ (B ⊗ In)u, (3)

with u = [u1, . . . ,uM ]T ∈ RnnL and nL =
∑M
i=1 n

L
i , L =

diag(L1, . . . , LM ) + [CT1 , . . . , C
T
M ]T is the graph Laplacian

of G, and B = diag(B1, . . . , BM ).

2.2 Signal Temporal Logic (STL)

Let B := {⊤,⊥} with ⊤ and ⊥ as the boolean
true and false values, respectively. Signal temporal logic
(STL) (Maler and Nickovic, 2004) consists of predicates
µ : Rn → B which are obtained by evaluating a continu-
ously differentiable predicate function h : Rn → R and

assigning the respective true or false boolean value as:
µ = ⊤ if h(x) ≥ 0; µ = ⊥ if h(x) < 0, where x ∈ Rn.
The STL syntax is defined as

ϕ ::= ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | F[a,b]ϕ | G[a,b]ϕ, (4)

where ϕ1, ϕ2 are STL formulas and ¬,∧,F[a,b],G[a,b] are
the respective negation, conjunction, eventually, always
operators with 0 ≤ a ≤ b < ∞. The satisfaction re-
lation (x, t) |= ϕ represents that the continuous-time
signal x : R≥0 → Rn satisfies ϕ at time t. Robust
semantics have been introduced in (Fainekos and Pap-
pas, 2009) in order to quantify how robustly the signal
x satisfies the STL formula ϕ at time t. Space robust-
ness semantics (Donzé and Maler, 2010) for STL are
defined as: ρµ(x, t) := h(x(t)); ρ¬ϕ(x, t) := −ρϕ(x, t);
ρϕ1∧ϕ2(x, t) := min(ρϕ1(x, t), ρϕ2(x, t)); ρF[a,b]ϕ(x, t) :=

max
t1∈[t+a,t+b]

ρϕ(x, t1); ρ
G[a,b]ϕ(x, t) := min

t1∈[t+a,t+b]
ρϕ(x, t1).

Note that it holds that (x, t) |= ϕ if ρϕ(x, t) > 0. In this
work, we consider a fragment of the STL introduced above,
which is defined as follows:

ψ := ⊤ | µ | ¬µ | ψ1 ∧ ψ2 (5a)

ϕ := F[a,b]ψ | G[a,b]ψ | F[a,b]G[c,d]ψ (5b)

where ψ in (5b) and ψ1, ψ2 in (5a) are non-temporal
formulas of class ψ as in (5a), and where ϕ as in (5b) are
temporal formulas with [a, b], [c, d] as the time intervals. In
this work, we focus on the fragment of STL in the form of
(5a), (5b), which are expressive enough to tackle leader-
follower multi-agent planning tasks, e.g. formation control,
collision avoidance and connectivity maintenance.

2.3 Problem Statement

In this work, each subsystem Si is assigned with one local
STL formula ϕi, i ∈ I as in (5b), which can be further
decomposed to nLi local STL formulas ϕki , i ∈ I, k ∈ VLi as
in (5b) for each leader of Si (if Si has multiple leaders).
The local STL formula ϕki is only known to the leader
k ∈ VLi in Si. The local satisfaction of ϕki depends on only
one leader, i.e., k and the neighboring agents of leader k
in Si, which is a subset of agents Vϕk

i
in Si, i.e., Vϕk

i
∩

VLi = {k}, Vϕk
i
⊆ (Nk ∩ Vi ∪ {k}) ⊆ Vi. For each leader

k ∈ VLi of the subsystem Si which has multiple leaders,
we assume that there exists another leader j ∈ VLi of the
same subsystem such that Vϕk

i
∩ Vϕj

i
̸= ∅. This means

that for each subsystem Si, the local STL specifications
are coupled within Si. Otherwise, if ∀j ∈ VLi \ {k} for the
same subsystem such that Vϕk

i
∩ Vϕj

i
= ∅, we can further

decompose the subsystem Si into a subsystem with agent
set Vϕk

i
and a subsystem with agent set Vi\Vϕk

i
. Therefore,

the subsystems are defined based on the task dependency,
i.e., ∀k ∈ VLi ,∃j ∈ VLi \ {k} such that Vϕk

i
∩ Vϕj

i
̸= ∅.

Furthermore, the local satisfaction of ϕi depends on a
subset of agents Vϕi in Si, i.e., Vϕi ⊆ Vi, and also depends
on the dynamic couplings with Sj , j ∈ I \ {i}. Next, we
define the notion of local feasibility as follows.

Definition 1. (Local satisfaction and local feasibility) The
closed-loop signal xi : [0,∞) → Rnni of Si as in (2) locally
satisfies ϕi if and only if (xi, 0) |= ϕi. The formula ϕi for

Si is locally feasible if and only if ∃ui : [0,∞) → RnnLi
for (2) such that the closed-loop signal xi : [0,∞) → Rnni
locally satisfies ϕi.



If ∀i ∈ I, xi locally satisfies ϕi for all subsystems Si, i ∈ I,
we say that the signal x : [0,∞) → RnN globally satisfies
{ϕ1, . . . , ϕM}. The set of STL formulas {ϕ1, . . . , ϕM} is

globally feasible if ∃u : [0,∞) → RnnL for (3) such
that the closed-loop signal x : [0,∞) → RnN globally
satisfies {ϕ1, . . . , ϕM}. The objective of this work is defined
in Problem 1 under the local feasibility assumption as
indicated in Assumption 1.

Assumption 1. The local STL formula ϕi for each subsys-
tem Si, i ∈ I is locally feasible as per Definition 1.

Problem 1. Given a local STL formula ϕi as in (5b) for
each leader-follower subsystem Si, i ∈ I as in (2), which
can be further decomposed to nLi local STL formula
ϕki , i ∈ I, k ∈ VLi as in (5b) for each leader. Suppose that
Assumption 1 holds, design control strategies ui for Si
such that the closed-loop trajectory x : [0,∞) → RnN of
(3) globally satisfies {ϕ1, . . . , ϕM}.

3. ENCODING STL WITH PRESCRIBED
PERFORMANCE CONTROL

In this section, we propose an approach to synthesis-
ing a control strategy ui for the subsystem Si, i ∈ I
as in (2) such that the local STL formula ϕi as in
(5b) is satisfied. If Si contains more than one leader,
we first further decompose ϕi to nLi local STL formulas
ϕki , k ∈ VLi for each leader according to the task depen-
dency. Suppose that ϕi is the temporal formula as in
(5b) with the non-temporal formula ψi = ψi,1 ∧ · · · ∧
ψi,q, ϕ

k
i , k ∈ VLi only including the formulas ψi,j , j ∈

{1, . . . , q} such that Vψi,j ⊆ (Vϕi ∩Nk ∪ {k}), where Vψi,j
denotes the agents participating in ψi,j . If ϕki contains
conjunctions of the non-temporal formulas as in (5a), e.g.,
ϕki := F[ai,bi]ψ

k
i and ψki := ψki,1 ∧ · · · ∧ ψki,n, the non-

smooth robust semantics ρψ
k
i,1∧···∧ψki,n(x, t) can be replaced

by a smooth under-approximation ρψ
k
i,1∧···∧ψki,n(x, t) ≈

− 1
η ln(

n∑
j=1

exp(−ηρψ
k
i,j (x, t))) with the parameter η > 0.

We then utilize PPC to enforce the satisfaction of temporal
STL formulas by prescribing the transient behavior of the
non-temporal STL formulas within:

−pki (t) + ρki < ρψ
k
i (xi, 0) < ρki , i ∈ I, k ∈ VLi (6)

where ψki is the corresponding non-temporal formula inside
the F,G operators as in (5b). In order to guarantee that

ρϕ
k
i (xi, 0) > 0, we first prescribe a temporal behavior

to the related ρψ
k
i (xi, 0) by appropriately designing the

funnel pki (t) and the positive scalar ρki . pki (t) : R+ →
R+ \ {0} is a positive, smooth and strictly decreasing
performance function (Bechlioulis and Rovithakis, 2008),

and in this work we choose pki (t) := (pki,0−pki,∞)e−l
k
i t+pki,∞

with pki,0,p
k
i,∞, l

k
i as positive funnel parameters and we

have that pki,0 > pki,∞. In the sequel, these parameters are

designed in order to prescribe the behavior of ρψ
k
i (xi, 0). In

PPC, we first define an error term for each ρψ
k
i (xi, 0), i.e.,

eki (xi) = ρψ
k
i (xi, 0) − ρki , we then obtain the modulated

error as

ēki (xi, t) =
eki (xi)

pki (t)
(7)

and the related prescribed performance region D :=
(−1, 0). The transformed error is then defined as

εki (xi, t) = T ki (ē
k
i (xi, t)) := ln

(
−1 + ēki (xi, t)

ēki (xi, t)

)
, (8)

where T ki is the transformation function that defines a
smooth and strictly increasing mapping T ki : D → R. The
basic idea of PPC is to derive a control law such that the
εki (xi, t) is rendered bounded, which in turn implies (6).

3.1 Control design for temporal formulas using PPC

In this subsection, we propose a funnel-based control
strategy for Si, i ∈ I as in (2) such that the prescribed

behavior on ρψ
k
i (xi, 0) described as (6) can be achieved.

Then, in combination with the appropriately chosen fun-
nel parameters, we can further guarantee the transient
behavior that is characterized by the temporal formulas
(5b). The connection between the non-temporal formulas
(5a) and the temporal formulas (5b) is established by
designing the funnel parameters such that the satisfaction

of (6) will guarantee that 0 < ρϕ
k
i (xi, 0) < ρki holds.

For each temporal STL formula ϕi for Si, i ∈ I in the
form of (5b), we first define the so-called crossing time
as: t⋆,i = ai if ϕi = G[ai,bi]ψi; t⋆,i = a′i if ϕi = F[ai,bi]ψi;
t⋆,i = a′′i if ϕi = F[ai,bi]G[ci,di]ψi, where a

′
i ∈ [ai, bi] and

a′′i ∈ [ai + ci, bi + ci]. Note that for the subsystem Si
which has multiple leaders, the decomposed STL formulas
ϕki , k ∈ VLi will share the same time interval as ϕi. The
crossing time t⋆,i characterizes the instance that the lower
bound of the funnel, i.e., −pki (t)+ρ

k
i traverses across zero.

Next, the following assumption is assumed in this paper,
which also indicates the advanced capability of the leaders.

Assumption 2. Only the leaders k ∈ VLi of the leader-
follower subsystem Si know ϕki , i ∈ I. In addition

∂ρ
ψk
i (xi,0)
∂xk

, k ∈ VLi is a nonzero vector.

Now, recall the performance function pki (t) := (pki,0 −
pki,∞)e−l

k
i t+pki,∞ for each leader k ∈ VLi of the subsystem

Si. We propose a control strategy such that ρψ
k
i (xi, 0)

is always within the funnel (6) for all i ∈ I, k ∈ VLi .
Furthermore, by choosing the funnel parameters pki,0,p

k
i,∞

and lki appropriately, the satisfaction of (6) for all k ∈ VLi
ensures that (xi, t) |= ϕi.

Theorem 1. Given a local STL formula ϕi as in (5b) for
each leader-follower subsystem Si, i ∈ I as in (2) with the
decomposed local STL formula ϕki for each leader k ∈ VLi .
Suppose that Assumptions 1 and 2 hold. If the initial

conditions ρψ
k
i (xi(0), 0) are within the funnel (6), and it

further holds that

• for t⋆,i = 0, pki,0 ∈ (ρki − ρψ
k
i (xi(0), 0), ρ

k
i ]; p

k
i,∞ ∈

(0,min(pki,0, ρ
k
i )); l

k
i > 0; ρki > ρψ

k
i (xi(0), 0);

• for t⋆,i > 0, pki,0 ∈ (ρki − ρψ
k
i (xi(0), 0),∞); pki,∞ ∈

(0,min(pki,0, ρ
k
i )); lki = − 1

t⋆,i
ln(

ρki−pki,∞
pk
i,0

−pk
i,∞

); ρki >

ρψ
k
i (xi(0), 0),

then the control strategy



uk(xi, t) = −εki (xi, t)
∂ρψ

k
i (xi, 0)

∂xk
, i ∈ I, k ∈ VLi (9)

for each subsystem Si guarantees that the closed-loop
trajectory x : [0,∞) → RnN of (3) globally satisfies
{ϕ1, . . . , ϕM}, where εki (xi, t) is the transformed error
defined as in (8).

Proof. The proof is composed of two parts. In the first
part, we will prove that by applying (9), (6) is guaranteed
for each subsystem Si. In the second part, we prove that

the satisfaction of (6) enforces 0 < ρϕ
k
i (xi, 0) < ρki for all

leaders k ∈ VLi in Si, thus xi locally satisfies ϕi. Then,
since ∀i ∈ I, xi locally satisfies ϕi for all subsystems
Si, i ∈ I, we can further conclude that the closed-loop
trajectory x globally satisfies {ϕ1, . . . , ϕM}. The advances
when compared with our previous work (Chen and Di-
marogonas, 2022) involve the consideration of the coupled
dynamics between different subsystems and the coupled
local STL tasks within the subsystem. Furthermore, the
proposed control (9) is distributed.

Part 1: Step 1. Since the initial condition ρψ
k
i (xi(0), 0)

for each i ∈ I, k ∈ VLi is within the funnel (6), this
implies that the initial condition ēki (xi(0), t) is within
the prescribed performance region D according to (6),
(7). Inserting (9) to (2) for each k ∈ VLi , we obtain the
closed-loop dynamics for the leader-follower subsystem
Si as ẋi = fi(xi, ēi) = −(Li ⊗ In)xi + (Ci ⊗ In)x −
(Bi ⊗ In)ui(xi, t), where ēi is the stacked vector of all
ēki , k ∈ VLi and ui(xi, t) is the input vector for Si by
stacking (9) for all k ∈ VLi . We can denote ui(xi, t)

as ui(xi, t) = −Θεi, where Θ := diag

(
∂ρ
ψk
i (xi,0)
∂xk

)
∈

RnnLi ×nLi represents a block diagonal matrix with di-

agonal entries ∂ρ
ψk
i (xi,0)
∂xk

over k ∈ VLi , and εi is the

stacked vector of all εki , k ∈ VLi . By stacking all ẋi, we
have that ẋ = f(x, ē) := [fT1 (x1, ē1), . . . , f

T
M (xM , ēM )]T ,

where ē := [ēT1 , . . . , ē
T
M ]T . By calculating the deriva-

tive of ēki = (ρψ
k
i (xi, 0) − ρki )/p

k
i (t), we obtain ˙̄eki =(

∂ρ
ψk
i (xi,0)

T

∂xi
ẋi − ṗki (t)ē

k
i

)
/pki (t). Replacing ẋi, we derive

˙̄eki = ḡk(xi, ēi, t) = 1
pk
i
(t)

(∂ρ
ψk
i (xi,0)

T

∂xi
fi(xi, ēi) − ēki ṗ

k
i (t)).

Denote gi(xi, ēi, t) as the vector of all ḡk(xi, ēi, t), k ∈
VLi , let g(x, ē, t) := [gT1 (x1, ē1, t), . . . , g

T
M (xM , ēM , t)]

T , we
then have ˙̄e = g(x, ē, t). Next, we define z := [xT , ēT ]T ,
and ż = h(z, t) with h(z, t) = [fT (x, ē), gT (x, ē, t)]T . The
initial condition xi(0) is such that ēki (xi(0), 0) ∈ D, which
is an open set. We then define Di := {xi ∈ Rnni |
ēki (xi(0), 0) ∈ D, k ∈ VLi }, which is also an open, non-
empty and bounded set. Therefore, Dz := Dx × Dē is an
open, non-empty and bounded set as well with the initial
condition satisfying z(0) = [xT (0), ēT (x(0), 0)]T ∈ Dz,
where Dx := D1 × · · · × DM ⊂ RnN and Dē := D ×
· · · ×D ⊂ RnL . We now consider the initial value problem
ż = h(z, t) with z(0) ∈ Dz. We can verify that h(z, t)
is continuous on t due to continuity of pki (t) and ṗki (t).

Moreover, since the transformed function ln
(
− 1+ēki

ēk
i

)
is

locally Lipschitz continuous and ∂ρ
ψk
i (xi,0)
∂xi

is also locally

Lipschitz continuous due to the smooth approximation
discussed previously, we can conclude that h(z, t) is locally
Lipschitz on z. Hence, according to Theorem 54 of (Sontag,
2013), there exists a maximal solution z(t) of the initial
value problem ż = h(z, t) in a time interval [0, τmax) such
that z(t) ∈ Dz,∀t ∈ [0, τmax).

Step 2. Based on Step 1, we know that ρψ
k
i (xi(t), 0)

satisfies (6) for all t ∈ [0, τmax). This is due to the fact
that z(t) ∈ Dz,∀t ∈ [0, τmax), thus ē

k
i (xi(t), t) ∈ D,∀t ∈

[0, τmax), which in turn implies the satisfaction of (6) for
all t ∈ [0, τmax). We now consider the Lyapunov function

candidate V (εi) = 1
2ε
T
i εi with V̇ = εTi ε̇i. Taking the

derivative on (8), we have ε̇ki = − ˙̄eki
ēk
i
(1+ēk

i
)
. By replacing

˙̄eki which is derived in Step 1, we obtain

ε̇ki = − 1

pki (t)ē
k
i (1 + ēki )

(
∂ρψ

k
i (xi, 0)

T

∂xi
ẋi − ēki ṗ

k
i (t)

)
.

Then, stacking all ε̇ki for k ∈ VLi , V̇ can be obtained as

V̇ = εTi J(Γẋi − p), where J ∈ RnLi ×nLi is a diagonal
matrix with the diagonal entries − 1

pk
i
(t)ēk

i
(1+ēk

i
)
, k ∈ VLi ,

Γ ∈ RnLi ×nni is a matrix with row vectors ∂ρ
ψk
i (xi,0)

T

∂xi
, and

p ∈ RnLi is a vector with entries ēki ṗ
k
i (t). Replacing ẋi

by (2), we further obtain V̇ = εTi J(Γ
(
− (Li ⊗ In)xi +

(Ci ⊗ In)x + (Bi ⊗ In)ui

)
− p). We next discuss the

diagonal entries of J . Since the performance function

pki (t) := (pki,0−pki,∞)e−l
k
i t+pki,∞ is strictly decreasing, we

have pki,∞ ≤ pki (t) ≤ pki,0. Moreover, since ēki ∈ (−1, 0),

we achieve that 4
pk
i,0

≤ − 1
pk
i,0
ēk
i
(1+ēk

i
)

≤ − 1
pk
i
ēk
i
(1+ēk

i
)

≤
− 1

pk
i,∞ēk

i
(1+ēk

i
)
< ∞ holds ∀ēki ∈ D. Thus, each diagonal

entry of J is always positive and bounded and we know
that α1InLi ≤ J ≤ ᾱ1InL

i
with bounded parameters

α1, ᾱ1 > 0. We can further upper bound V̇ by

V̇ ≤ ∥εi∥∥J∥(∥Γ∥∥ − (Li ⊗ In)xi + (Ci ⊗ In)x∥+ ∥p∥)
+ εTi JΓ(Bi ⊗ In)ui.

Since ∂ρ
ψk
i (xi,0)

T

∂xi
, k ∈ VLi and (Li ⊗ In)xi are both

bounded for all t ∈ [0, τmax), and (Ci ⊗ In)x is bounded
due to Assumption 1, we can additionally upper bound
the term ∥J∥(∥Γ∥∥− (Li ⊗ In)xi + (Ci ⊗ In)x∥+ ∥p∥) by
a positive constant α2, which results in

V̇ ≤ α2∥εi∥+ εTi JΓ(Bi ⊗ In)ui. (10)

Next, we replace the control law (9) in a stacked form
ui(xi, t) = −Θεi similarly to Step 1 for the leaders in
(10), and derive that

V̇ ≤ α2∥εi∥ − εTi JΓ(Bi ⊗ In)Θεi. (11)

Recall that Γ ∈ RnLi ×nni is a matrix with row vectors
∂ρ
ψk
i (xi,0)

T

∂xi
and Θ := diag

(
∂ρ
ψk
i (xi,0)
∂xk

)
∈ RnnLi ×nLi . Due

to the structure of the Bi matrix and the fact that
Vϕk

i
∩ VLi = {k}, we have that Γ(Bi ⊗ In)Θ = ΘTΘ =

diag

(
∥∂ρ

ψk
i (xi,0)
∂xk

∥2
)
. According to Assumption 2 that

∂ρ
ψk
i (xi,0)
∂xk

, k ∈ VLi is a nonzero vector, we can obtain

that ΘTΘ ≥ α3InL
i

for some parameter α3 such that



∥∂ρ
ψk
i (xi,0)
∂xk

∥2 ≥ α3 > 0 for all k ∈ VLi . Recall J is also

a diagonal matrix satisfying α1InLi ≤ J , V̇ can be further

upper bounded by

V̇ ≤ α2∥εi∥ − α1α3∥εi∥2. (12)

From (12), we know that V̇ ≤ 0 as long as ∥εi∥ ≥
α2(α1α3)

−1. Therefore, we can conclude that the trans-
formed error is upper bounded by

∥εi∥ ≤ ϵi,⋆ = max
{
∥εi(0)∥, α2(α1α3)

−1
}
, (13)

∀t ∈ [0, τmax) (Khalil, 2002). Due to the boundedness of
∥εi∥ in t ∈ [0, τmax), we can conclude the boundedness of
each εki by a constant ϵki,⋆. Then, based on properties of

T ki , we can restrict ēki in a compact subset of D as

ēki (xi, t) ∈ [δki , δ̄
k
i ] ≜ [T ki

−1
(−ϵki,⋆), T ki

−1
(ϵki,⋆)] ⊂ D, (14)

where T ki
−1

is the inverse function of the transformed
function T ki ; such inverse function always exists since T ki
is a smooth and strictly increasing function.

Step 3. Finally, we prove that τmax can be extended to
∞. According to (14), we know that ēki (xi, t) ∈ Dk,∀t ∈
[0, τmax), where Dk = [δki , δ̄

k
i ]. Hence, Dk ⊂ D is a

nonempty and compact subset of D and it can be con-
cluded that ēki (xi, t) ∈ Dk,∀t ∈ [0, τmax). Now assume that
τmax < ∞, and according to Proposition C.3.6 of (Son-
tag, 2013), there then exists a t′ ∈ [0, τmax) such that
ēki (xi, t) /∈ Dk, which leads to a contradiction. Hence, we
conclude that τmax is extended to ∞, that is ēki (xi, t) ∈
Dk ⊂ D,∀t ≥ 0. Therefore εki is bounded for all t ≥ 0
and the boundedness of the transformed error εki implies

that ρψ
k
i (xi, 0) satisfies (6) for all t ≥ 0. We can conclude

that the satisfaction of (6) is guaranteed when applying
the control strategy (9).

Part 2: In this part, we will prove that the satisfaction

of (6) enforces that 0 < ρϕ
k
i (xi, 0) < ρki holds for all

k ∈ VLi under the designed funnel parameters, thus xi

locally satisfies ϕi. In general, the choices of the parameters

should guarantee the initial condition, i.e., ρψ
k
i (xi(0), 0)

is within the funnel (6). Moreover, −pki (t⋆,i) + ρki ≥ 0
should hold in order to enforce the satisfaction of the STL
formula (5b) by prescribing the transient behavior of the

funnel. For t⋆,i = 0, pki,0 ∈ (ρki − ρψ
k
i (xi(0), 0), ρ

k
i ] will

ensure that pki,0 > ρki − ρψ
k
i (xi(0), 0), which is equivalent

to −pki,0 + ρki < ρψ
k
i (xi(0), 0), and by further choosing

ρki such that ρψ
k
i (xi(0), 0) < ρki , the initial condition is

satisfied. Moreover, pki,0 ≤ ρki means that −pki (t⋆,i) +

ρki = −pki,0+ρ
k
i ≥ 0. Next, we use the fact that the function

−pki (t) + ρki is strictly increasing in order to conclude
on the satisfaction of the temporal STL formulas as in
(5b). For t⋆,i > 0, we can check similarly that the initial

condition holds, i.e., the initial condition ρψ
k
i (xi(0), 0) is

within the funnel (6). In addition lki = − 1
t⋆,i

ln(
ρki−pki,∞
pk
i,0

−pk
i,∞

)

results in −pki (t⋆,i) + ρki = −(pki,0 − pki,∞)e−l
k
i t⋆,i − pki,∞ +

ρki = 0, and thus we can also achieve the satisfaction of
the temporal STL formulas as in (5b) according to the
fact that −pki (t) + ρki is strictly increasing. Thus, we can
conclude that the control strategy (9) guarantees that

0 < ρϕ
k
i (xi, 0) < ρki holds for each ϕki as in (5b) by

appropriately choosing the parameters pki,0,p
k
i,∞ and lki as

above. Therefore, xi locally satisfies ϕi. Then, since ∀i ∈ I,
xi locally satisfies ϕi for all subsystems Si, i ∈ I, we can
further conclude that the closed-loop trajectory x globally
satisfies {ϕ1, . . . , ϕM}. 2

Remark 1. Assumption 2 mentions that ∂ρ
ψk
i (xi,0)
∂xk

is a
nonzero vector, which is used to avoid local optima that
may cause infeasibility issues. This assumption includes
some specific classes of robustness functions, e.g., concave
functions, and we can design the funnel parameters such
that local optima are avoided to guarantee Assumption 2.
It also requires that the leader k ∈ VLi is involved in the
task ϕki , which is indicated by the fact that Vϕk

i
∩VLi = {k}.

4. SIMULATION

In this section, we consider a simulation example which is
composed of three subsystems S1, S2 and S3 as shown in
Fig. 1, where grey and white nodes represent leaders and
followers, respectively. The dynamic couplings between
different subsystems come from the edges e1, e2, e3 that
connect different subsystems. The agents are initialized as
x1 = [0, 2]T , x2 = [4, 2]T , x3 = [2, 0]T , x4 = [6, 0]T , x5 =
[10, 0]T , x6 = [14, 0]T , x7 = [8, 2]T , x8 = [12, 2]T , x9 =
[16, 0]T , x10 = [20, 0]T , x10 = [18, 2]T . Each subsystem
is assigned with a local STL formula (5b). The task for
S1 is ϕ1 = F[0,2]G[1,3]ψ1, where ψ1 = ψ1,1 ∧ ψ1,2 with
ψ1,1 = (||x3−x1||2 < 2), ψ1,2 = (||x3−x2||2 < 2). The task
for S2 is ϕ2 = G[4,7]ψ2, where ψ2 = ψ2,1∧ψ2,2∧ψ2,3∧ψ2,4

with ψ2,1 = (||x7 − x4||2 < 2), ψ2,2 = (||x7 − x5||2 < 2),
ψ2,3 = (||x8−x5||2 < 2), ψ2,4 = (||x8−x6||2 < 2). ϕ2 can be
decomposed to each leader as ϕ72 = G[4,7]ψ

7
2 = G[4,7](ψ2,1∧

ψ2,2) for leader 7, and ϕ82 = G[4,7]ψ
8
2 = G[4,7](ψ2,3 ∧ ψ2,4)

for leader 8 according to task dependency. The task for S3

is ϕ3 = F[0,6]ψ3, where ψ3 = ψ3,1∧ψ3,2 with ψ3,1 = (||x11−
[16, 2]T ||2 < 1), ψ3,2 = (||x11−x10||2 < 2). We can observe
that ϕi only depends on the agents in Si, i ∈ {1, 2, 3}. S2

has two leaders such that their tasks ϕ72 and ϕ
8
2 are coupled.

1 2

4
5

3 6

7 8

9
10

11

S1

S2 S3

e1

e2
e3

Fig. 1. Leader-follower multi-agent system with 3 subsys-
tems S1, S2 and S3.

Next, we design the funnels for each task according to
Theorem 1. The performance function for ϕ1 is designed as

p31(t) = 7e−l
3
1t + 1 with t⋆,1 = 1, ρ31 = 2,p30,1 = 8,p3∞,1 = 1

and l31 = ln(7). Regarding subsystem S2 which has two
leaders, the performance function for ϕ72 is designed as

p72(t) = 14e−l
7
2t+2 with t⋆,2 = 4, ρ72 = 2,p70,2 = 16,p7∞,2 =

2 and l72 = 0.25 ln(7), and these parameters are the same
for ϕ82. The performance function for ϕ3 is designed as

p113 (t) = 7e−l
11
3 t + 1 with t⋆,3 = 5, ρ113 = 2,p110,3 =

8,p11∞,3 = 1 and l113 = 0.2 ln(7). The simulation results



when applying the control law (9) are shown in Fig. 2
and 3. Fig. 2 shows the evolution of the agents, where the
leaders and followers are represented by solid and hollow
circles, respectively. The initial formation is in black, while
the final formation is in blue. In Fig. 3, we plot the
evolution of the robustness functions (red curve) against
the corresponding funnels (black curve). We can see that
the performance functions enforce the satisfaction of the
corresponding tasks by prescribing the temporal behavior
of the lower bound of the funnels. Since all the robustness
functions evolve within the corresponding funnels, we can
conclude that the set of the STL tasks ϕi, i ∈ {1, 2, 3} is
satisfied by applying the control law (9).
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Fig. 2. Formation control of the agents under STL tasks
ϕ1, ϕ2 and ϕ3.
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Fig. 3. Evolution of the robustness functions against the
funnels (black curves).

5. CONCLUSIONS

In this paper, we have investigated the problem of co-
operative control of leader-follower multi-agent systems
under local signal temporal logic specifications. The overall
leader-follower multi-agent system is composed of several
leader-follower subsystems with coupled dynamics and
each leader is assigned with a local STL specification. Un-
der a local feasibility assumption, funnel-based distributed
control strategies have been proposed for the leaders to
enforce the satisfaction of STL formulas by appropri-
ately designing the funnel parameters such that the local

STL specifications are achieved, which further implies the
global satisfaction. Future work includes considering more
general class of STL formulas and deriving conditions on
the STL tasks and leader-follower graph topology such
that local feasibility is guaranteed.
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