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Abstract— This paper considers the problem of optimizing
robot navigation with respect to a time-varying objective encoded
into a navigation density function. We are interested in designing
state feedback control laws that lead to an almost everywhere
stabilization of the closed-loop system to an equilibrium point
while navigating a region optimally and safely (that is, the
transient leading to the final equilibrium point is optimal and
satisfies safety constraints). Though this problem has been
studied in literature within many different communities, it
still remains a challenging non-convex control problem. In
our approach, under certain assumptions on the time-varying
navigation density, we use Koopman and Perron-Frobenius
Operator theoretic tools to transform the problem into a convex
one in infinite dimensional decision variables. In particular,
the cost function and the safety constraints in the transformed
formulation become linear in these functional variables. Finally,
we present some numerical examples to illustrate our approach,
as well as discuss the current limitations and future extensions
of our framework to accommodate a wider range of robotics
applications.

I. INTRODUCTION

Robot navigation remains an important problem for a
diverse community of researchers in the areas of autonomous
driving, precision agriculture, service robots etc. Each of these
different sub-areas have the common challenge of overcoming
uncertainties in a dynamic environment, which might include
other robotic agents and humans. Additionally, the robots
may be tasked with optimizing utilities that are possibly time-
varying under safety and mission constraints. Traditionally,
one of the ways this problem has been tackled within nonlinear
controls community, is through the use of navigation functions
that encode the control objectives as well as safety constraints.
These navigation functions can then be used to extract
controllers via their gradients [1]. Although sub-optimal, this
approach is efficient to compute, and scales gracefully with
the dimensions of the system. However, it is well known that
gradient-based approaches need additional care to overcome
local-minima problems [2]. Navigation problems have also
been studied extensively in an optimal control setting [3],
which in addition to producing less conservative trajectories
compared to navigation function based approaches, also do
not suffer from singularity issues. However, optimal control
approaches, particularly those based on dynamic programming
principles, often suffer from computational intractability
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as the state dimensions increase. Direct optimization like
collocation or single/multi-shooting methods are better suited
for handling higher dimensions [4], but are not guaranteed to
provide globally optimal solutions due to non-convexity of the
problem. Model Predictive Control (MPC) based planning for
robots ensures optimality over a receding time-horizon, with
robustness to model uncertainties and dynamic environments
[5][6].

This paper is motivated by the need for control design
methods that can generate optimal trajectories under safety
constraints in an efficient manner, and yet are also
straightforward to implement, through a convex reformulation.
We are particularly interested in this paper to obtain state
feedback controllers in analytical form, because they render
the close-loop robot dynamics amenable for analysis. For
example, once these feedback controllers are synthesized in
closed-form, they can be further used alongside Lyapunov
functions for safety and performance verification, under the
assumptions that the models of the system are well known and
accurate. We develop tools for designing stabilizing feedback
controllers that are also optimal with respect to known, but
time-varying navigation density functions.

In our work, we adopt an operator theoretic paradigm to
analyze and transform the time-varying optimal navigation
problem into a convex program in infinite dimensions.
Koopman Operators describe the linear evolution of a
system through a lifted higher dimensional space, whereas
Perron-Frobenius Operators are useful for understanding
how densities evolve under a given dynamical flow. Please
see [7][8] for recent surveys. Koopman Operator theory
has risen in popularity not just for data-driven modelling
[9][10], but also for control synthesis [11][12][13], and
Lyapunov analysis [14][15]. More recently, the Perron-
Frobenius Operator has been exploited to frame robot
navigation problems into a convex optimization problem. For
example, in [16], the authors consider probabilistic safety
during robot navigation. In [17], an off-road navigation
problem is solved by a data-driven approach using Perron-
Frobenius based formulation. We extend these prior works by
introducing time-varying density functions into the optimal
navigation formulation, which we then convert into an
amenable, linear infinite-dimensional optimization problem.
Solving this reformulated problem yields feedback controllers
that are almost everywhere stabilizing, while maximizing the
navigation objective. Additionally, safety constraints can also
be incorporated, and appear in our reformulated setup as
linear inequalities in the decision variables (which belong to
a function space).

The rest of our paper is organized as follows. Section



II provides some essential background on Koopman and
Perron-Frobenius operators and related results on stability.
Next, in Section III, we formulate our optimal navigation
problem, which is then analyzed and solved in Section IV
with the help of operator theoretic tools described earlier
in Section II. Some numerical examples illustrating our
approach are presented in Section V, and finally, Section VI
provides concluding remarks and our future directions of
interest.

Notations: ℝ and ℕ are the set of real and natural numbers,
respectively. We denote the set of essentially bounded
functions defined over a set 𝑋 as ∞(𝑋). Similarly, the set of
integrable functions 𝑔 ∶ 𝑋 → 𝑋 that satisfies ∫𝑋 |𝑔|1𝑑𝑥 < ∞
is denoted by 1(𝑋). The term ∇𝑔 means the gradient vector
of function 𝑔, whereas the scalar quantity ∇ ⋅ 𝑔 denotes the
divergence of 𝑔. Given a linear operator 𝔸, the notation
𝔸𝑘 for any 𝑘 ∈ ℕ means the operator is applied 𝑘 times.
For example, 𝔸2𝑔 = 𝔸(𝔸𝑔). The support of a function or a
density is denoted by 𝑆𝑢𝑝𝑝(⋅).

II. PRELIMINARIES

Let us consider a nonlinear dynamical system

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)), (1)

where state 𝑥 is assumed to evolve in a compact set 𝑋 ⊂ ℝ𝑛,
and the vector field 𝑓 is continuously differentiable on 𝑋. The
flow map of this dynamical system, denoted by the function
𝜙𝑡 ∶ 𝑋 → 𝑋, is given as

𝜙𝑡(𝑥0) = 𝑥0 + ∫

𝑡

0
𝑓 (𝑥(𝑠))𝑑𝑠, 𝑥(0) = 𝑥0.

The semigroup of Koopman Operators for system (1) defined
over the (Banach) space of ∞(𝑋) functions is given by the
linear map 𝑡 such that

[

𝑡𝑔
]

(𝑥) = 𝑔(𝜙𝑡(𝑥)), ∀𝑔 ∈ ∞(𝑋).

Definition 1. The dual of the Koopman Operator 𝐾𝑡, known as
the Perron-Frobenius Operator associated with the dynamical
system (1), is defined as the linear map 𝑡 ∶ 1(𝑋) → 1(𝑋)
such that:

∫

[

𝑡ℎ
]

(𝑥)𝑑𝑥 = ∫𝜙−𝑡()
ℎ(𝑥)𝑑𝑥, ∀ ⊆ 𝑋, ∀ℎ ∈ 1(𝑋).

(2)
In other words,

[

𝑡ℎ
]

(𝑥) = ℎ(𝜙−𝑡(𝑥))
|

|

|

𝜕𝜙−𝑡(𝑥)
𝜕𝑥

|

|

|

, where | ⋅ | is
the determinant.

By taking the set  in equation (2) to be arbitrarily small,
one can see that

ℎ(𝑥) ≥ 0 ⇒
[

𝑡ℎ
]

(𝑥) ≥ 0 (Positivity property)

and when  is the entire domain 𝑋, we note that

∫𝑋

[

𝑡ℎ
]

(𝑥)𝑑𝑥 = ∫𝑋
ℎ(𝑥)𝑑𝑥. (Markov property)

These two properties mean that the Perron-Frobenius Operator
acting on a probability density function on 𝑋 in particular,

yields a function that is also a probability density. The duality
between the two operators, which shall be utilized throughout
this paper, is expressed as

∫𝑋
[𝑡𝑔](𝑥)ℎ(𝑥)𝑑𝑥 = ∫𝑋

𝑔(𝑥)[𝑡ℎ](𝑥)𝑑𝑥. (3)

Contrary to the Koopman Operator, which describes the
evolution of observables in a Banach space along the
trajectories of a dynamical system, the Perron-Frobenius
Operator can use used to describe the evolution of an
ensemble of trajectories or densities defined over 𝑋. It is
also important to note that given the linear operator

𝔸𝛿 ≐ −∇ ⋅ (𝛿𝑓 ), (4)

the Perron-Frobenius operator describes the solution of the
advection equation

𝜕
𝜕𝑡
𝛿(𝑥, 𝑡) = 𝔸𝛿(𝑥, 𝑡), 𝛿(𝑥, 0) = 𝛿0(𝑥) (5)

linearly as 𝑡𝛿0 = 𝑒𝔸𝑡𝛿0(𝑥).
Various stability notions for dynamical systems have been

studied typically through the lens of Koopman Operators, like
global asymptotic stability in [15], or contraction in [18] etc.
Interestingly, stability results can also be described via Perron-
Frobenius operators and Lyapunov measures [19]. Towards
that end, we first provide the following definition:

Definition 2. (Almost everywhere stability [19]) Consider a
measure 𝜇0 in the vector space (𝑋) of all real-valued
measures defined over the Borel 𝜎-algebra on 𝑋. The
equilibrium point 𝑥𝑒 of system (1) is said to be almost
everywhere (a.e.) stable w.r.t. measure 𝜇0 ∈ (𝑋) if

𝜇0
{

𝑥 ∈ 𝑋 ∶ lim
𝑡→∞

𝜙𝑡(𝑥) ≠ 𝑥𝑒
}

= 0.

Lemma 1. [20] The equilibrium point 𝑥𝑒 of the system (1)
with region of attraction 𝐴 is a.e. stable w.r.t. measure 𝜇0
if there exists a non-negative function 𝜌(𝑥) ∈ 𝐶1(𝑋∖𝑥𝑒) ∩
1(𝑋∖𝐴) such that

[𝔸𝜌] (𝑥) = −𝜌0(𝑥), (6)

where the non-negative function 𝜌0 ∈ 1(𝑋) is the density
corresponding to measure 𝜇0 (that is, 𝑑𝜇0(𝑥) = 𝜌0(𝑥)𝑑𝑥).

Note that the the existence of density 𝜌(𝑥) satisfying
equation (6) is also a necessary condition (in addition to
being sufficient), if we consider a stronger notion of stability
(a.e. uniform stability ). Such a function 𝜌(𝑥) is also referred
to as Lyapunov density. Please refer to [20] for a detailed
presentation.

In the next two sections, we introduce our navigation
problem, formulated via the linear operators described in this
section, and how they can encode different robotic control
objectives.



III. OPTIMAL NAVIGATION PROBLEM FORMULATION

We are ready to show how operator theoretic tools defined
in the previous sections can be used to find optimal feedback
controllers for robot navigation problems. Towards that end,
we first introduce the control-affine dynamical system

𝑥̇(𝑡) = 𝑓0(𝑥(𝑡)) +
∑

1≤𝑖≤𝑚
𝑓𝑖(𝑥(𝑡))𝑢𝑖(𝑥(𝑡)) ≐ 𝑓 (𝑥, 𝑢) (7)

where 𝑥 ∈ 𝑋 ⊂ ℝ𝑛 is the state vector and control input
vector 𝑢 = [𝑢1,⋯ , 𝑢𝑚]⊤ belongs to the set  of all feedback
controllers that are Lipschitz continuous on 𝑋 and take values
in some compact set 𝑈 ⊂ ℝ𝑚. The functions 𝑓𝑖 for 𝑖 =
{0, 1,⋯ , 𝑚} are assumed to be continuously differentiable
on the set 𝑋. We define the Koopman and Perron-Frobenius
Operators in the same way for the controlled system (7) as
the previous section, by simply considering the closed-loop
dynamics. Thus for the remainder of the paper, the notation
𝑓 refers to the right hand-side of the closed-loop system (7).

Consider the following optimal control problem, given a
(time-invariant) density function 𝑚 ∶ 𝑋 → ℝ≥0:

max
𝑢∈ ∫

∞

0 ∫
𝑚(𝜙𝑡(𝑥))𝑑𝜇0(𝑥)𝑑𝑡, (8)

where the measure 𝜇0 (corresponding to some absolutely
continuous density 𝛿0 whose support is the set 𝑆𝑢𝑝𝑝(𝛿0) =
 ⊆ 𝑋) captures the distribution of the initial condition of
the system. The flow map 𝜙𝑡 corresponds to the dynamics (7).
Loosely speaking, equation (8) means that we want to control
the evolution of the set of states with initial distribution 𝛿0,
using feedback control 𝑢 in way that maximizes the occupancy
of the set 𝑆𝑢𝑝𝑝(𝑚), averaged over the density 𝑚. In addition
to the objective (8), one may also have constraints on the
navigation problem, such as

∫

∞

0 ∫
1𝑋𝑎

(𝜙𝑡(𝑥))𝑑𝜇0(𝑥)𝑑𝑡 ≤ 𝛾 (9)

where 𝛾 is some positive constant. The set 𝑋𝑎 ⊂ 𝑋 may
represent an unsafe set that needs to be avoided for example,
with 1𝑋𝑎

being its corresponding indicator function. For hard
safety constraints, one can set 𝛾 to zero and show that the
trajectories of the system (7) starting inside 𝑆𝑢𝑝𝑝(𝛿0) do
not enter 𝑋𝑎 if and only if the left-hand side of equation
(9) is zero. However, when 𝛾 is nonzero, one may interpret
inequality (9) in a probabilistic sense, wherein the trajectories
avoid the unsafe set with probability proportional to 𝛾 [16].

In this paper, we consider the optimal navigation problem
under time-varying density functions, and present some
results in the next section to allow a convex reformulation
of the problem via the linear advection operator 𝔸 acting
on densities. For the sake of simplicity of presentation, we
shall not consider constraints such as equation (9), although
one may include time-varying constraints into our results in
a straightforward manner.

IV. MAIN RESULTS

Let us now consider the optimal navigation problem with
time-varying density function 𝑚 ∶ 𝑋 × [0,∞) → ℝ≥0 as
follows:

max
𝑢∈ ∫

∞

0 ∫
𝑚(𝜙𝑡(𝑥), 𝑡)𝑑𝜇0(𝑥)𝑑𝑡,

subject to:
𝑑
𝑑𝑡

𝜙𝑡(𝑥) = 𝑓 (𝜙𝑡(𝑥), 𝑢)

(10)

where the set  is the set of all state-feedback controllers
that stabilize the origin (a.e. uniformly). In order to make our
problem more tractable for analysis, we shall impose certain
restrictions on the structure of this time-varying density 𝑚.
Thus, throughout our presentation, we shall assume that the
following holds true:

Assumption 1. The time-varying density 𝑚(𝑥, 𝑡) is assumed
to be separable into time and space dependent terms as
𝑚(𝑥, 𝑡) =

∑𝑁
𝑖=1𝑤𝑖(𝑡)𝑏𝑖(𝑥) with linearly independent basis 𝑏𝑖’s.

We also assume 𝑑𝑘

𝑑𝑡𝑘𝑤𝑖(𝑡) are bounded for all 𝑘 ∈ {0} ∪ ℕ.

Now, one may note that by using the duality relation
between Koopman and Perron-Frobenius Operators given
by equation (3) together with Assumption 1, we get

∫

∞

0 ∫
𝑚(𝜙𝑡(𝑥), 𝑡)𝛿0(𝑥)𝑑𝑥𝑑𝑡

=
𝑁
∑

𝑖=1
∫

∞

0 ∫
𝑤𝑖(𝑡)𝑏𝑖(𝜙𝑡(𝑥))𝛿0(𝑥)𝑑𝑥𝑑𝑡

=
𝑁
∑

𝑖=1
∫

∞

0 ∫
𝑤𝑖(𝑡)𝑡𝑏𝑖(𝑥)𝛿0(𝑥)𝑑𝑥𝑑𝑡

=
𝑁
∑

𝑖=1
∫

∞

0 ∫
𝑤𝑖(𝑡)𝑏𝑖(𝑥)𝑡𝛿0(𝑥)𝑑𝑥𝑑𝑡

= ∫

𝑁
∑

𝑖=1
𝑏𝑖(𝑥)

(

∫

∞

0
𝑤𝑖(𝑡)𝑡𝛿0(𝑥)𝑑𝑡

)

𝑑𝑥. (11)

Next, let us define 𝜌𝑖,𝑘(𝑥) ≐ ∫ ∞
0

𝑑𝑘𝑤𝑖
𝑑𝑡𝑘 𝑡𝛿0(𝑥)𝑑𝑡. Note

that for 𝑘 = 0 in particular, 𝜌𝑖,0(𝑥) = ∫ ∞
0 𝑤𝑖𝑡𝛿0(𝑥)𝑑𝑡

and thus the objective function is linear w.r.t. the
vector

[

𝜌1,0(𝑥), 𝜌2,0(𝑥),⋯ , 𝜌𝑁,0(𝑥)
]

from equation (11). The
following proposition provides a helpful recurrence relation
for computing these functions:

Proposition 1. Let 𝑢(𝑥) ∈  be a given feedback controller.
If there exist a function 𝜌′(𝑥) satisfying

[

𝔸𝜌′
]

(𝑥) = −𝛿0(𝑥),
then

𝜌𝑖,𝑘+1 = −𝔸𝜌𝑖,𝑘 −
𝑑𝑘𝑤𝑖(0)
𝑑𝑡𝑘

𝛿0, (12)

for all 𝑘 ≥ 0.

Proof. The operator 𝔸 (defined in equation (4)) acting on
the function 𝜌𝑖,𝑘 gives

𝔸𝜌𝑖,𝑘 = −∇ ⋅ (𝜌𝑖,𝑘𝑓 ) = ∫

∞

0

𝑑𝑘𝑤𝑖

𝑑𝑡𝑘
𝔸𝑡𝛿0(𝑥)𝑑𝑡

= ∫

∞

0

𝑑𝑘𝑤𝑖

𝑑𝑡𝑘
𝜕
𝜕𝑡
𝑡𝛿0(𝑥)𝑑𝑡



=
[

𝑑𝑘𝑤𝑖

𝑑𝑡𝑘
𝑡𝛿0(𝑥)

]∞

0
− ∫

∞

0

𝑑𝑘+1𝑤𝑖

𝑑𝑡𝑘+1
𝑡𝛿0(𝑥)𝑑𝑥

Since the function 𝜌′ satisfies equation (6) (that is,
[

𝔸𝜌′
]

(𝑥) =
−𝛿0(𝑥)), it follows from Lemma 1 that the closed loop
system (7) is a.e. stable, and lim𝑡→∞ 𝑡𝛿0(𝑥) = 0. Also, when

𝑡 = 0, we know that 0𝛿0 = 𝛿0. Thus,
[

𝑑𝑘𝑤𝑖
𝑑𝑡𝑘 𝑡𝛿0(𝑥)

]∞

0
=

− 𝑑𝑘𝑤𝑖(0)
𝑑𝑡𝑘 𝛿0(𝑥), which gives us 𝔸𝜌𝑖,𝑘 = − 𝑑𝑘𝑤𝑖(0)

𝑑𝑡𝑘 𝛿0 − 𝜌𝑖,𝑘+1.
This completes the proof.

In order to make our optimal feedback control problem
well-posed, we shall only focus on a certain sub-class of
time-varying densities 𝑚(𝑥, 𝑡), since allowing 𝑚(𝑥, 𝑡) to vary
arbitrarily can make the problem increasingly challenging. We
thus impose the following assumption on the time dependence
of our density function 𝑚(𝑥, 𝑡):

Assumption 2. We assume that the time-varying density
𝑚(𝑥, 𝑡) in equation (10) evolves according to a linear PDE
of the form

∑𝐾+1
𝑘=1

∑𝑀
𝑗=1 𝑎𝑗,𝑘(𝑥)

𝜕𝑘−1𝜕𝑗

𝜕𝑡𝑘−1𝜕𝑥𝑗 𝑚(𝑥, 𝑡) = 0, for scalar
functions 𝑎𝑗,𝑘 ∈ 1(𝑋,ℝ).

This assumption allows us to solve for functions 𝜌𝑖,0(𝑥) using
the recurrence relation (12). We can now present the following
theorem, which reformulates our optimal navigation problem
with time-varying densities.

Theorem 1. Given a time-varying density 𝑚(𝑥, 𝑡) satisfying
Assumptions 1 and 2, let 𝛼𝑖,𝑘(𝑥) =

∑𝑀
𝑗=1 𝑎𝑗,𝑘(𝑥)

𝑑𝑗

𝑑𝑥𝑗 𝑏𝑖(𝑥), and

𝜈𝑖,𝑘 =
∑𝑘−1

𝑗=0
𝑑𝑗𝑤𝑖(0)
𝑑𝑡𝑗 (−𝔸)𝑘−𝑗−1𝛿0. The optimization problem

(10) can be written equivalently as

max
𝜌,𝜌′,𝑢∫

𝑏(𝑥)⊤𝜌(𝑥)𝑑𝑥

Subject to:
ℂ(𝑥)⊤𝜌(𝑥) = 𝑣(𝑥),
𝔸𝜌′(𝑥) = −𝛿0(𝑥),

(13)

where 𝑣(𝑥) =
∑𝑁

𝑖=1
∑𝐾+1

𝑘=1 𝛼𝑖,𝑘(𝑥)𝜈𝑖,𝑘(𝑥) is a scalar function,
and ℂ(𝑥) is the vector of linear operators given by

ℂ(𝑥) ≐
⎡

⎢

⎢

⎢

⎣

𝛼11(𝑥) 𝛼12(𝑥) ⋯ 𝛼1𝐾 (𝑥)
𝛼21(𝑥) 𝛼22(𝑥) ⋯ 𝛼2𝐾 (𝑥)

⋮ ⋮ ⋱ ⋮
𝛼𝑁1(𝑥) 𝛼𝑁2(𝑥) ⋯ 𝛼𝑁𝐾 (𝑥)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
−𝔸
𝔸2

⋮
(−𝔸)𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof. We first note that using Assumption 1, the objective
function ∫ ∞

0 ∫ 𝑚(𝜙𝑡(𝑥), 𝑡)𝑑𝜇0(𝑥)𝑑𝑡 can be written as

∫

∞

0 ∫
𝑚(𝜙𝑡(𝑥), 𝑡)𝑑𝜇0(𝑥)𝑑𝑡 = ∫

𝑏(𝑥)⊤𝜌0(𝑥)𝑑𝑥,

where 𝜌0(𝑥) is the vector
[

𝜌1,0,⋯ , 𝜌𝑁,0
]⊤ (recall that

𝜌𝑖,0(𝑥) ≐ ∫ ∞
0 𝑤𝑖(𝑡)𝑡𝛿0(𝑥)𝑑𝑡). Additionally, the admissible

set of controllers  for our problem (10) is taken to be a.e.
uniform stabilizing, which implies (and is implied by) the

existence of a function 𝜌′ satisfying 𝔸𝜌′ = −𝛿0 (see Lemma
1). Now by directly applying Proposition 1, we get

𝜌𝑖,𝑘+1 = −𝔸𝜌𝑖,𝑘 −
𝑑𝑘𝑤𝑖(0)
𝑑𝑡𝑘

𝛿0

⇒ 𝜌𝑖,𝑘(𝑥) = (−𝔸)𝑘𝜌𝑖,0(𝑥) − 𝜈𝑖,𝑘(𝑥), i.e.,

∫

∞

0

𝑑𝑘𝑤𝑖

𝑑𝑡𝑘
𝑡𝛿0(𝑥)𝑑𝑡 = (−𝔸)𝑘𝜌𝑖,0(𝑥) − 𝜈𝑖,𝑘(𝑥), (14)

where 𝜈𝑖,𝑘 is defined as
∑𝑘−1

𝑗=0
𝑑𝑗𝑤𝑖(0)
𝑑𝑡𝑗 (−𝔸)𝑘−𝑗−1𝛿0. We now

use Assumption 2, and rewrite the PDE for 𝑚(𝑥, 𝑡) by
rearranging its terms in the form:

𝑁
∑

𝑖=1

𝐾+1
∑

𝑘=1
𝛼𝑖,𝑘(𝑥)

𝑑𝑘−1

𝑑𝑡𝑘−1
𝑤𝑖(𝑡) = 0, (15)

where 𝛼𝑖,𝑘(𝑥) =
∑𝑀

𝑗=1 𝑎𝑗,𝑘(𝑥)
𝑑𝑗

𝑑𝑥𝑗 𝑏𝑖(𝑥). Next, by right-
multiplying the function 𝛼𝑖,𝑘(𝑥) on both sides of equation
(14) and summing over indices 𝑖 and 𝑘, we get:

0
(15)
=

𝑁
∑

𝑖=1

[𝐾+1
∑

𝑘=1
𝛼𝑖,𝑘(𝑥)(−𝔸)𝑘−1

]

𝜌𝑖,0(𝑥)−
𝑁
∑

𝑖=1

𝐾+1
∑

𝑘=1
𝛼𝑖,𝑘(𝑥)𝜈𝑖,𝑘(𝑥).

That is, 𝜌0 is the unique solution to the equation

ℂ(𝑥)⊤𝜌(𝑥) = 𝑣(𝑥), (16)

where ℂ(𝑥) and 𝑣(𝑥) are as defined in the statement of the
theorem. This concludes the equivalence of the two problems
(10) and (13).

Remark: At this point, we would like to comment that if
the PDE describing the time-dependence of 𝑚(𝑥, 𝑡) is first
order w.r.t the variable 𝑡 (that is, 𝐾 = 1), the problem (13)
can further be expressed as a linear optimization problem.
The decision variables 𝑢 are combined with 𝜌 and 𝜌′, giving
rise to new linear decision variables 𝜌, 𝑢𝑖𝜌′, 𝑢𝑖𝜌𝑗 , for (𝑖, 𝑗) ∈
{1,… , 𝑚} × {1,… , 𝑁}, in similar fashion as [16].

A. Trajectory dependent densities
In order to adapt the formulation (10)-(13) to broader

practical applications (for example, coverage path planning),
we consider the case when the density 𝑚(𝑥, 𝑡) varies
depending on the state trajectory. Concretely, the right-hand
side of equation (15) is now considered to be some function
of 𝜙𝑡(𝑥) instead of zero:

𝑁
∑

𝑖=1

𝐾+1
∑

𝑘=1
𝛼𝑖,𝑘(𝑥)

𝑑𝑘−1

𝑑𝑡𝑘−1
𝑤𝑖(𝑡) = 𝑔(𝜙𝑡(𝑥)) = 𝑡𝑔(𝑥), (17)

This introduces an additional term on the left-hand side of
equation (16):

ℂ(𝑥)⊤𝜌(𝑥) = 𝑣(𝑥) + ∫

∞

0
𝑡𝑔(𝑥)𝑡𝛿0(𝑥)𝑑𝑡.

The term on the right hand-side above involves integral of
the Koopman and the Perron-Frobenius operators acting on
functions over an infinite time horizon, and as such is difficult
to compute. Thus, we assume the functions 𝑔 to belong to the
linear space spanned by the stable eigenfunctions associated



with the Koopman operator 𝑡. Note that since we restrict
ourselves to a closed-loop dynamics that is a.e. uniformly
stable, these stable eigenfunctions exist and are defined almost
everywhere on . Now, for 𝑔(𝑥) = 𝑟⊤𝜃(𝑥) =

∑

𝑖 𝑟𝑖𝜃𝑖(𝑥) where
𝜃𝑖 are stable eigenfunctions with associated (real) eigenvalues
𝜆𝑖 < 0, we get

𝜎(𝑥) ≐ ∫

∞

0
𝑡𝑔(𝑥)𝑡𝛿0(𝑥)𝑑𝑡

= ∫

∞

0
𝑡

(

∑

𝑖
𝑟𝑖𝜃𝑖(𝑥)

)

𝑡𝛿0(𝑥)𝑑𝑡

= ∫

∞

0

(

∑

𝑖
𝑟𝑖 exp(𝜆𝑖𝑡)𝜃𝑖(𝑥)

)

𝑡𝛿0(𝑥)𝑑𝑡

=
∑

𝑖
𝑟𝑖𝜃𝑖(𝑥)∫

∞

0
exp(𝜆𝑖𝑡)𝑡𝛿0(𝑥)𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≐𝜎𝜆𝑖 (𝑥)

=
∑

𝑖
𝑟𝑖𝜃𝑖(𝑥)𝜎𝜆𝑖 (𝑥) = 𝑟⊤diag(𝜎𝜆)𝜃

Finally, using the fact that the function 𝜎𝜆𝑖 (𝑥) solves the
linear equation (𝔸+ 𝜆𝑖𝐼)𝜎𝜆𝑖 = −𝛿0 (one can easily show this
by following similar steps as the proof of Proposition 1), we
have the following reformulation:

max
𝑢∈ ∫

∞

0 ∫
𝑚(𝜙𝑡(𝑥), 𝑡)𝛿0(𝑥)𝑑𝑥𝑑𝑡,

Subject to:
𝐾+1
∑

𝑘=1

𝑀
∑

𝑗=1
𝑎𝑗,𝑘

(

𝜕
𝜕𝑥

)𝑗( 𝜕
𝜕𝑡

)𝑘−1
𝑚(𝑥, 𝑡) = 𝑔(𝜙𝑡(𝑥)),

𝑑
𝑑𝑡

𝜙𝑡(𝑥) = 𝑓 (𝜙𝑡(𝑥), 𝑢),

⏐⏐
↓

max
𝜌,𝜌′,𝑢,𝜎𝜆 ∫

𝑏(𝑥)⊤𝜌(𝑥)𝑑𝑥

Subject to:
ℂ(𝑥)⊤𝜌(𝑥) = 𝑣(𝑥) + 𝑟⊤diag(𝜎𝜆)𝜃,
(𝔸 + diag(𝜆))𝜎𝜆 = −𝛿0
𝑓⊤∇𝜃 = 𝜆𝜃,
𝔸𝜌′ = −𝛿0(𝑥)
𝑟⊤𝜃 = 𝑔(𝑥)

We note that due to the nonlinear term 𝑔(𝑥) on the right
hand-side of equation (17), the above reformulation is actually
bi-linear in the decision variables and may not always be
convex. However, for the case when the function 𝑔(𝑥) is linear,
then 𝑟 is a known constant, and 𝜃 is the identity map with
𝜆, which makes the problem linear in the decision variables
(and convex).

V. NUMERICAL EXAMPLES

We now present some examples in this section to illustrate
our methodology. As one may notice, a key challenge
in implementation of our reformulation, as described by
equation (10) is that the decision variables are infinite
dimensional. We parameterize these decision functions
using polynomials, thereby obtaining a finite dimensional
problem instead, with scalar decision variables that represent
the coefficients of the polynomials. One may choose other
representations such as radial basis functions as in [17][16].
A particular advantage of using polynomials, is that one
may satisfy the functional equality constraints exactly, but
matching the monomial coefficients, as done in Example 1.
However, this may not always be possible, say if the initial
state density 𝛿0 or function 𝑏(𝑥) appearing in (13) are not
polynomials. In such cases, as illustrated by Example 2,
one may approximately satisfy the equality constraints by
requiring the 2 norm (over ) of the difference between
the two sides of the constraints to be below some chosen
threshold.

Example 1:
As an example, let us consider the following 2-d problem:

Dynamics: 𝑥̇ = 𝑢 =
[

1
0

]

𝑢1 +
[

0
1

]

𝑢2,

Objective:max
𝑢∈ ∫

∞

0 ∫

[

𝜙𝑡(𝑥1)𝜙𝑡(𝑥2) sin(𝜔1𝑡)+
sin(‖𝜙𝑡(𝑥)‖2) cos(𝜔2𝑡)

]

𝛿0(𝑥)𝑑𝑥𝑑𝑡,

where the density 𝛿0(𝑥) =
(

1 − ‖𝑥‖2

2

)4
and  = [−1, 1]2.

This problem can then be written in the form of equation (13)

with 𝑏(𝑥) =
[

𝑥1𝑥2
1 − ‖𝑥‖2

]

, ℂ(𝑥) =
[

𝔸2 + 𝜔2
1 0

0 𝔸2 + 𝜔2
2

]

,

and 𝑣(𝑥) =
[

𝜔1
𝔸

]

𝛿0. When 𝑢 is restricted to linear-
feedback control, we obtain a solution 𝑢∗(𝑥) = 𝐻𝑥 where
𝐻 =

[

−93.25 −278.88
74.69 −146.77

]

. The matrix can be verified
to be a Hurwitz matrix, which means that the closed-loop
system is indeed a.e. stable. Note that by taking the feedback
control to be linear, one can ensure that the functional
equality conditions of equation (10) hold exactly, for
polynomial candidate functions 𝜌 and 𝜌′ of degree greater
than or equal to degree of 𝛿0.

Example 2:
Consider a 2-d single integrator system with the following
objective:

Dynamics: 𝑥̇ = 𝑢 =
[

1
0

]

𝑢1 +
[

0
1

]

𝑢2,

Objective: max
𝑢∈ ∫

∞

0 ∫
𝑒−2‖𝜙𝑡(𝑥)−𝑐‖2−𝜆𝑡𝛿0(𝑥)𝑑𝑥𝑑𝑡,

where 𝛿0(𝑥) =
(

1 − ‖𝑥−𝑐0‖2

8

)4
and  = [−1, 1]2. The centers

𝑐 =
[

0.5
−0.5

]

, and 𝑐0 =
[

0.5
0.5

]

. Thus, following equation



(13), we have 𝑏(𝑥) = 𝑒−2‖𝑥−𝑐‖2 , 𝑣(𝑥) = −𝛿0 and ℂ(𝑥) = 𝔸 −
𝜆𝐼 .The feedback controller 𝑢(𝑥) is parameterized as a degree
four polynomial whereas the unknown densities 𝜌(𝑥), 𝜌′(𝑥)
are both parameterized as degree eight polynomials.

Figure 1 shows the polynomial vector field of the closed-
loop system, and a trajectory of this system starting at
[0.5, 0.5], which is the center of the density 𝛿0. The
trajectories move towards the point [0.5,−0.5] initially.
However, since that objective is exponentially decaying (with
rate 𝜆 = 0.01), the robot isn’t incentivized to move any closer
as 𝑡 becomes large, thus it then proceeds to converge to the
origin.

Fig. 1. Optimal trajectory of the robot starting at point [0.5, 0.5] converge
to the origin asymptotically, while maximizing the control objective. The
density 𝑚(𝑥, 𝑡) at initial time 𝑡 = 0 is shown via the colormap.

VI. CONCLUSION AND DISCUSSION

As a control problem, robot navigation is challenging,
especially when faced with safety constraints and a
dynamically changing control objective. In this paper, we
consider the optimal navigation problem under time-varying
navigation density functions (that in practice may encode, for
example, the dynamic environment and/or time-dependent
objectives), wherein the system is required to converge to an
equilibrium point asymptotically from a given distribution of
initial conditions, while optimizing the navigation objective.
To this end, we propose an Operator theoretic approach
to transform this problem into an amenable form that
under certain conditions is linear in infinite dimensional
decision variables. This allows us to compute stabilizing
feedback control laws (in an almost everywhere sense,
w.r.t to a given initial measure of initial conditions) in
an efficient manner to achieve the time-varying optimal
navigation task. An important next step for our work is to
relax assumptions on the time-varying density (especially
Assumption 1), which would allow for a much wider range
of robotic control problems to be cast into our specific
formulation. Additionally, we are interested in exploring
further the computational tractability of our approach, namely
solving an infinite-dimensional optimization problem such
as (10) through a finite-dimensional approximations, and its

associated limitations. Finally, we would like to extend our
work to a data-driven setting when the densities and the
system dynamics are not known a priori, leveraging research
advances over the last few years in estimating Koopman and
Perron Frobenius Operators from trajectory data.
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