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Abstract— In this work we consider the control problem of
systems that are subject to disjunctions of Signal Temporal
Logic (STL) tasks. Motivated by existing approaches encoding
the STL tasks utilizing time-varying control barrier functions
(CBFs), we propose a continuously differentiable function for
encoding the STL constraints that is defined as the composition
of a smooth approximator of the max operator and a set of
functions ensuring the satisfaction of the corresponding STL
tasks with a desired robustness, and derive conditions for the
choice of the class K function (when the latter is considered to
be linear) to ensure that the proposed function is a CBF. Then,
a control law ensuring the satisfaction of the STL task is found
as a solution to a computationally efficient QP.

I. INTRODUCTION

Nowadays, autonomous systems are more and more in-
volved in a variety of applications that require them to
perform arbitrarily complex tasks constrained both in space
and time. These tasks can be often expressed as boolean
compositions of simpler spatio-temporal tasks such as “reach
area A between 0 and 5 sec and maintain a distance d from
area B between 0 and 10 sec”.

Recently, Signal Temporal Logic (STL), a logic language
introduced in [1] has been found to be an efficient tool
for expressing complex, time constrained tasks such as the
aforementioned example. Contrary to other logics STL is
evaluated over continuous time signals and is equipped with
a robustness metric expressing how well the STL task is
satisfied. In literature various robustness metrics have been
proposed to ensure the robustness of the STL tasks in space
examples of which are [2], [3] and [4] while recently a novel
temporal robustness metric was introduced in [5].

For control synthesis under STL tasks existing approaches
may be categorized into two main groups: 1) works based on
mixed integer linear programming (MILP) and 2) gradient
based approaches. In the first category the STL tasks are
encoded using integer variables and introduced as constraints
to the problem while control laws are found as solutions to
mixed integer (linear) programs as for example in [6]–[8].
Although these works consider all Boolean compositions of
STL formulas they are computationally expensive. This is
related to the choice of the optimization horizon which is
often considered at least as large as the duration of the task.

On the other hand, gradient based approaches avoid in-
teger encoding and thus are more computationally efficient.
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Examples of such works are [2], [9] and [10]–[13]. In the
latter approaches which are closer to the work considered in
this paper the satisfaction of the STL tasks is enforced using
control barrier functions and/or control Lyapunov functions
as in [10], [13] and feedback control laws are designed for
continuous-time, nonlinear input-affine systems. Disjunctions
of STL tasks have been recently considered in [11] and [12]
utilizing control barrier functions and/or control Lyapunov
functions. Yet, the problem of ensuring the existence of a
control law over the horizon of the STL task [8] remains
open. To tackle this problem, in our recent work [14] we
propose updating the parameters determining the control
barrier function online. Nevertheless, disjunctions of STL
tasks are not considered there.

In this work, we consider formulas written as disjunctions
of conjunctions of STL tasks. In order to avoid non-smooth
analysis we introduce a differentiable function that under-
approximates the max operator and propose a control law
that is found as the solution to a computationally efficient QP.
Under some regularity and topological assumptions on the
predicate functions and the superlevel sets of the functions
encoding the conjunctions of the STL tasks respectively, we
derive a lower bound on the parameter determining the class
K function, when the latter is chosen to be linear, and show
that the proposed function is a CBF for a linear class K
function satisfying the aforementioned bound.

II. PRELIMINARIES AND PROBLEM FORMULATION

True and false are denoted by ⊤,⊥, respectively. Scalars
and vectors are denoted by non-bold and bold letters respec-
tively. The partial derivative of a function b(x, t) evaluated at
(x′, t′) with respect to t and x is abbreviated by ∂b(x′,t′)

∂t =
∂b(x,t)

∂t

∣∣
x=x′

t=t′
and ∂b(x′,t′)

∂x = ∂b(x,t)
∂x

∣∣
x=x′

t=t′
respectively. The

latter is considered to be a row vector. An extended class K
function α : R → R≥0 is a locally Lipschitz continuous and
increasing function with α(0) = 0. The cardinality of a set
S is denoted by |S| and its closure by S̄.

A. Signal Temporal Logic

Signal Temporal Logic (STL) determines whether a pred-
icate µ is true or false. The predicate µ takes values from
the set {⊤,⊥} based on the value of a predicate function
h : Rn → R as follows: µ = ⊤, if h(x) ≥ 0, or µ = ⊥, if
h(x) < 0. The basic STL formulas are given by:

ϕ = ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2,

where ϕ1, ϕ2 are STL formulas and U[a,b] is the until operator
defined over the interval [a, b] with 0 ≤ a ≤ b < ∞.



The temporal operators eventually and always are defined as
F[a,b]ϕ = ⊤ U[a,b] ϕ and G[a,b]ϕ = ¬F[a,b]¬ϕ respectively.
Let x |= ϕ denote the satisfaction of the formula ϕ by
a signal x : R≥0 → Rn. The formula ϕ is satisfiable if
∃ x : R≥0 → Rn such that x |= ϕ. The semantics of
STL are recursively defined in [1]. STL is equipped with a
robustness metric determining how robustly an STL formula
ϕ is satisfied at time t by a signal x. These semantics are
defined as in [15] but omitted here due to space limitations.
Note that x |= ϕ if ρϕ(x, 0) > 0.

B. CBFs for Conjunctions of STL tasks

In this section we summarize the design of the control
barrier function encoding an STL task ϕ′j =

∧
ij∈Ij

φij ,
where φij = T[aij

,bij ]
(hij (x) ≥ 0) and T ∈ {F ,G}. In

order to ensure satisfaction of the tasks φij , ij ∈ Ij , a
temporal behavior, described by a piecewise linear function
γij (t), is designed in [16] that guarantees the satisfaction of
the task φij with minimum robustness r, where r are tuning
parameters. For every ij ∈ Ij define the function:

bij (x, t) = −γij (t)− hij (x), (1)

where hij : Rn → R is the predicate function assumed to be
continuously differentiable. The function γij (t) is designed
such that bij (x(0), 0) > 0 and bij (x(t), t) < −r+hij (x(t)),
for every t ≥ t∗ij , where t∗ij is a tuning parameter. Hence,
if bij (x(t), t) ≥ 0, for every t ≥ t∗ij , then hij (x(t)) ≥ r.
Given the functions (1) for every ij ∈ Ij , we can define the
function bj(x, t) encoding the STL task ϕ′j as in [10]:

bj(x, t) = − ln
( ∑
ij∈Ij

oij (t) exp (−bij (x, t))
)
, (2)

where oij (t) ∈ {0, 1} is an integer variable which is
equal to 1 for every t ∈ Tij and 0 otherwise, where
Tij = [0, bij ), if either φij = F[aij

,bij ]
(hij (x) ≥ 0) or

φij = G[0,bij ]
(hij (x) ≥ 0), or Tij = [0, aij ) ∪ (aij , bij ) if

φij = G[aij
,bij ]

(hij (x) ≥ 0) with aij ̸= 0. Observe that
due to the integer variables oij (t) the function bj(x, t) is
discontinuous with respect to t. The set of discontinuities of
bj(x, t) is defined as Σj = {bij : φij = F[aij

,bij ]
(hij (x) ≥

0) or φij = G[0,bij ]
(hij (x) ≥ 0)} ∪ {aij , bij : φij =

G[aij
,bij ]

(hij (x) ≥ 0), aij ̸= 0}. The proposed CBF
function bj(x, t) is designed in such way that if it remains
non-negative at all times, i.e., the sets Cj(t) = {x ∈ Rn :
bj(x, t) ≥ 0} are forward invariant, then x |= ϕ′j . The last
conclusion is a direct consequence of the fact that bj(x, t)
is an under approximation of minij∈Aj(t) bij (x, t), at fixed
t, where Aj(t) = {ij ∈ Ij : oij (t) ̸= 0}.

C. Problem Formulation

Consider the input-affine system:

ẋ(t) = f(x(t)) + g(x(t))u(t), (3)

where x(t) ∈ Rn, u(t) ∈ Rm is the state and input of
the system at time t respectively, and f : Rn → Rn

and g : Rn → Rn×m are locally Lipschitz continuous

functions. When it is clear from the context, we will omit
the dependence on t from x(t),u(t). In addition, we make
the following assumption on g(x):

Assumption 1. The matrix g(x) has full row rank for every
x ∈ Rn.

Assumption 1 is a standard assumption in CBF based
approaches. Nevertheless, for systems with higher relative
degree, one may consider higher order CBFs as for example
in [17]. In this work, the system (3) is subject to an STL
formula ϕ defined by the following STL fragment:

ψ = ⊤ | µ | ¬µ | ψ1 ∧ ψ2 (4a)
φ = G[a,b]ψ | F[a,b]ψ | ψ1 U[a,b] ψ2, (4b)

ϕ =
∨
j∈J

∧
ij∈Ij

φij , (4c)

where µ is a predicate, φij , ij ∈ Ij are STL formulas of the
form (4b), [a, b] ⊂ R≥0 and J ⊂ N>0, where |J | determines
the number of disjunctions of ϕ. Based on the above, we can
state the problem considered in this work as follows:

Problem 1. Consider the system dynamics (3) that is subject
to an STL formula defined by (4a)-(4c). Design a control
law u(x, t) such that ρϕ(x, 0) ≥ r, where r > 0 is a tuning
parameter.

III. CONTROL APPROACH

In this section we will define the control barrier function
(CBF) that encodes the spatio-temporal constraints induced
by ϕ, defined by (4a)-(4c) and propose a feedback controller
that ensures its satisfaction. We split the design of the CBF in
two main steps. In the first step, for every j ∈ J , we consider
the CBF function bj : Rn × R≥0 → R, defined in (2), that
encodes the satisfaction of ϕ′j , defined as ϕ′j =

∧
ij∈Ij

φij .
As discussed in Section II.B, the proposed functions bj(x, t)
ensure the satisfaction of ϕ′j , when bj(x, t) ≥ 0, for every
t ≥ 0. When the disjunction of a set of STL formulas is
considered, and in order to avoid non-smooth analysis it
is necessary to under-approximate the max operator with
a differentiable function with respect to x [2]. Therefore, as
a second step, given the STL formula ϕ defined by (4c),
we define the function b : Rn × R≥0 → R as b(x, t) =∑

j∈J bj(x,t) exp (ηbj(x,t))∑
j∈J exp (ηbj(x,t))

, where η > 0 is a parameter de-
scribing the quality of the approximation with a larger value
of η resulting in a better approximation of the maximum
value. Specifically, for a given point (x, t) ∈ Rn × R≥0,
it holds that limη→+∞ b(x, t) = maxj∈J bj(x, t). Based on
the above, and since b(x, t) is an under-approximation of the
max operator, if we can ensure that b(x, t) ≥ 0, for every
t ≥ 0, then maxj∈J bj(x, t) ≥ 0.

Although the function b(x, t) defined above provides a
delicate way to encode the satisfaction of the disjunction of
the formulas ϕ′j , j ∈ J , it may enforce the non-negativity of
the functions bj(x, t) that were negative at past time instants,
i.e., the system may be asked to satisfy a specification at time
t that was violated at t′ < t. To avoid such conservatism,



for every j ∈ J , we introduce a function oj : R≥0 → {0, 1}
satisfying:

oj(t) = 0 ⇔ inf
τ∈[0,t]

bj(x(τ), τ) < 0, (5)

where x : [0, t] → Rn is assumed to be absolutely continuous
and t ∈ [0, τmax), where τmax ≤ +∞. Based on the
deactivation functions oj(t), j ∈ J , we may define the CBF
function considered in this work as:

b(x, t) =

∑
j∈J oj(t)bj(x, t) exp (ηbj(x, t))∑

j∈J oj(t) exp (ηbj(x, t))
. (6)

In order to ensure that (6) is well defined at all times, we
pose the following assumption:

Assumption 2. There exists at least one j ∈ J such that
oj(t) ̸= 0 for every t ≥ 0.

Assumption 2 implies that for a given function x : R≥0 →
Rn, there should always exist at least one j ∈ J such that
x(t) ∈ Cj(t) is true at all times, i.e., the STL formula ϕ′j
is satisfied (provided that Cj(t) ̸= ∅ for every t ≥ 0). This
is required to ensure that the denominator of b(x, t) is non-
zero at all times (assuming that function bj(x, t), j ∈ J is
bounded from below for any x ∈ Cj(t) and t ∈ R≥0).

Let σj = inf{t ∈ R≥0 : bj(x(t), t) < 0} denote the
first time instant at which bj(x(t), t) becomes negative for a
given function x : R≥0 → Rn. If oj(t) ̸= 0 for every t, then
σj = +∞. Without loss of generality we assume that σj > 0
for every j ∈ J , i.e., bj(x(0), 0) ≥ 0 for all j ∈ J . Based
on the above, and given the deactivation policy defined in
(5), b(x, t) is differentiable only in Ωσ =

⋃
t∈R≥0\Σ C(t)×

{t}, where Σ ⊆
⋃

j∈J Σj ∪ {σj ∈ R≥0 : σj ̸= +∞} and
C(t) = {x ∈ Rn : b(x, t) ≥ 0}, which is assumed to satisfy
C(t) ⊂ D, for every t ≥ 0, where D ⊆ Rn is an open,
bounded set. Let Ω =

⋃
t≥0 C(t)× {t}.

Definition 1. The function b : Ω → R is a control barrier
function (CBF) for (3), if there exists an extended class K
function α : R → R≥0 such that, for all (x, t) ∈ Ωσ:

sup
u∈Rm

[
∂b(x, t)

∂x
(f(x) + g(x)u) +

∂b(x, t)

∂t

]
≥ −α(b(x, t)).

(7)

According to Definition 1, if b(x, t) is a CBF and
∂b(x,t)

∂x g(x) ̸= 0, for every (x, t) ∈ Ωσ , i.e., the Slater’s
constraint qualification is satisfied [18], then we may define
the control law u = u(x, t), for any (x, t) ∈ Ωσ as the
solution to the following QP problem:

min
u∈Rm

uTu, (8)

subject to:

∂b(x, t)

∂x
(f(x) + g(x)u) +

∂b(x, t)

∂t
≥ −α(b(x, t)). (8a)

If Slater’s constraint qualification is not true for a point
(x, t) ∈ Ωσ , then the feasibility of (8a) is ensured under
the following assumption:

Assumption 3. For every point (x, t) ∈ Ωσ satisfying
∂b(x,t)

∂x g(x) = 0, it holds that ∂b(x,t)
∂t ≥ −α(b(x, t)).

Assumption 3 is introduced to ensure that x(t) ∈ C(t)
holds even in cases of singularity of (8a). Intuitively, it
states that the rate of change of b(x, t) for fixed x cannot
be unbounded and independent of the value of b(x, t) and
can often be ensured by appropriately choosing the class K
function as will be shown in Section IV. Based on the above,
we may introduce our first result on the satisfaction of the
STL formula ϕ as follows:

Theorem 1. Consider the system (3), the STL formula ϕ
defined by (4a)-(4c), and the CBF function b : Ω → R,
defined in (6) that is continuously differentiable on Ωσ . Let
Assumptions 1- 3 hold. Let further x(0) ∈ C(0). Then, for a
given class K function α : R → R≥0, and an open, bounded
set D ⊆ Rn satisfying C(t) ⊂ D for every t ≥ 0, the control
law u(x, t) found as the optimal solution of (8) ensures that
ρϕ(x, 0) ≥ r > 0.

Proof. When (x, t) ∈ Ωσ the proof follows similar ar-
guments to the proof of [19, Cor. 1]. What remains to
be shown is the non-negativity of b(x, t) for (x, t) ∈
Ω′

σ =
⋃

t∈Σ C(t) × {t}. To show this, we consider 3
cases. First, consider the case of (x, σ) ∈ Ω′

σ with σ ∈
{σj′ , j′ ∈ J : σj′ ̸= +∞}\

⋃
j′∈J1

Σj′ , where J1 =
{j′ ∈ J : oj′(σ) ̸= 0}. By Assumption 2, J1 ̸= ∅
holds. Hence, if limt→σ− b(x(t), t) ≥ 0, then, for every
j′ ∈ J1, we have limt→σ− bj′(x(t), t) = bj′(x(σ), σ)
implying b(x(σ), σ) ≥ 0. Second, assume that (x, σ) ∈ Ω′

σ

with σ ∈ Σj\{σj , j ∈ J : σj ̸= +∞} for any j ∈ J
satisfying σj > σ, non-negativity of limt→σ− b(x(t), t)
implies limt→σ− bj(x(t), t) ≥ 0, for every j ∈ J with
oj(σ) ̸= 0. By construction of bj(x(t), t), it holds that
limt→σ− bj(x(t), t) ≤ bj(x(σ), σ), hence b(x(σ), σ) ≥
0 follows. Finally, assume that (x, σ) ∈ Ω′

σ with σ ∈
{σj′ , j′ ∈ J : σj′ ̸= +∞} ∩

⋃
j∈J1

Σj , then combining the
arguments used in the previous two cases we may conclude
that b(x(σ), σ) ≥ 0. We have now shown that x(t) ∈ C(t)
for every t ≥ 0. Let J ′ = {j ∈ J : σj = +∞} and observe
that x ∈ C(t) implies x ∈ Cj(t), j ∈ J ′ for every t ≥ 0.
Then, by construction of bj(x, t) and [19, Cor. 1], we have
ρϕ

′
j (x, 0) ≥ r > 0. The result follows by considering that

ρϕ(x, 0) = maxj∈J ρ
ϕ′
j (x, 0) ≥ maxj∈J ′ ρϕ

′
j (x, 0). ■

IV. CONTROL BARRIER FUNCTIONS FOR DISJUNCTIONS

In Section III, we proposed a control law ensuring the
satisfaction of ϕ which was based on the assumption that
b(x, t) is a CBF function. In this section we derive sufficient
conditions for the function b(x, t) to be a CBF function by
ensuring the existence of the class K function for (7) to hold.
As discussed in Section III, equation (7) might not hold,
when Slater’s constraint is violated which is equivalent to
∂b(x,t)

∂x = 0 due to Assumption 1. Therefore, in this section
we seek conditions under which Assumption 3 is satisfied by
determining the nature of the critical points of b(x, t) and
the value of b(x, t) at the critical points. In the following we



make the following assumption on the functions hij (x) and
bj(x, t), j ∈ J :

Assumption 4. Let hij : Rn → R be the predicate function
corresponding to φij , ij ∈ Ij , j ∈ J and bj : Rn ×
R≥0 → R, defined as in (2). Then, we make the following
assumptions:

i) The predicate functions hij (x) are twice differentiable
with continuous second derivatives and satisfy hmax

ij
=

supx∈Rn hij (x) < +∞.
ii) For fixed t the functions bj(x, t), j ∈ J are quasicon-

cave, i.e., the superlevel sets of bj(x, t) are convex [20,
Sec. 3.4.1]. In addition, Cj(t) ̸= ∅, for every t ≥ 0.

iii) For any j ∈ J , there exists δ > 0 such that ∂bj(x,t)
∂x = 0

implies bj(x, t) ≥ δ.

The first part of Assumption 4 ensures that all functions
bj(x, t) and thus b(x, t) are twice differentiable with con-
tinuous second derivatives with respect to x for fixed t. The
second part of Assumption 4 ensures that all superlevel sets
of bj(x, t) are non-empty and convex while (iii) implies that
the critical points of bj(x, t) are in the interior of Cj(t) for
every t ∈ R≥0\Σj . The latter assumption is not restrictive
and can often be ensured in practice by appropriately tuning
the parameters determining the functions γij (t).

Differentiating the barrier function b(x, t) defined in (6)
with respect to x we get:

∂b(x, t)

∂x
=

∑
j∈J

oj(t)κj(x, t)
∂bj(x, t)

∂x
, (9)

where

∂bj(x, t)

∂x
=

∑
ij∈Aj(t)

exp (−bij (x, t))∑
ij∈Ij

oij (t) exp (−bij (x, t))︸ ︷︷ ︸
λij

(x,t)

∂hij (x)

∂x

(10)

and where κj(x, t) =
(
1+η(bj(x,t)−b(x,t))

)
exp (ηbj(x,t))∑

j∈J oj(t) exp (ηbj(x,t))
and

B(t) = {j ∈ J : oj(t) ̸= 0} for every t ≥ 0. Note that
λij (x, t) ∈ (0, 1] and

∑
ij∈Ij

λij (x, t) = 1. By Assumption
2, B(t) ̸= ∅, for every t ≥ 0. Initially, we assume that B(t)
is known for every t ≥ 0. Then, we begin the analysis by
making the following observation:

Lemma 1. Let b : Ω → R be a twice differentiable function
with respect to x on Ωσ, defined by (6). Then, ∂b(x,t)

∂x = 0 is
true if and only if ∂bj(x,t)

∂x , j ∈ B(t) are linearly dependent.

Proof. If B(t) is a singleton or there exists a j ∈ B(t) such
that ∂bj(x,t)

∂x = 0, the result follows trivially. Next, assume
that B(t) is not a singleton and ∂bj(x,t)

∂x , j ∈ B(t) are linearly
independent. Then, by the linear independence of the vectors
and (9), we have that 1 + η(bj(x, t) − b(x, t)) = 0, ∀j ∈
B(t), or equivalently b(x, t) = bj(x, t) +

1
η , for every j ∈

B(t). This implies that bj(x, t) = bj′(x, t), for any j, j′ ∈
B(t). Substituting the latter to (6), we have b(x, t) = bj(x, t)
which leads to contradiction. Hence, the result follows. ■

Lemma 1 determines the relation of the gradients of the
barriers corresponding to the conjunctions at the critical
points of b(x, t). This relation allows us to draw conclusions
on the value of b(x, t) at the critical points as follows:

Lemma 2. Consider the function b(x, t), defined in (6) and
let Assumptions 2 and 4 hold. Assume further that C(t) has
a non-empty interior for every t ≥ 0. For every fixed t ∈
R≥0\Σ, let pj(x, t) = 1+ η(bj(x, t)− b(x, t)), j ∈ B(t). In
addition, for every j ∈ B(t) and fixed t ∈ R≥0\Σ, assume
that the following property holds:

pj(x, t)λmax

(∂2bj(x, t)
∂x2

)
+η(1+pj(x, t))

∥∥∥∥∂bj(x, t)∂x

∥∥∥∥2 < 0,

(11)
for every x ∈ M(t) =

{
z ∈ C(t) : ∂b(z,t)

∂z = 0, pj(z, t) >
0,∀j ∈ B(t)

}
. Then, there exists a constant parameter b̄t >

0 such that b(x, t) ≥ b̄t is true for every x ∈ C(t) satisfying
∂b(x,t)

∂x = 0.

Proof. If there exists j ∈ B(t) such that ∂bj(x,t)
∂x = 0,

then by Assumption 4, bj(x, t) ≥ δ. Thus, b(x, t) > 0
holds. Specifically, we have that b(x, t) ≥ δ1, where δ1 =

δ, if B(t) is a singleton, or δ1 = δ exp (ηδ)∑
j∈J oj(t) exp (ηMj(t))

otherwise, where Mj(t) is an upper bound of bj(x, t), for
every x ∈ C(t) and j ∈ B(t). Note that Mj(t) < ∞ is
ensured for every j ∈ B(t) since hmax

ij
< ∞ holds for

every ij ∈ Aj(t). In that case, the bound can be defined
as Mj(t) = − ln

(∑
ij∈Ij

oij (t) exp (γij (t)− hmax
ij

)
)
. For

the rest of the analysis, we will assume that B(t) is not a
singleton and ∂bj(x,t)

∂x ̸= 0, for every j ∈ B(t). Then, due to
the linear dependence of ∂bj(x,t)

∂x , j ∈ B(t) (shown in Lemma
1), there exists j ∈ B(t) such that b(x, t) ̸= bj(x, t) +

1
η . If

b(x, t) > bj(x, t) +
1
η holds or there exists j′ ∈ B(t) with

j′ ̸= j such that b(x, t) ≥ bj′(x, t) +
1
η , then b(x, t) ≥ 1

η .

Next, assume that b(x, t) < bj(x, t)+
1
η for every j ∈ B(t).

By (9), the latter assumption implies that κj(x, t) > 0, and
thus pj(x, t) > 0, for every j ∈ B(t). Differentiating (9) with
respect to x and focusing on the points satisfying ∂b(x,t)

∂x = 0
we have:
∂2b(x, t)

∂x2
=

∑
j∈B(t)

λ+j (x, t)

[
η(1 + pj(x, t))

∂bj(x, t)
T

∂x
×

(12)

× ∂bj(x, t)

∂x
+ pj(x, t)

∂2bj(x, t)

∂x2

]
,

where λ+j (x, t) =
exp (ηbj(x,t))∑

j∈J oj(t) exp (ηbj(x,t))
> 0. When

pj(x, t) > 0,∀j ∈ B(t) the matrices Aj , j ∈ B(t) defined
as Aj = η(1 + pj(x, t))

∂bj(x,t)
T

∂x
∂bj(x,t)

∂x + pj(x, t)
∂2bj(x,t)

∂x2

are symmetric as the sum of a positive semi-definite and
a symmetric matrix. Invoking Weyl’s inequalities [21, Th.
4.3.1], we have that:

λmax(Aj) ≤ pj(x, t)λmax

(∂2bj(x, t)
∂x2

)
+ η(1 + pj(x, t))

∥∥∥∥∂bj(x, t)∂x

∥∥∥∥2.



Due to (11), it follows that λmax(Aj) < 0, for every
j ∈ B(t). Therefore, ∂2b(x,t)

∂x2 < 0n holds and the critical
points of b(x, t) are (local) maxima. Since C(t) has a non-
empty interior for every t there exists a ρ > 0 such that
b(xmax, t) ≥ ρ. Setting b̄t = min

{
δ1,

1
η , ρ

}
, the result

follows. ■

Lemma 2 establishes a positive lower bound on b(x, t)
at the critical points. This allows us to determine a class K
function such that Assumption 3 is satisfied as depicted in
the following lemma:

Lemma 3. Let assumptions of Lemma 2 hold. Then, there
exists an αB > 0 such that Assumption 3 is satisfied
considering the linear class K function ζ 7→ αBζ.

Proof. Let the set of the critical points of b(x, t) at fixed time
t be denoted as CR(t). If ∂b(x,t)

∂t > 0 for x ∈ CR(t)∩C(t)
and fixed t, then Assumption 3 is satisfied irrespective of the
value of the barrier function b(x, t) at x ∈ CR(t)∩C(t). This
holds for example in CR(t) ∩ {x ∈ Rn : pj(x, t) < 0,∀j ∈
B(t)}, if the intersection is non-empty. The above is a direct
consequence of the fact that b(x, t) ≥ 0 for x ∈ C(t) which
implies that −α(b(x, t)) ≤ 0. Next, we focus on cases when
there exists at least one j ∈ B(t) satisfying pj(x, t) > 0.
Computing the derivative of b(x, t) with respect to t, we
have the following:

∂b(x, t)

∂t
=

∑
j∈J

oj(t)κj(x, t)
∂bj(x, t)

∂t

≥ −∆(t)
∑

j∈B+(t)

κj(x, t)
∑
ij∈Ij

oij (t)λij (x, t)

= −∆(t)
∑

j∈B+(t)

κj(x, t), (13)

where B+(t) = {j ∈ B(t) : κj(x, t) ≥ 0}, ∆(t) =

maxj∈B+(t) maxij∈Aj(t)

∣∣dγij
(t)

dt

∣∣, Aj(t) ⊆ Ij is the set of
active tasks of the j-th conjunction at time t (defined in
Section II.B) and γij : R≥0 → R is the temporal function
corresponding to the formula φij that was designed to ensure
its satisfaction with a desired robustness r > 0. Additionally,
for fixed t and x ∈ CR(t)∩C(t), due to Lemma 2 we have:∑
j∈B+(t)

κj(x, t) ≤
∑

j∈B+(t)

pj(x, t)

≤
∑

j∈B+(t)

(1 + η( min
ij∈Aj(t)

bij (x, t)− b̄t))

≤ K(t), (14)

where K(t) is defined as K(t) =
∑

j∈B+(t)(1 +

η(minij∈Aj(t)(−γij (t) + max
x∈CR(t)∩C(t) hij (x)) − b̄t)).

Combining (13)-(14) and taking the supremum over t, we
have that ∂b(x,t)

∂t ≥ −∆B, where ∆B = supt≥0 ∆(t)K(t).

Then, the proof concludes by choosing αB ≥ ∆B
b̄B
, where

bB = inft≥0 b̄t. ■

So far, we have assumed that B(t), t ≥ 0 is given.
Nevertheless, these sets are defined online according to the

-3 -2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 1: Agents’ trajectories.

deactivation policy defined in (5). Taking advantage of the
aforementioned analysis, we can now show that b(x, t) is a
CBF function according to Definition 1 accounting for every
possible choice of B(t), t ≥ 0 as follows:

Theorem 2. Consider the system (3), the STL formula ϕ
defined in (4a)-(4c) and the function b(x, t), defined in (6).
Let Assumption 1 hold. Let further {Bν(t) : t ≥ 0}Nν

ν=0 be
a sequence of non-empty, non-increasing sets with respect
to t with Bν(0) = J and Bν(t) ∈ 2J ,∀t ≥ 0. Consider
all possible subsequences {Bνk

(t) : t ≥ 0} for which⋂
j∈Bνk

(t) Cj(t) ̸= ∅ holds for every t ≥ 0. If the conditions
of Lemma 2 hold for every Bνk

(t), t ≥ 0, then b(x, t) is a
CBF function.

Proof. From Lemma 3 there exists a constant αBνk
> 0 that

ensures the validity of Assumption 3 for every subsequence
Bνk

for which
⋂

j∈Bνk
(t) Cj(t) ̸= ∅, is true for every t ≥ 0.

Then, the result follows by choosing α = supνk
αBνk

. ■

Theorem 2 ensures that the STL formula ϕ can always
be satisfied by (3) when the satisfaction of any admissible
conjunction of formulas

∧
j∈J2

ϕ′j is enforced provided that⋂
j∈J2

Cj(t) is non-empty at all times.

V. SIMULATION RESULTS

Consider two autonomous agents whose dynamics are
coupled and given by the differential equation:

ẋ =


−x31 − x3
−2x2

−5x1 − 3x3
−x24 − x2

+


1 −5 0 0
0 2 0 0
0 0 0 1
0 0 −1 0

u,

where p1 =
[
x1 x2

]T
, p2 =

[
x3 x4

]T
is the position of

agent 1 and 2 respectively. Note that g(x) is a constant matrix
satisfying det(g(x)) = 2. Thus, Assumption 1 is satisfied.
The system is subject to STL task ϕ = (¬ ϕ′2 ⇒ ϕ′1), where:
ϕ′1 = (∥p1 − pA∥2 ≤ 0.1) U[1,5] (∥p2 − pB∥2 ≤ 0.1) and
ϕ′2 = F[2,4](∥p1 − pC∥2 ≤ 0.5) ∧ G[3,6](∥p2 − pD∥2 ≤
0.5), and where pA =

[
−1.2 −1

]T
, pB =

[
1 −0.5

]T
,
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Fig. 2: Evolution of b(x(t), t) over time.

pC =
[
−2 −0.5

]T
, pD =

[
0 1.5

]T
. Observe that the

satisfaction of ϕ is equivalent to the satisfaction of ϕ′1 ∨ ϕ′2.
Here, convexity of the superlevel sets of bj(x, t), j ∈ {1, 2}
is ensured since bj(x, t), j ∈ {1, 2} are concave for fixed
t due to the concavity of the predicate functions [20].
The initial condition of the system is chosen as x(0) =[
0 0.5 −1 1

]T
and η = 30. Here, the temporal func-

tions are designed as in [16], where the satisfaction of the
until formula is ensured by enforcing the satisfaction of
G[1,5](∥p1 − pA∥2 ≤ 0.1) ∧ F[5,5](∥p2 − pB∥2 ≤ 0.1). The
satisfaction of ϕ is desired with a robustness r = 0.09. All
computations were performed on an Intel Core i7-8665U
with 16GB RAM using MATLAB. The QP problem was
solved with quadprog at a frequency of 1kHz. In Figures
1 and 2 the agents’ trajectories and the evolution of b(x(t), t)
are shown. Observe that b(x, t) remains non-negative at all
times which by Theorem 1 implies the satisfaction of ϕ with
a minimum robustness r ( specifically, inft∈[0,5] b(x(t), t) ≥
0.0883). Initially, the two agents move towards satisfying
both formulas ϕ′j , j = 1, 2. Nevertheless, ϕ′1 is violated for
the first time at t = 0.805 sec and stops affecting the value
of b(x, t) thanks to the deactivation policy introduced in (5).
After 0.805 sec the system moves towards satisfying ϕ′2.
Finally, note that the small spikes at time instants 3 and 4 sec
are due to the discontinuity of b2(x, t) at the time instants
at which the tasks defining ϕ′2 are deactivated.

VI. CONCLUSIONS

In this work we considered an STL fragment including
disjunctions of temporal operators and proposed a control
law found as a solution to a QP problem utilizing a time-
varying control barrier function defined in such way to under
approximate the max operator. In addition, under some reg-
ularity and topological assumptions on the barrier functions
encoding the subtasks and superlevel sets respectively we
have provided sufficient conditions for the proposed function
to be a control barrier function.
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