
Multi-robot Motion Planning under MITL Specifications based on Time
Petri Nets

Sofia Hustiu1, Dimos V. Dimarogonas2, Cristian Mahulea3 and Marius Kloetzer1

Abstract— This paper proposes a high-level path planning
strategy under Time Petri net (TPN) formalism for a multi-
agent system, which is subject to Metric Interval Temporal
Logic (MITL) specifications. The work aims to design a scalable
model with respect to the number of agents, as the MITL
formula requires multiple agents to ensure similar tasks. The
obtained model is denoted Composed Time Petri net and it
couples two TPN representations assigned to the motion of the
agents, respectively to the MITL specification. The planning
approach is based on model-checking methods and the results
are evaluated on a case study applied in robotics industry.

I. INTRODUCTION

The field of path planning for multi-agent systems aims
to design control laws with respect to (w.r.t.) given re-
quirements, such as: trajectory tracking [1], formation [2]
and network control [3]. A particular topic is represented
by motion planning control under spatial and/or temporal
constraints using formal methods, e.g., “Eventually visit
room A and avoid room B” or “Eventually visit room A
within 3 time units”.

Several specification languages can be used to express
these constraints for the multi-agent system, as follows:
Linear Temporal Logic (LTL) based on Boolean variables
linked by logical and temporal requirements [4], [5], Metric
Interval Temporal Logic (MITL) which extends the LTL
specifications by imposing time constraints for satisfaction of
temporal requirements [6], [7], Signal Temporal Logic (STL)
which extends MITL specifications by adding constraints on
real continuous variables instead of contrary to logical re-
quirements having only two outputs (true and false) [8], and
Time Interval Temporal Logic [9] having a more compact
representation when compared with the previous types of
specifications. These formalisms express compact, rich and
complex mathematical constraints, in a user-friendly manner.
The specifications can designate global tasks for the entire
team, being further decomposed into local tasks [10], or can
be given directly as local tasks, the agents cooperating among
them to ensure other requirements [6], [5].

This work was partially supported by Digital Future Smart Construction
project and Univ. de Zaragoza, Fundación Bancaria Ibercaja y Fundación
CAI - IT 7/22 and by MINECO-FEDERER TED2021-130449B-I00 project.

1S. Hustiu and M. Kloetzer are with the Dept. of Auto-
matic Control and Applied Informatics, Technical University
”Gheorghe Asachi” of Iasi, Romania {sofia.hustiu,
marius.kloetzer}@academic.tuiasi.ro

2D. V. Dimarogonas is with Division of Decision and Control
System, KTH Royal Institute of Technology, Stockholm, Sweden.
dimos@kth.se

3C. Mahulea is with the Aragón Institute of Engineering Research
(I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain.
cmahulea@unizar.es

MITL can consider both spatial and time constraints. In [6]
a decentralized approach is proposed, as each agent receives
a local MITL formula, is modeled as a Weighted Transition
System, and the dynamics are coupled with its neighbors
based on a network graph. Another decentralized solution,
but for cooperative tasks, is presented in [7], as the agents
communicate local information based on requests. In [11]
is proposed a framework that combines both high-level and
low-level path planning control, where local MITL tasks
are modeled as Timed Automata, then translated to Zone
Automata for which the sampling-based RRT* (Rapidly-
exploring Random Trees) method is implemented. The men-
tioned papers provide automata-based solutions for multi-
agent systems with local MITL specifications, as the litera-
ture is rich for model-checking techniques in this area. Our
work is directed to fulfill MITL missions based on a different
model denoted Time Petri net, providing also solutions for
the scenarios that require multiple agents to perform the
same task, e.g., monitoring a region of interest. The planning
strategy is based on model-checking methods. A relevant
work for this problem description is captured in [12] under
the name CensusSTL, where the authors express the mission
in STL, and the solution is returned by a Particle Swarm
Optimization Problem.

One common challenge is finding an adequate discrete
representation for multi-agent systems, including time con-
straints. Related works frequently are based on Weighted
Transitions Systems, respectively Timed Automata [6] or
Time Petri nets (TPN) [13]. The first two representations
capture the individual motion of each agent, returning one
product automata for the entire team. Through these works,
an overall representation of the team is provided, but the
size of the model increases exponentially with the number
of agents in the team. Contrary, a more compact model can
be obtained via TPN representation, by providing a fixed
topology w.r.t. the number of robots. The expressiveness
study from [14] highlights that both Time Petri net model
and Timed Büchi Automata (TBA) are timed bisimilar. As a
result, the provided translation from a TBA model to a TPN
one [14] is incorporated in the current work. The benefits of
the TPN model in motion planning of multi-agent systems
can be enumerated as follows:

• provides a fixed topology for a known environment,
which is scalable w.r.t. the number of agents (repre-
sented as tokens);

• allows the use of additional constraints such as gener-
alized mutual exclusion constraints [15];

• the use of powerful model-checking algorithms that do
not generate the entire full state space, e.g., Romeo tool
[16].

Fig. 1. General Framework treated in the paper

Thus, the current work provides a novel framework for
high-level motion planning of the multi-agent systems under
time constraints, in which global MITL missions should be
ensured by sub-groups of agents with similar capabilities.
Fig. 1 illustrates the proposed solution divided into steps,
in which two models are coupled: the environment (step
1) and the MITL specification (step 2) into one Composed
Time Petri net. As a result, one Composed Time Petri net
model is defined for one MITL specification. With this
work, we are interested in minimizing the gap in using TPN
models for motion planning, for which the use of structural
approaches such as mathematical programming represents an
open problem in the literature.

The preliminaries and definitions are given in Section II.
The problem statement is formally given in section III, while
the proposed solution divided in steps is described in Section
IV accompanied by examples. A case study is analyzed
in Section V, the conclusions and future directions being
captured in Section VI.

II. PRELIMINARIES AND DEFINITIONS

Let us consider an environment E including several dis-
jointed regions of interest (ROI) which can be reached
and/or avoided by a team of agents (mobile robots) with
the same dynamics. Let us denote the set of ROIs with
Y = {y1, y2, . . . y|Y|} and the set of mobile robots with
R = {r1, r2, . . . , r|R|}, where the cardinality of a set S
is further denoted with |S|. The following definitions are
necessary to be introduced w.r.t. time semantics [17]:

• Σ defines an alphabet set over which the actions are
triggered in Timed Büchi Automata (Definition 2.3).

• An atomic proposition ρ, represents a Boolean variable
that can be True (⊤) or False (⊥).

• An infinite word over a set Σ = 2AP , with AP set
of atomic propositions, is an infinite sequence w =
w0w1 . . ., where wi is the i-th element of the sequence
and wi ∈ Σ,∀i ≥ 0.

• A time sequence is an infinite sequence of time, denoted
by τ = τ0τ1 . . . , where τi ∈ R+ and having the next
properties: monotonicity: τi < τi+1,∀i ≥ 0; progress:
∀t ∈ R+,∃i ≥ 1, such that τi > t.

• A timed word over a set Σ is defined as an infinite
sequence wt = (w0, τ0)(w1, τ1) . . . , where w0w1 . . . is
an infinite word and τ0τ1 . . . is a time sequence.

Remark 1. From now on, we consider the time in set
Q+. Moreover, in this work, the alphabet set Σ is equivalent
with the powerset 2Y , where set of atomic proposition AP
is represented by set of regions of interest Y .

Definition 2.1: The syntax of Metric Interval Temporal
Logic (MITL) specifications over the set of atomic proposi-
tions Y is defined as follows [18]:

φ := yk |¬φ |φ1 ∧ φ2 | ⃝I φ |♢Iφ |□Iφ |φ1UIφ2, (1)

where yk ∈ Y , I is a non-empty time interval denoted as
[i1, i2] or (i1, i2), with end points i1 < i2, i1 ∈ N and i2 ∈
N ∪ {∞}. Further on, the time interval [0, i2], respectively
[0, i2) is denoted by ≤ i2, respectively < i2. In addition
to the Boolean operators such as negation ¬, and ∧, the
temporal operators accepted by MITL are as follows: next
⃝, eventually ♢, always □, and until U .

The tuple (wt, i) defines the MITL formula φ, i ≥ 0 over
the set Y with the timed word wt = (w0, τ0)(w1, τ1) . . . is
recursively satisfied as follows:

(wt, i) |= yk ⇔ yk ∈ wi

(wt, i) |= ¬φ⇔ (wt, i) ⊭ φ
(wt, i) |= φ1 ∧ φ2 ⇔ (wt, i) |= φ1 and (wt, i) |= φ1

(wt, i) |= ⃝Iφ⇔ (wt, i+ 1) |= φ and τi+1 − τi ∈ I
(wt, i) |= ♢Iφ⇔ ∃j ≥ i, s.t.(wt, j) |= φ, τj − τi ∈ I
(wt, i) |= □Iφ⇔ ∀j ≥ i, τj − τi ∈ I ⇒ (wt, j) |= φ
(wt, i) |= φ1UIφ2 ⇔ ∃j ≥ i, s.t.(wt, j) |= φ2,

τj − τi ∈ I and (wt, k) |= φ1,∀i ≤ k < j
Example 2.2: Both semantics (continuous and point-

wise) are suitable for defining an MITL formula φ [19].
Some examples of MITL specifications for one agent can be
written as follows, considering the time unit being expressed
as seconds or minutes, among others:

• “Visit region y1 at least a moment from time interval
[0,10] and always avoid region y4 in the time interval
[11,∞)”: φ = ♢[0,10]y1 ∧□[11,∞)¬y4;

• “At some point in the time interval [3,6], region y2
should be visited, until then y3 will be visited”: φ =
y3U[3,6]y2;

The MITL formula φ over the set of atomic propositions
Y can be translated into a Timed Büchi Automata (TBA)
over the alphabet 2Y [18], [20], [21]. This work uses the
translation from [18].

Let us define a finite set of clocks X = {x1, x2, . . . , x|X|}.
The set of clock constraints Φ(X) is characterized by the
grammar:

ϕ := ⊤ |¬ϕ |ϕ1 ∧ ϕ2 |x ▷◁ ψ, (2)

where x ∈ X represents a clock, ψ ∈ Q+ is a clock
constraint and ▷◁∈ {<,>,≤,≥,=}. A clock valuation (or
interpretation) is a function ν : X → Q+ which assigns a
value to each clock and ν + δ maps every clock x to the
value ν(x)+ δ, where δ ∈ N+. The satisfaction of the clock
constraint ϕ by the valuation ν is denoted with ν |= ϕ.

The Timed Büchi Automata model follows the definition
of [17] while using the notations from [14] with the mention
that in this work we do not differentiate between the set of
final locations and the set of repeated locations.

Definition 2.3: A Timed Büchi Automata (TBA) is defined
as a tuple A = ⟨Q, q0, X,Φ(X),Σ, E, Inv, F ⟩, where Q
represents a finite set of locations; q0 ∈ Q is the initial
location; X is the finite set of clocks; Φ(X) represents the
clock constraints; Inv : Q → Φ(X) is the invariant; Σ is
the alphabet set, E ⊆ Q×Φ(X)×Σ× 2X ×Q is the set of
edges between locations, where an edge from location q to
q′ is denoted as e = (q, γ, λ,R, q′) with guard γ ∈ Φ(X),
label λ ∈ Σ and R ⊆ X the reset set; F ⊆ Q is the set of
accepting (final) locations.

A state of A is characterized as the pair (q, ν) with
q ∈ Q and ν |= Inv(q) (ν satisfies the clock constraint
in the invariant of q). The initial states of A is defined by
the pair (q0,0) with q0 the initial location and 0 is the
valuation which maps every clock of the automata to 0.
The automata has two types of transitions. The first one
is a discrete transition (q, ν)

e−→ (q′, ν′) with the edge
e = (q, γ, λ,R, q′), states (q, ν), (q′, ν′), λ ∈ Σ and it exists
iff ν |= γ, ν′ |= Inv(q′). R is the reset set that resets the
clocks to 0, i.e., ν′i = 0,∀ci ∈ R and ν′i = νi,∀ci ̸∈ R.
The second transition is a time transition (q, ν)

δ−→ (q′, ν′)
for a given δ ∈ Q+, where δ is a summed component-
wise, iff q = q′, ν′ = ν + δ, ν′ |= Inv(q). As a result of
the time-additivity property [22], there exist q′, ν′ such that
(q, ν)

δ−→ (q′, ν′) and (q′, ν′)
e−→ (q′′, ν′′), with q = q′′. The

previous sequence is denoted by (q, ν)
δ−→ e−→ (q′′, ν′′).

An infinite accepted run in automata A represents a path
from an initial to a final state qi ∈ F, i ≥ 1 that is visited
infinitely often. Such run is defined as an infinite sequence
of time and discrete transitions: (q0, ν0)

δ0−→ (q′0, ν
′
0)

e0−→
(q1, ν1)

δ1−→ (q′1, ν
′
1) . . . , with the initial state (q0, ν0).

Example 2.4: Fig. 2 illustrates an example of a TBA A
which models the MITL specification φ = ♢≤cy1, with y1 ∈
Σ, c ∈ Q+ representing the clock constraint for the clock
x. The reset of the clock is illustrated with a green color.
For this example, the reset of the clock is not mandatory,
as it is related with one instance of the temporal operator
eventually. The reset of the clock becomes trivial in nested
MITL specifications [23].

The initial location q0 is indicated by the initial in-
put arc, the final location q1 is visualized by the double
edge and q2 represents the sink location (error). When the
MITL formula cannot be satisfied, the automata reaches
the error location. The set of edges are as follows:
E = {(q0,¬y1, x ≤ c, ∅, q0), (q0, y1, x ≤ c, x := 0, q1),
(q0,⊤, x ≥ c, ∅, q2), (q1,⊤, T, x := 0, q1), (q2,⊤, T, x :=
0, q2)}, where T ∈ Q+ represents any time and ⊤ is True,
meaning that the edge can be triggered by any symbol in the
alphabet Σ.

Definition 2.5: A Time Petri net (TPN) model [24], [25]
is defined as a tuple T PN = ⟨N ,m0, I⟩, where:

• N = ⟨P, T, Pre, Post⟩ represents a Petri net (PN)

Fig. 2. Example of a Timed Büchi Automata accepting satisfying runs for
the MITL formula φ = ♢≤cy1

model, with P - finite set of places; T - finite set
of transitions; Pre : P × T → N - input function
defining the arc weights from places to transitions, e.g.,
Pre(p, t) = b if place p ∈ P is connected with t ∈ T
with an arc of weight b ∈ N>0, otherwise Pre(p, t) =
0; Post : P ×T → N - output function defining the arc
weights from transitions to places, e.g., Post(p, t) = b
if transition t ∈ T is connected with p ∈ P with an arc
of weight b, otherwise Post(p, t) = 0.

• m : P → N represents the marking function, where
m(p) is the number of tokens in place p, ∀p ∈ P . The
initial marking is denoted m0.

• I : T → [Q+ → Q+ ∪ {∞}] is the function that maps
a static interval to each transition. The time interval
for one transition is represented by a tuple I(t) =
[α, β],∀t ∈ T , with 0 ≤ α < ∞ denoting the earliest
firing time, 0 ≤ β ≤ ∞ denoting the latest firing time
and α ≤ β if β ̸= ∞ or α < β if β = ∞.

We introduce a labeling function Λ : T → Σ′
ϵ which

assigns to each transition t ∈ T a label with values from
alphabet set Σ′

ϵ = T ∪{ϵ}. The only repeated label is ϵ while
the rest of them are unique for every t ∈ T . The objective of
this labeling function is further described in the next section.

Example 2.6: Let us consider the Time Petri net model
from Fig. 3 with the initial marking m0[p

E
2] = 1. The token

can be consumed and produced in place pE1 when the time
is ≥ δ2,1min but no later than δ2,1max. The figure captures the
transition’s labels from alphabet Σ′

ϵ, as previously described.

III. PROBLEM STATEMENT

Let us consider a multi-agent system with r = |R|
agents evolving in environment E. The goal of this system
is to automatically compute paths that satisfy tasks under
space and time requirements. One can refer to space re-
quirements as imposed locations in the environment that
should be visited (sequentially or simultaneously), while
time requirements express deadlines by which those locations
should be reached. Thus, the team receives a global MITL
(Metric Interval Temporal Logic) φ which specifies the visit
and/or avoidance of several locations (ROIs), while a Time
Petri net model captures the movement of the agents in the
environment.

The current work ensures time and space constraints for
multi-agent systems, under the assumption that the robots

include local controllers which can provide suitable inputs to
follow the desired actuation. If one location should be visited
by multiple agents with similar capabilities, then one MITL
mission is given for each of these sub-groups of agents.

Remark 2. The solution to this problem consists in
defining one Composed Time Petri net model for each MITL
formula, as visualized in Fig. 1 and further explained in
the next section. A similar idea was proposed in a previous
work [26], which couples a Petri net (PN) model with an
LTL formula. The results of the current work bring two
main contributions when compared with [26]: inclusion of
time constraints for the multi-agent system and providing
planning strategy for scenarios that require multiple agents
to be present in the same region of interest. While in [26]
structural approaches based on mathematical programming
are used, here the path planning is based on model checking.

IV. PROPOSED SOLUTION

As observed in Fig. 1, the output of the proposed frame-
work is represented by a TPN model denoted Composed
Time Petri net (TPNC). TPNC incorporates the move-
ment of the robots and the MITL global specification. The
superscript “C” is added to each component of TPNC .
One advantage of the Time Petri net representation lies
in updating its structure of it to incorporate constraints,
e.g., collision avoidance, for example by imposing that the
capacity of each place is one [27].

This section describes the necessary steps to achieve the
desired model, as depicted in Fig. 1. Let us recall the
notations for the sets of agents R, respectively of regions
of interest Y .

Step 1.1 This step translates the continuous working
space into a discrete representation, which facilitates an easy
manipulation of the environment E w.r.t. the motion of the
agents. The mapping method used in the current work is
based on a cell decomposition technique, e.g., [4], [28]. As
a result, the environment is partitioned into regions denoted
cells, which can be further labeled as free or critical, i.e.,
a critical cell belongs to one regions from Y . The partition
procedure determine the number of cells which corresponds
to a region of interest yi ∈ Y . This notion is further taken
into account in the building of the Time Petri net model.

The motion of the robots from one cell to an adjacent
one is characterized by (i) the deployment of the robots in
space (their position in the cell) and (ii) time constraints. The
latter constraints are defined as follows: [δmin, δmax], where
δmin is the minimum motion time, respectively δmax is the
maximum motion time to reach the adjacent cell, considering
the maximum, respectively the minimum speed of the robot.
Note that this notation does not capture the waiting time in
the current cell. If the agent has an unknown or unlimited
time to wait in its current cell before moving to another
adjacent cell, then the upper bound becomes δmax = ∞.
The crossing from cell to cell is provided by a low level
control strategy that can be user-defined.

Step 1.2 After the environment E is partitioned, the
motion of the robots is handled by one Time Petri net (TPN)

model, denoted with T PNE . The superscript “E” is added
to each component of T PNE . An algorithm that builds a
PN model based on the set of cells returned by the Step 1.1
is described in the first algorithm from [29]. This method
assigns a place to each cell, the adjacency relation between
cells is captured by the transitions and each token represents
an agent. The desired Time Petri net model is obtained by
the addition of motion time constraints from one cell to an
adjacent one, as previously described.

The T PNE model is tailored according to the space
constraints of the MITL mission, which require visiting
and/or avoiding several ROIs from Y . Let us consider an
observation map function denoted with h : PE → Y ∪ {∅},
which assigns to each place in T PNE an atomic proposition
from Y . With ∅ is denoted the free space in the environment.
If at least one robot (token) is present in place pEi , then the
region of interest h(pEi) is visited.

Next, we reduce the number of places on TPNE , by iter-
atively merging adjacent places pEi and pEj sharing the same
atomic proposition over the set Y , with h(pEi) = h(pEj).
In other words, only the places modeling the free space
h(pEi) = ϵ are not merge, to maintain the time information
as described previously. Due to this procedure, the output
transitions from the merged places will have the upper bound
time equal with ∞. The lower bound is updated with the
minimum time constraints from different observations, as it
is connected to the physical constraints of the robot to move
from one cell (place) to another. The ∞ value expresses the
fact that the agent can stay unlimited time in the respective
region of interest.

Example 4.1: Fig. 3 portrays an illustrative example for
the first two sub-steps of the proposed workflow. The left
side of the figure depicts an environment E partitioned into
4 cells, from which 2 of them belong to the same region of
interest y1 (color blue). The associated T PNE is shown on
the right side, being already tailored as previously described:
both cells p3 and p4, with h(p3) = h(p4) = y1, are modeled
by a single place pE3,4. The token in pE2 captures the presence
of one agent in cell p2.

The second phase of the proposed framework designs
the mission of the multi-agent system given as an MITL
specification.

Step 2.1 As stated in [18], any MITL formula φ given in
the normal form (time interval ≤ c or < c, with c ∈ Q+),
can be expressed as a Timed Büchi automata A (Fig. 2).
In addition, the authors of [18] proved that any MITL
specification can be translated into the normal form, by
applying a set of four transformations described therein.

Step 2.2 In [14], the authors proposed a translation from
a Timed Büchi Automata with invariant clock constraints
defined as x ≤ c or x < c, where Φ(X) = {x}, c ∈ Q+

to a Time Petri net model, while maintaining the time
bisimilarity property between the two representations. The
main idea relies on providing Time Petri net topologies for
clock constraints and resets, accounted to each edge and each
invariant. Each location of the TBA is represented as a place
and each edge is modeled by a time transition, except for the

Fig. 3. Example of Time Petri net model T PNE (right side) for a partitioned environment E (left side)

self-loops arcs defined as e = (q,⊤, T, ∅, q), where q ∈ Q.
In other words, no transition is added for self-loop that has
no clock or logical constraints. Furthermore, the transitions
are connected with the TPN topologies assigned to clock
constraints (gray blocks) and clock resets (green blocks), as
observed in Fig. 4. The full algorithm is described in [14].
This TPN model corresponds to the TBA model indicated in
Fig. 2, where the presence of a token in places pφfi, i = 1, 2
represents the satisfaction of time requirements.

The corresponding TPN structure for an MITL specifi-
cation is denoted with T PNφ, adding the superscript ·φ
to all model’s components. The set of transitions Tφ =
Tφ
c ∪ Tφ

g with Tφ
c ∩ Tφ

g = ∅ is composed from set Tφ
c used

in the topologies of the clock constraints and the set Tφ
g

representing the transitions between the places modeling the
location q ∈ Q from automata A. Let us recall the labelling
function for transitions as Λ : T → Σ′

ϵ. All transitions
tci ∈ Tφ

c , i ≥ 1, have the label Λ(tci) = ϵ to simultaneously
validate all clocks connected with transitions tgi ∈ Tφ

g ,
according to [14].

Fig. 4. Example for translation of a TBA model to a TPN model (left
side) for the MITL φ = ♢≤ca, including clock topologies (right side)

Moreover, we introduce the function Π : Tφ
g → 2Y to

memorize the symbols λ ∈ Σ assigned to the edges of A. The
values of function Π are given as a DNF formula (Disjunctive
Normal Form) over the set 2Y . In Fig. 4, transition tφg0,1
models the edge e = (q0, y1, x ≤ c, ∅, q1), with q0, q1 ∈
Q, y1 ∈ Σ, X = {x}, thus Π(tg0,1) = a.

Step 3. To finalize the proposed model Composed Timed
Petri net denoted as T PNC , this step integrates the outputs

returned by steps 1.2 and 2.2, together with new inputs
modeling the atomic propositions over the set Y . Let us
consider the sets of places PO = {pO1 , pO2 , . . . , pO|Y|}, re-
spectively P¬O = {p¬O

1 , p¬O
2 , . . . , p¬O

|Y|} modeling the true,
respectively the false value of atomic propositions. The
purpose of these places is to provide a snapshot of the
movement of the robots with respect to the regions of interest
that are reached. The sets PO, P¬O are part of T PNC and
act as an intermediate layer between the two TPN models
T PNE , T PNφ.

The Composed Time Petri net model is build based on
the next inputs: the TPN assigned to the robotic system
T PNEwith the labeling function of the places h, the TPN
assigned to the MITL formula T PNφ with the labeling
function Π, the aforementioned sets PO, P¬O, the number
of robots required to satisfy the MITL specification φ. and
the set of regions of interest Y .

Example 4.2: Let us consider a team of 5 agents and the
following MITL formula φ = ♢≤5(y1 ∧ y2) interpreted as
visiting simultaneously both y1 and y2 in less than 5 time
units. In addition, let us require that the regions of interest
should be reached by multiple robots, as described in Remark
3. If one region, e.g., y1 should be reached by 3 agents, while
region y2 should be reached by 2 agents, then the equivalent
interpretation of the MITL specification with regards to the
T PNC model is the following: φ = ♢≤5((m

O[pO1] ==
3) ∧ (mO[pO2] == 2)). Hence, a minimum marking is
imposed for the places pO1 and pO2 modeling the truth value
of the atomic proposition y1 and y2.

Remark 3. The current work aims to provide a solution for
scenarios in which MITL specifications requires a minimum
number of agents such that the atomic propositions have the
truth value. This concept is mentioned in literature under the
term ”census”, which imposes multipple agents to ensure the
same task (in our case, a task is defined as reaching a region
of interest). One example of census concept is presented in
[12] using STL specifications. In the current work, the MITL
formula is handled by an equivalent Time Petri net model
which contributes to an easier understanding of the census
concept represented by imposed markings.

As mentioned previously, a similar idea of building a new
model is proposed in the previous work [26], which couples
the Petri net (PN) model of the environment with a PN

model assigned to an LTL formula, rather than an MITL
one. Therein, he third algorithm describes the procedure of
achieving the new Petri net model, capturing the rules of
connecting the intermediate layer PO, P¬O with the two PN
models (for environment and LTL specification). The same
basic idea are followed in the current work. But, for being
able to create the Composed Time Petri net, the following
contributions are added to the referred method:

• Adding time constraints for the T PNE based on the
motion of the multi-agent system, as a result of sub-
steps 1.1 and 1.2;

• Representing the assigned TBA model of an MITL
formula φ as T PNφ model, according to [14]. Let us
recall that the translation between a TBA model into a
TPN model, maintaining the timed bisimilarity property,
can be achieved only if certain conditions are fulfilled,
as stated in [14] and previously described in this paper
along sub-steps 2.1 and 2.2;

• Updating the weight of the arcs from places in set PO

to transitions in Tφ, thus imposing a minimum number
of agents required for the true value of the atomic
propositions Y (Example 4.2).

Example 4.3: Fig. 5 illustrates a part of the Composed
Time Petri net as a result of the general workflow proposed
in this paper. The left side of the figure displays a partial
Time Petri net which models the motion of the agents in the
environment, with h(pE2) = ∅ and h(pE3,4) = y1, where y1
is an atomic proposition in Y . The right side of the figure
portrays the Time Petri net associated to the MITL formula
φ = ♢≤cy1. The intermediate layer composed from sets
PO, P¬O is consistent with the position of the agent in the
environment: one agent is in the free space, while no agent
is present in the region of interest y1 ∈ Y . The linking arcs
between the models T PNE , T PNφ and the intermediate
layer follow the previously described procedure. In other
words, the atomic proposition a has the true value only if a
minimum number of ωi tokens are present in pO1 , and has
the false value if |R| tokens are in p¬O

1 .
The initial marking for each sub-structure of the Composed

Time Petri net has various implications, as follows: mE
0 of

T PNE expresses the initial position of the team of agents
in the environment, while the tokens model the agents; the
marking of sets PO, P¬O captures a snapshot of the team
w.r.t. their positions regarding the atomic propositions Y (in
other words, this marking defines the number of agents in
each region of interest); mφ

0 of T PNφ characterizes the
initialization of automata A assigned to the MITL formula
φ, together with the initial state of the clocks.

V. PATH PLANNING AND SIMULATION RESULTS

Within this work, the motion planning strategy for MITL
specifications relies on simulations, by solving a reachabil-
ity problem, known as model-checking approaches. Once
the Composed Petri net model is computed, the model is
implemented in the tool ROMEO [16] which provides a
model-checking solution by evaluating if a marking can be
reached. If true, the sequence of transitions is returned. The

marking to be reached corresponds to the place modeling
the final state of the TBA model of the MITL formula.
Therefore, the solution reaching the desired marking has the
same connotation as satisfying an MITL formula (as shown
in Ex. 4.2). The paths of the multi-agent system are conveyed
into motions according to the trace run and controller for
steering robots between partition cells. One advantage of
the tool ROMEO for modeling and analyzing Time Petri
net models is represented by the on-the-fly model-checking
procedure, which does not create the entire state-class graph
when searching for a trace run.

Let us consider the case study tackled in [30], in which
a gantry-robot system of R robotic arms should install
reinforcement bars (rebars) to create a concrete structure
(cage). This scenario envisions two sub-groups of robotic
arms, based on their capabilities given by the gripper: the
first sub-teams (denoted with rpp) should pick-up the rebars,
move them in the construction area, and hold the rebars while
they are connected by the second subgroup of robots rc, with
rc∩rpp = ∅, rc∪rpp ⊆ r. Although [30] proposes a solution
for this scenario, the authors mention the lack of flexibility
in their approach. Thus, the current work proposes a fixed
topology model, w.r.t. the number of agents in the team,
e.g., different type of rebars influences the number of robots
assigned to each sub-group. In addition, time constraints are
integrated into the path-planning strategy. Our work relies
on the assumptions introduced in [30], regarding the known
data apriori building the cage.

The flexible planning strategy is based on two regions of
interest (ROIs) in the configuration space of the robots.

• y1 - defines the common area designated to pick-up the
rebars by the set rpp of robots. It is assumed that the
gripping points are assigned to the robots while ensuring
collision-free movement.

• y2 - depicts the construction area in which the rebars
are placed by the same set of robots rpp and linked
together by the set of robots rc.

Each sub-group of agents receives one MITL formula as
mission. These formulas are iterated for each rebar, until the
entire structure is build. The time constraints are expressed as
[0, ci],∀Ii, ci ∈ N+. Both MITL specifications are related to
each other through time condition c3 > c4 and c3 ≤ c4 + c5
(the robots rpp should hold still the rebars for a time c5 =
|I3|, while the robots rc link the rebars together).

(i) Formula (3) is assigned to the set rpp and it specifies
the sequence of actions to pick-up a rebar from y1 for time
I1, place it in y2 in the time I2 computed w.r.t. the pick-up
time, and hold the rebar for I3 time.

φrpp = ♢I1y1 ∧ (y1 → ♢I2□I3y2) (3)

(ii) Formula (4) requires the robots rc to reach y2 w.r.t. I4,
while staying there for I5 time to link the rebars together.

φrc = ♢I4□I5y2 (4)

The main idea is to compute one Composed Time Petri
net model for each MITL formula while checking if the

Fig. 5. Part of Composed Time Petri net, based on the atomic proposition a used in the MITL formula φ = ♢≤cy1

specification can be fulfilled based on a model-checking
approach for the T PNC representation.

Algorithm 1: Movement of robots
Input : r, φrpp , φrc , structurefixed, E
Output: Strategic movement of the robots

1 All robots r are placed in the home position;
2 structure = ∅;
3 Build T PNφrpp based on specification φrpp ;
4 Build T PNφrc based on specification φrc ;
5 while structure ̸= structurefixed do
6 Arrival of a rebar in the pick-up place y1;
7 Analyze the type of the rebar to compute the

number of robots in sub-groups rpp and rc;
8 Compute and execute paths for rpp and rc;
9 Update structure;

10 Return rc and rpp to their home position;
11 end

Alg. 1 describes the procedure followed in this case study.
Initially, all robots are placed in a home position. With every
arrival of a rebar in the pick-up area y1, the number of robots
assigned for each subgroups is computed, depending on the
type of rebar, as in [30]. One MITL formula is assigned to
each sub-group rpp and rc, for which an individual T PNC

model is computed. These formulas are ensured when robots
rpp satisfy φrpp and rc satisfy φrc . This is equivalent with
reaching final markings in the TPN models, with yi true only
if the number of tokens are equal with |rpp|, respectively |rc|.
Once the sequences of transitions in the TPN models (robot
paths) are returned, the robots return to their home position
and the structure is updated. The process from lines 6- 13
is repeated until the structure is equal with the intended
structure structurefixed given as input.

Let us consider the environment partitioned into cells,
modeled by T PNE with 20 places. The table I includes
the numerical evaluation obtained for MITL specifications

(3),(4) considering the size of each Composed Time Petri
net model T PNC denoted with T PNφrpp , respectively
T PNφrc . The simulation results are obtained on a computer
with i7 - 8th gen. CPU @ 2.20GHz and 8GB RAM.

Remark 4. As mentioned in [14], both models TBA and
TPN are timed bisimilar. If each agent of the robotic system
is modeled as a TBA, e.g., [6], then the total number of
locations for the entire team increases exponentially as a
result of the product automata, incorporating also the number
of locations for the TBA assigned to an MITL formula φ. On
the other hand, the size of a Composed Time Petri net model
w.r.t. the number of places PC depends on the cardinality
of sets PE , PO, P¬O and Pφ. The total number of places
PC is not influenced by the number of agents for which the
T PNC model was computed.

Discussion The proposed TPN structure provides clear
coordination between the local time constraints related to the
motion of the robots (modeled by T PNE) and the global
time constraints given by the MITL mission (modeled by
T PNφ). In addition, the Composed Time Petri net model is
suitable to capture the census concept as mentioned in [12],
which requires a task to be fulfilled by multiple agents.

The model-checking approach applied to the present case
study supports the effectiveness of the proposed framework,
providing a fixed topology model w.r.t. the number of agents
which should fulfill an MITL formula. Thus, the current
work based on Time Petri nets provides a good baseline to
develop scalable models of multi-agent systems. For now,
one downside of the current approach prevails outputs for a
large number of agents. Thus, although the model-checking
of the ROMEO tool does not explore the entire reachability
graph, the conducted simulations with more than 3 agents
could not yield a solution. Therefore, various approaches can
be further exploited, such as structural methods, e.g., math-
ematical programming, or methods that partially investigate
the state space of the model, e.g., distributed methods.

TABLE I
NUMERICAL EVALUATION

MITL Formula Size of T PNC No. of agents Model-checking run time [sec]

φrpp = ♢I1y1 ∧ (y1 → ♢I2□I3y2) |PC | = 50, |TC | = 65 2 2.2
3 81.3

φrc = ♢I4□I5y2 |PC | = 42, |TC | = 58 2 1.8
3 49

VI. CONCLUSION

This paper presents a framework for high-level planning
strategy, based on a newly defined Composed Time Petri net
model coupling space and time requirements included in an
MITL formula given for a multi-agent system. The main
steps to achieve the proposed model include the representa-
tion of the workspace, respectively an MITL formula, into
TPN models, which are furthered coupled with sets of places
modeling the number of agents required for the truth value
of an atomic proposition (region of interes). The benefits of
the proposed Time Petri net model include a fixed topology
w.r.t. the number of agents evolving in a known environment.

Future work envisions studying of path planning proce-
dures with time constraints including local or collaborative
tasks for the robots, depending on the type of rebar. One
work handling such tasks without time constraints is [5], in
which the authors differentiate between various tasks based
on LTL formalism.

REFERENCES

[1] A. Das, Y. Kasemsinsup, and S. Weiland, “Optimal trajectory tracking
control for automated guided vehicles,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 303–308, 2017.

[2] E. Restrepo, J. Matouš, and K. Y. Pettersen, “Tracking-in-formation of
multiple autonomous marine vehicles under proximity and collision-
avoidance constraints,” in 2022 European Control Conference (ECC).
IEEE, 2022, pp. 930–937.

[3] Y. Kantaros, M. Guo, and M. M. Zavlanos, “Temporal logic task plan-
ning and intermittent connectivity control of mobile robot networks,”
IEEE Trans. on Autom. Control, vol. 64, no. 10, pp. 4105–4120, 2019.

[4] C. Mahulea, M. Kloetzer, and R. González, Path planning of cooper-
ative mobile robots using discrete event models. John Wiley & Sons,
2020.

[5] M. Guo and D. V. Dimarogonas, “Task and motion coordination for
heterogeneous multiagent systems with loosely coupled local tasks,”
IEEE Trans. on Automation Science and Engineering, vol. 14, no. 2,
pp. 797–808, 2016.

[6] A. Nikou, D. Boskos, J. Tumova, and D. V. Dimarogonas, “Cooper-
ative planning for coupled multi-agent systems under timed temporal
specifications,” in 2017 American Control Conference (ACC), 2017,
pp. 1847–1852.

[7] W. Wang, G. F. Schuppe, and J. Tumova, “Decentralized multi-
agent coordination under MITL specifications and communication
constraints,” 2022.

[8] L. Lindemann and D. V. Dimarogonas, “Robust control for signal
temporal logic specifications using discrete average space robustness,”
Automatica, vol. 101, pp. 377–387, 2019.

[9] C.-I. Vasile, D. Aksaray, and C. Belta, “Time window temporal logic,”
Theoretical Computer Science, vol. 691, pp. 27–54, 2017.

[10] I. Hustiu, M. Kloetzer, and C. Mahulea, “Distributed path planning of
mobile robots with LTL specifications,” in 24th Int. Conf. on System
Theory, Control and Computing (ICSTCC), 2020, pp. 60–65.

[11] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova,
“Integrated motion planning and control under metric interval temporal
logic specifications,” in 18th European Control Conference (ECC),
2019, pp. 2042–2049.

[12] Z. Xu and A. A. Julius, “Census signal temporal logic inference for
multiagent group behavior analysis,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 15, no. 1, pp. 264–277, 2016.

[13] Z. He, Y. Dong, G. Ren, C. Gu, and Z. Li, “Path planning for
automated guided vehicle systems with time constraints using timed
Petri nets,” Measurement and Control, vol. 53, no. 9-10, pp. 2030–
2040, 2020.

[14] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, “Com-
parison of the expressiveness of timed automata and time Petri nets,”
in International conference on formal modeling and analysis of timed
systems. Springer, 2005, pp. 211–225.

[15] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion
constraints for Petri nets with uncontrollable transitions,” in IEEE Int.
Conf. on Systems, man, and cybernetics, 1992, pp. 947–949.

[16] G. Gardey, D. Lime, M. Magnin, and O. Roux, “Romeo: A tool for
analyzing time Petri nets,” in International Conference on Computer
Aided Verification. Springer, 2005, pp. 418–423.

[17] R. Alur and D. Dill, “The theory of timed automata,” in Work-
shop/School/Symposium of the REX Project (Research and Education
in Concurrent Systems). Springer, 1991, pp. 45–73.

[18] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–
146, 1996.

[19] D. D’Souza and P. Prabhakar, “On the expressiveness of MTL in
the pointwise and continuous semantics,” International Journal on
Software Tools for Technology Transfer, vol. 9, no. 1, pp. 1–4, 2007.

[20] O. Maler, D. Nickovic, and A. Pnueli, “From MITL to timed au-
tomata,” in International conference on formal modeling and analysis
of timed systems. Springer, 2006, pp. 274–289.

[21] D. Ničković and N. Piterman, “From MTL to deterministic timed
automata,” in International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 2010, pp. 152–167.

[22] R. Alur, “Timed automata,” in International Conference on Computer
Aided Verification. Springer, 1999, pp. 8–22.

[23] G. E. Fainekos and G. J. Pappas, “Robust sampling for MITL
specifications,” in International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 2007, pp. 147–162.

[24] P. Merlin and D. Farber, “Recoverability of communication protocols-
implications of a theoretical study,” IEEE transactions on Communi-
cations, vol. 24, no. 9, pp. 1036–1043, 1976.

[25] B. Berthomieu and M. Diaz, “Modeling and verification of time
dependent systems using time Petri nets,” IEEE transactions on
software engineering, vol. 17, no. 3, p. 259, 1991.

[26] S. Hustiu, C. Mahulea, M. Kloetzer, and J.-J. Lesage, “On multi-robot
path planning based on Petri net models and LTL specifications,”
2022. [Online]. Available: https://arxiv.org/abs/2211.04230

[27] M. Kloetzer, C. Mahulea, and J.-M. Colom, “Petri net approach
for deadlock prevention in robot planning,” in IEEE 18th Conf. on
Emerging Technologies & Factory Automation (ETFA), 2013, pp. 1–4.

[28] M. Lupascu, S. Hustiu, A. Burlacu, and M. Kloetzer, “Path planning
for autonomous drones using 3d rectangular cuboid decomposition,” in
23rd Int. Conf. on System Theory, Control and Computing (ICSTCC),
2019, pp. 119–124.

[29] C. Mahulea and M. Kloetzer, “Robot planning based on boolean spec-
ifications using Petri net models,” IEEE Transactions on Automatic
Control, vol. 63, no. 7, pp. 2218–2225, 2017.

[30] M. Momeni, J. Relefors, A. Khatry, L. Pettersson, A. V. Papadopoulos,
and T. Nolte, “Automated fabrication of reinforcement cages using a
robotized production cell,” Automation in Construction, vol. 133, p.
103990, 2022.

