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Abstract— In this work, we propose a distributed control
scheme for multi-robot systems in the presence of multiple
constraints using control barrier functions. The proposed
scheme expands previous work where only one single constraint
can be handled. Here we show how to transform multiple
constraints to a collective one using a smoothly approximated
minimum function. Additionally, human-in-the-loop control is
also incorporated seamlessly to our control design, both through
the nominal control in the optimization objective as well as a
safety condition in the constraints. Possible failure regions are
identified and a suitable fix is proposed. Two types of human-in-
the-loop scenarios are tested on real multi-robot systems with
multiple constraints, including collision avoidance, connectivity
maintenance, and arena range limits.

I. INTRODUCTION

Safety-critical control for dynamical systems has been
researched and discussed for a long time. One way to achieve
this is through control barrier functions (CBF), initially
proposed by [1] and later developed in [2]–[4]. They are
a convenient modular design tool based on the concept of
set forward invariance, i.e., the system state should always
remain in a safe set once it starts inside. This safety is
represented as a linear constraint on the input, which is
enforced using a computationally efficient implementation
that leverages quadratic programs such that a pre-designed
nominal controller is minimally modified to satisfy safety
requirements. This approach has been widely investigated
and applied with practical success.

CBFs are specially useful for the field of multi-agent
systems (MAS), where different safety criteria have been
explored, like inter-collision avoidance [5]–[8], connectivity
maintenance [7], [9], and temporal logic tasks [10]. These
are all solved either in a centralized manner [6], [9], where
one module has access to the states of all agents, or with
a pre-allocation scheme [5], [10] that distributes the linear
constraint among the agents involved in a feasible, but non-
optimal way.

Several works have been develop to create better dis-
tributed approaches to the CBF-induced quadratic program
(QP) among agents. In [11], the authors propose an on-
line ADMM-based distributed optimization scheme. Other
distributed optimization algorithms [12], [13] could also
be applied to this problem. These efficiently converge to
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the optimal solution, but no theoretical guarantees to the
satisfaction of the safety conditions can be asserted.

Moreover, [5], [10], [11] assume that each agent has access
to (part of) the states of the other agents that share a same
coupling constraint. Alternatives [14] that do not assume
any specific communication structure are limited and can
only obtain an approximate solution. In contrast, in [15]
a distributed implementation scheme to obtain the optimal
solution to the CBF-induced quadratic program for multi-
agent systems with a general connected communication
graph is proposed. This is achieved through an equivalent
quadratic program solved locally with an auxiliary decision
variable, which allows for the optimal solution to be reached
in finite time while always satisfying the constraints. The
main limitation of this approach is that it can only deal with
one single constraint.

Lastly, having a human-in-the-loop (HIL) feature provides
additional flexibility, such as handling unexpected situations,
detecting and correcting bad behaviours and supporting the
automated decision making [16]. Some works combining it
with CBFs already exist, like in [17] where CBFs ensure a
human-controlled UAV remains inside a safety arena.

In this work, we expand [15] to multiple constraints
through the use of the logarithmic approximation of the
minimum function. This gives more versatility to the previ-
ous method. While some possible failure regions are created
due to this transformation, a suitable engineering fix is pre-
sented and is demonstrated to work well in the experiments.
In addition, human-in-the-loop control can be incorporated
seamlessly to the proposed control scheme, both through
the nominal control in the optimization objective as well
as a safety condition in the constraints, which allows to
effectively consider the human as a part of the MAS network.

Applications of this algorithm to the problem of precision
agriculture are shown, particularly through two scenarios
related with the EU CANOPIES project [18] associated with
grape collection in vineyards, where a network of agents
must help harvesting and pruning while satisfying collision
avoidance constraints between each agent and humans.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a multi-agent system with N agents indexed by
I = {1, 2, ..., N} and the following system dynamics ẋi =
fi(xi)+gi(xi)ui, where the state xi ∈ Rni , and the control
input ui ∈ Rmi and fi(xi), gi(xi) are locally Lipschitz
functions in xi. blk(g1,g2, ...,gN ) denotes a block diagonal
matrix with diagonal blocks g1,g2, ...,gN , which can be
either a vector or a matrix.



We denote the stacked state x := (x⊤
1 ,x

⊤
2 , ...,x

⊤
N )⊤ ∈

Rn, n :=
∑

i∈I ni, the stacked control input u :=
(u⊤

1 ,u
⊤
2 , ...,u

⊤
N )⊤ ∈ Rm,m =

∑
i∈I mi, the stacked vector

fields f = (f⊤1 , f
⊤
2 , ..., f

⊤
N )⊤ and g = blk(g1,g2, ...,gN ).

Thus, the stacked dynamics is obtained as

ẋ = f(x) + g(x)u. (1)

The communication graph among the MAS is G = (I, E),
where I denotes the nodes or agents of the system and
E are the edges connecting nodes that share information
between themselves. The associated Laplacian matrix [19]
representing the connections is denoted as L. In this paper,
1-hop information share will be considered so each agent has
access to its own state and the one of its direct neighbours
denoted as Ni := {j ∈ I : (i, j) ∈ E}. The locally
obtainable state is xloc,i := (x⊤

i ,x
⊤
j1
, ...,x⊤

j|Ni|
)⊤, jk ∈ Ni,

for k ∈ {1, 2, ..., |Ni|}, i.e., xloc,i stores the states of agent
i and all it neighboring agents j ∈ Ni. Originally, a nominal
controller using only the locally available state is used. There
are several conventional multi-agent coordination algorithms
that can be used as a nominal controller, i.e., consensus,
coverage, leader-follower, formation control, etc. Since the
focus of this work is on the safety-critical part, we will
just consider the last one, but the methodology developed
works for any of them. For the EU CANOPIES project,
the formation controller could be useful for the collaborative
manipulation and transportation of a basket full of grapes,
where the robots are required to maintain a specific formation
to distribute the load.

In particular, in the case of single integrator dynamics with
connected communication topology, this controller can be
written in stacked form as ẋ = unom = −L(x − xd), and
can also be written as the following

unom,i = −
∑
j∈Ni

(xi − xj − (xd,i − xd,j)), for i ∈ I, (2)

where xd := (x⊤
d,1,x

⊤
d,2, ...,x

⊤
d,N )⊤ ∈ Rn and xd,i ∈ Rni

are the stacked and agent-wise target state vector for the
formation, respectively.

Fig. 1: Geometric representation of the safe region C .

A safety set C , shown in Fig. 1, represents a specific
constraint of our design. It is defined as

C = {x ∈ Rn : h(x) ≥ 0}, (3)

where h(x) is a differentiable function. We denote the set
D as a superset of the safety set.

Definition 1 (Extended class K function). A continuous,
increasing function α : (−b, a) −→ [0,∞) with α(0) = 0,
a, b > 0, is called an extended class K function.

Definition 2 (CBF). Let set C be defined by (3). h(x) is a
control barrier function (CBF) for the stacked system (1) if
there exists a locally Lipschitz extended class K function α
such that:

sup
u∈Rm

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ D ⊃ C ,

(4)

where Lfh = ∇h⊤f(x) ∈ R and Lgh = ∇h⊤g(x) ∈ R1×m

and the operator ∇ : C1(Rn) → Rn is defined as the gradient
∂
∂x of a scalar-valued differentiable function with respect to
x.

Additionally, it has been shown [2], [3] that any locally
Lipschitz control input u that satisfies the CBF constraint
(4) renders the set C forward invariant and, if C is compact,
it is also asymptotically stable.

Assumption 1. Following [15], (4) is assumed to be in a
form linear in u as shown in (5).∑

i∈I
a⊤
i (xloc,i)ui +

∑
i∈I

bi(xloc,i) ≤ 0, (5)

where ai ∈ Rmi and bi ∈ R refer to the agent-wise
component of −Lgh(x) and −Lfh(x)−α(h(x)) terms from
(4), respectively.

The formulas to compute these terms are to be developed
in the next section.

A. Problem formulation

When accounting for multiple safety constraints, a general
controller that would always satisfy the constraints is given
by the following Quadratic Problem (QP)

min
u

∥u− unom∥2

s.t.
∑
i∈I

am
i

⊤(xloc,i)ui +
∑
i∈I

bmi (xloc,i) ≤ 0,

for m = 1, 2, ...,M

(6)

where M is the total number of all the safety constraints.
Here we adopt a similar form as in (5), which is reasonable
considering the common constraints including inter-agent
collision avoidance, connectivity maintenance, etc.

B. Distributed Implementation

The aforementioned controller in (6) is based on a central-
ized approach and therefore needs more than just the locally
available state. When dealing with only one constraint, i.e.,
M = 1 in (6), [15] proposed that instead of solving one
centralized local QP, the following equivalent QP is to be
solved by each individual agent i ∈ I

min
ui∈Rmi

∥ui − unom,i∥2

s.t. a⊤
i (xloc,i)ui +

∑
j∈Ni

(yi − yj) + bi(xloc,i) ≤ 0,
(7)



where the CBF condition only uses the locally available
information xloc,i and y = (y1, y2, ..., yN ) ∈ RN is an
auxiliary variable. If all the local QPs are feasible, the CBF
condition (4) is fulfilled for any y. Define the following local
variable

ci =
1

a⊤
i ai

(liy + a⊤
i unom,i + bi), (8)

where li is the i-th row of L and y is updated according to
the discontinuous adaptative law (9) with positive gain k0.

ẏi = −k0sign(
∑
j∈Ni

(
ci − cj

)
). (9)

Lemma 1. Assume that ai,unom,i and bi are slowly time-
varying and the gain k0 is large enough. Then c reaches
consensus within a finite time and the optimal y has been
found [15].

Additionally, instead of solving the local QP from (7), the
following analytical solution can be used

ui = unom,i −max(0, ci)ai, ∀i ∈ I. (10)

There are two types of functions identified in [15] whose
CBF condition can be written in the form of (7), namely,
h(x) =

∑
k∈I bk(xi) and h(x) =

∑
e∈E be(xi,xj). We

note that bk(xi), be(xi,xj) are not constraints. In this paper,
we assume there are two types of constraints, given below

1) Individual constraints hk(xi) that only depend on the
state of one agent i.

2) Dual constraints he(xi,xj) which depend on the state
of two neighboring agents.

In the following we will show how these two types of
constraints can be transformed into the desired form in [15].
We will show the derivations for the second case since the
derivation for the first case follows the same line and is
thus omitted. In the experiment both types of constraints are
demonstrated.

III. MAIN RESULT

The method shown in [15] only works when one collective
constraint is taken into account. To satisfy more than one
constraint, this solution needs to be adapted. Here we will
extend the solution to more constraints through the use of
the minimum function.

A. Minimum function approximation

For the system to stay safe, all the functions he(xi,xj)
have to be non-negative. Here, to group them all together
into one equation, the minimum function can be used, that
is, we require mine∈E he(xi,xj) ≥ 0. However, this does
not follow the format from [15]. Instead, observe that

min
e∈E

he(xi,xj) ≥ −1

p
log

∑
e∈E

e−phe(xi,xj)

 , (11)

for (i, j) ∈ e, where p is a positive constant relating to the
error of the approximation, with higher values meaning less

error, but more computationally expensive to calculate due
to the exponential. Denoting he(xi,xj) as he for simplicity,
one obtains

−1

p
log

∑
e∈E

e−phe

 ≥ 0 ⇔ log

∑
e∈E

e−phe

 ≤ 0, (12)

using the exponential, the condition in (12) is equivalent to∑
e∈E

e−phe ≤ 1 ⇔ 1−
∑
e∈E

e−phe ≥ 0, (13)

and finally, incorporating everything inside the summation
sign, we define

h(x) =
∑
e∈E

(
1

|E|
− e−phe

)
=:
∑
e∈E

h̃e(xi,xj) ≥ 0, (14)

where |E| denotes the cardinality of the set E. Now this sat-
isfies the desired form from [15]. Additionally, the gradient
of the CBF needed for the CBF condition (4) is calculated
as

∇h(x) =
∑
e∈E

pe−phe∇he =:
∑
e∈E

∇h̃e(xi,xj). (15)

This result works for both dual and individual constraints.
We note that it is more conservative than just using the
minimum function due to the approximation in (11).

Assumption 2. For both types of constraints, α(h(x)) is
linear, that is

α(h(x)) = a · h(x), (16)

where a is a constant positive parameter.

Implementing this solution into (4) gives us

∇hT (x)(f(x) + g(x)u) + α(h(x)) ≥ 0, (17)

which can further be written as∑
e∈E

∇h̃⊤
e (xi,xj)gu+

∑
e∈E

(
∇h̃⊤

e (xi,xj)f +

α(h̃e(xi,xj))
)
≥ 0.

(18)

The final step is to derive a formula for each ai and bi in
(6) for each agent i ∈ I.

B. Formulation for dual constraints of the same type
Denote

ai,dual = −
∑
e∈E

Ie(i)∇xi
h̃e(xi,xj)g

⊤
i , (19)

bi,dual = −
∑
e∈E

Ie(i)
(
∇xi

h̃e(xi,xj)
⊤fi+

a

2

(
1

β
− e−phe(xi,xj)

))
,

(20)

where in this case β = |E| when all functions h̃e are
of the same type, for example collision avoidance between
neighbours in the network. The indicator function Ie(i) is

Ie(i) =

{
1, if edge e contains i

0, if edge e does not contain i
(21)



Thus, ai,dual and bi,dual only use local information of
agent i and its neighbours j ∈ Ni.

C. Formulation for individual constraints of the same type
Following the same derivation, we can obtain the coeffi-

cients for individual constraints of the same type. Denote

ai,ind = −
∑
k∈K

∇h̃k(xi)g
⊤
i , (22)

bi,ind = −
∑
k∈K

(
∇h̃k(xi)

⊤fi+

a

(
1

β
− e−phk(xi)

))
,

(23)

where β = |I||K| and K is the number of individual
constraints of the same type on every agent i ∈ I. For
example, in a 2D problem where a certain polygon is to
be avoided, each of the sides of the polygon would be an
individual constraint of the same type.

D. Formulation for multiple constraints
Each type of function he and hk generates a constraint and

therefore an ai and bi for each agent following (19), (20),
(22) and (23). The ai terms can be directly summed up to
get the final formulation, which can be easily seen from the
derivation for (14) using a bigger M , representing all the
safety constraints in the system, instead of the edge set E

ai =
∑

le∈LE

ale
i,dual +

∑
lk∈LK

alk
i,ind, (24)

while for the bi terms a minor modification is needed since
β = M = |LE ||E|+|LK ||I||K| and

bi =
∑

le∈LE

blei,dual +
∑

lk∈LK

blki,ind, (25)

where I is the set of nodes in the network, le ∈ LE , lk ∈ LK ,
and LE and LK are the different type of dual and individual
constraints, respectively. For example, if two types of dual
constraints are considered, like collision avoidance (CA) and
connectivity maintenance (CM ), LE = {CA,CM}, and if
three types of individual constraints are used, like three poly-
gons to be avoided by the robots, LK = {pol1, pol2, pol3}.

Now we summarize our main results in the following
theorem.

Theorem 1. Consider the multi-agent system with multiple
safety constraints. Assume that Assumptions 1 and 2 hold,
together with the assumptions of Lemma 1, and ai and bi
are computed using (24) and (25), respectively. Then, as long
as the local QPs given in (7) are feasible, i.e.,

∑
j∈Ni

(yi −
yj)+bi(xloc,i) ≤ 0 whenever ai = 0,∀i ∈ I, the multi-agent
system will satisfy all the constraints he ≥ 0 and hk ≥ 0 in
(11) for all time.

Proof. This result follows from (11)-(18).

Additionally, the distributed nature of the algorithm allows
it to scale better than the centralized alternative that considers
the whole network.

E. Error region analysis

One basic assumption in [15] is that ai(xloc,i) ̸= 0 for
all time. However, this may not hold since now there is a
summation of several terms in ai, which means that there
are certain regions where ai = 0 and

∑
j∈Ni

(yi − yj) +
bi(xloc,i) > 0. Therefore, for those cases, the CBF condition
(5) would be violated.

Define the “error region” as

R = {x : ai(xloc,i) = 0 for some i ∈ I}. (26)

Nevertheless, this region has zero volume as it is only
composed of individual points in the problem space. There-
fore, these points are almost never reached, except when one
initializes the problem in those points. To resolve this, a
simple distributed implementation fix is proposed, that is,
to set yi = 0 when the agent i is in region R and let unom,i

drive it away from R. In practice, due to the zero volume
characteristic of R, it can almost always be guaranteed to
work.

F. Adding HIL

Two human-in-the-loop features will be considered. For
the first one, one of the agents is controlled by a human
operator together with the nominal controller in (2), that is

umix,i = uHIL + unom,i, (27)

umix,i will then be passed through the distributed QP (7)
as the new nominal controller to obtain the final controller.
For the second feature, the HIL element will be a human
within workspace. For example, a person could enter into
the experiment’s arena and interact with the agents in some
way, like herding/chasing the robots. In this case, the human
behaviour can be considered as an external agent fully
controlled by the human.

Combining the different safety conditions with a HIL
feature, the CBF-enabled mixer module shown in Fig. 2 is
created.

Fig. 2: CBF-enabled mixer module from (7), (24) and (25).

IV. EXPERIMENTS

Two testing scenarios have been created related to the EU
CANOPIES project, where the lab setting has been adapted
to simulate an artificial vineyard, as shown in Fig. 3, where
our network of robots must work in a collaborative manner
while satisfying some basic safety constraints. These are,
remaining inside the vineyard/arena, avoiding inner obsta-
cles, inter-collision avoidance and connectivity maintenance
between robots, and avoidance with a human worker in the
same environment.



Fig. 3: Artificial vineyard lab setting.

The robots used for the experiments are the Nexus 4WD
holonomic robots, shown in Fig. 4, using either a NVIDIA
Jetson TX2 or Intel NUC as onboard computer running a
standard Ubuntu 18.04 distribution with ROS Melodic.

Fig. 4: Nexus 4WD robot with a NVIDIA Jetson TX2.

The robots receive their position (state) through the use of
markers and the Qualisys motion capture system. A diagram
of this process is shown in Fig. 5.

Onboard computer

ROS onboard node

Arduino Mega

Low-level controller

Motion capture 
system

Absolute 
localization

Velocity 
command

Encoder 
feedback

Individual 
wheel control

Encoder 
feedback

Nexus Robot

Fig. 5: Diagram of the communications for each Nexus.

Five Nexus have been used for the experiments, following
the communication topology in Fig. 6. The systems dynamics
are modelled as a simple integrator ẋ = u, which is
equivalent to (1) with f(x) = 010 and g(x) being the identity
matrix I10.

1
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edge(4,5)

Fig. 6: Network created by 5 agents and extra human e.

A. Formation controller with an extra human

In this first case, the nominal controller is designed such
that the robots stay together in the specific formation shown
in Fig. 6, while the safety constraints explained at the
beginning of this section are always maintained. In particular,
the distributed formation controller from (2) is used for each
agent as the nominal controller. This could, for example,
represent a swarm of logistic robots that enter the vineyard
in a close formation to collaboratively carry an empty basket.
Thereafter, they get loaded with grapes and take them back
to a storage area while avoiding human workers fulfilling
other tasks.

To create the single combined constraint, we first analyze
each type separately. For dual constraints, taking the case
of connectivity maintenance, each edge creates a different
constraint, which implies the CBF function is the following

he(xi,xj) = r2 − ||xi − xj ||2 ≥ 0, (28)

where r is the maximum allowed safety distance,
||xi − xj ||2 = (xi − xj)

2 − (yi − yj)
2 and ∀(i, j) ∈ E.

We approximate the seven dual constraints as in (14) with
|E|= 7. The gradient shown in (15) is used, with the specific
gradient of the connectivity maintenance condition being

∇he(xi,xj) =


∂he

∂xi
∂he

∂yi
∂he

∂xj
∂he

∂yj

 =


−2(xi − xj)
−2(yi − yj)
2(xi − xj)
2(yi − yj)

 , (29)

for each dual constraint pair. Using (19) and (20) we can
compute the ai,dual and bi,dual terms for the QP. Similar
terms can be developed for inter-collision avoidance con-
straints.

For individual constraints, we consider the rectangular
arena limits for each agent, that is, there is one constraint per
side (|K|= 4 and |I|= 5) and the corresponding functions
become hxmax

k = xmax − xi, hxmin

k = xi − xmin, hymax

k =
ymax − yi and hymax

k = yi − ymin; with the gradient

∇hi =

[
−1 1 0 0
0 0 −1 1

]
. (30)

Computing the ai,ind and bi,ind terms using (22) and (23),
allows to obtain the final single constraint variables ai and
bi from (24) and (25).



(a) CBFs hca for collision avoidance. (b) CBFs hcm for connectivity maintenance. (c) CBFs hextra for avoidance with human.

(d) CBFs harena for each side of the rectangular arena. (e) Normed difference ∥u(t)− unom∥. (f) Auxiliary variable c (8).

Fig. 7: Evolution of CBFs for collision avoidance (a), connectivity maintenance (b), arena (d) and avoidance with human
(c), as well as the normed difference of the control input (e) and the consensus of c (f) for the first experiment scenario.

Collision avoidance with an extra human is similar
to the one between robots, but adapted for individual type
constraints and therefore, with a modification to account for
the speed and trajectory of the human. Since the gradient
computed only takes into account the robot state xi and not
the one from the human xe, we need to add this extra term
to bi, such that

ai,extra = −∇xi
h̃(xi,xe)g

⊤
i , (31)

bi,extra = −

(
∇xi

h̃(xi,xe)
⊤fi + a

(
1

|I|
−

e−phe(xi,xe)
))

−∇xe h̃(xe,xi)g
⊤
i .

(32)

which can then be added to (24) and (25) as a standard
individual type constraint lk = (extra).

The results for a random execution of this first case
can be seen in Fig. 7 and a video of it can be found in
[20]. Four different types of CBFs are shown, (a) for the
collision avoidance between robots, (b) for the connectivity
maintenance between robots, (c) for the collision avoidance
between each robot and the human and (d) for bounding the
robots inside the four walls of the arena (Top, Right, Bottom
and Left). All of them are positive for all time and therefore
the conditions are fulfilled, even when initialized from a non-
satisfying point, that is when he < 0 and/or hk < 0, since the
agents quickly reposition to be safe. Additionally, (e) shows
the difference between the nominal controller and the output
of the QP and (f) shows the evolution of the c variable from
(8).

B. Mixed initiative control with human commands

This second experimental scenario is very similar with
the first one, since the safety constraints and initial nominal
formation controller are the same and the single constraint
is constructed in the same manner. The difference is the
use of mixed initiative control (27) to direct one of the
robots through human commands (instead of having a hu-
man worker in the same environment). With this human
command, we can directly control the movement of one of
the agents, and therefore of the whole network thanks to its
communication graph in Fig. 6. Additionally, it shows the
versatility of the method and the capability of working for
different cases. Results for this second case are omitted since
the CBF evolution shows a similar response to the first case,
but a video of this experimental scenario can also be found
in [20].

V. CONCLUSION

In this work, a distributed implementation for CBF-
induced QPs for multi-agent systems has been developed to
allow for more than one dual (and/or individual) constraints
through the use of the minimum function approximation.
This allows for each agent to solve its local QP while still
remaining always safe. Additionally, the regions where the
algorithm might fail were analyzed and a correction to fix
this problem was proposed. Two application cases related to
the precision agriculture problem of grape collection inside
the EU CANOPIES project were considered to show the be-
haviour of the novel controller and validate the performance
and safety of the proposed implementation.
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