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Abstract— Control of multi-agent systems under temporal
logical specifications has been popular due to its ability to
tackle complex tasks that cannot be easily defined as classic
control objectives. In this paper, a general class of leader-
follower multi-agent systems subject to certain fragments of
signal temporal logic (STL) specifications is considered. We
first propose a funnel-based control strategy for the leader-
follower multi-agent systems to enforce the satisfaction of the
basic STL formulas by prescribing certain transient behavior on
the funnels that constrain the closed-loop trajectories. A hybrid
control strategy is then leveraged to satisfy the sequential STL
formulas. Finally, a simulation example is given to illustrate the
results.

I. INTRODUCTION

Control of multi-agent systems has been significantly
studied due to its wide applications in multi-robot coordi-
nation [18], manufacturing and transportation systems [6].
A recent trend is to apply the formal methods [2] based
approaches within the multi-agent system context in order
to specify more complex and high-level task specifications
that cannot be easily defined as classic control objectives.
Temporal logics, such as Linear Temporal Logic (LTL) [10]
offer a formal way to specify such high-level tasks from a
computer science perspective. Signal Temporal Logic (STL),
which is based on continuous time signals, has the added
feature of formulating both time and space constraints, and
thus provides potentials to deal with quantitative transient
constraints for multi-agent systems.

In this work, we focus on a leader-follower multi-agent
framework which takes the different capabilities among the
agents into account. For example, agents that show advanced
actuation, computation and communication capabilities are
selected as leaders in order to drive the whole agent team to
fulfill the task specifications. These complex and high-level
task specifications are represented by STL formulas in order
to tackle both time and space constraints. Recent research
within the leader-follower framework mainly focuses on
controllability of leader-follower multi-agent systems [8] and
leader selection for optimal performance [17], [7], however,
complex tasks in the form of STL formulas are largely
unexplored in the leader-follower setup.

Prescribed performance control (PPC), which utilises a
funnel-based approach, was originally proposed in [1] to
prescribe the evolution of system output or the tracking error
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within some predefined region. In this work, we use such
funnel-based approach in order to enforce the satisfaction
of the STL formulas by prescribing the transient behavior
of the funnels that constrain the system trajectories. In our
previous work [3], we have proposed distributed control laws
for leader-follower multi-agent systems using PPC to achieve
the classical consensus or formation tasks within predefined
transient constraints. However, more complex and high-level
specifications with quantitative time and space constraints
have not been treated. In [15], the authors propose a con-
trol strategy based on a time-varying fixed-time convergent
control barrier functions for a class of coupled multi-agent
systems under STL tasks. Prescribed performance control
of multi-agent systems under STL formulas is addressed
in [11]. These papers use transient approaches such as PPC
and control barrier functions in order to prescribe certain
transient behavior that enforces the satisfaction of the STL
specifications. However, they do not consider the different
capabilities among the agents, and thus the control strategy
is applied for all agents. In contrast, our contribution in
this work is considering funnel-based control in a leader-
follower framework such that the closed-loop system also
satisfies complex high-level tasks represented by the STL
specifications. It is also the first time that the funnel-based
approach for the satisfaction of STL specifications in a
leader-follower setup is considered.

The rest of the paper is organized as follows. In Section II,
preliminaries are introduced and the problem is formulated.
Section III proposes a funnel-based approach for leader-
follower multi-agent systems under basic STL formulas.
Further results for sequential STL formulas are discussed
in Section IV. The results are verified by a simulation in
Section V. Section VI includes conclusions and future work.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Leader-follower Multi-agent Systems

We consider a multi-agent system under an undirected
communication graph [14] G = (V, E) with the vertices
set V = {1, 2, . . . , N} and the edges set E = {(i, j) ∈
V × V | j ∈ Ni} where Ni denotes the neighbor of agent i
such that agent j ∈ Ni can communicate with i. Suppose
that we have NF follower agents and NL leader agents
with the respective vertices set as VF = {1, 2, . . . , NF } and
VL = {NF + 1, NF + 2, . . . , NF +NL} where it holds that
N = NF +NL.

Let xi ∈ Rn be the state of agent i, and the state evolution
of each follower i ∈ VF be governed by the first order



agreement protocol:

ẋi =
∑
j∈Ni

(xj − xi), (1)

while the state evolution of each leader i ∈ VL is governed by
the first order agreement protocol with an assigned external
input ui ∈ Rn:

ẋi =
∑
j∈Ni

(xj − xi) + ui. (2)

Let xF = [x1, . . . , xNF ]
T ∈ RnNF and xL =

[xNF+1, . . . , xN ]T ∈ RnNL be the respective stacked state
vector of all follower and leader agents, denote x =
[xTF , x

T
L]
T ∈ RnN . Let u = [uNF+1, . . . , uN ]T ∈ RnNL

be the control input vector. Stacking (1) and (2), we derive
the following dynamics of the leader-follower multi-agent
system:

Σ : ẋ = −(L⊗ In)x+ (B ⊗ In)u, (3)

where L is the graph Laplacian [14], In is the n×n identity
matrix and B =

[
0NF×NL
INL

]
.

B. Signal Temporal Logic (STL)

The boolean true and false values are represented by ⊤
and ⊥, respectively, and B := {⊤,⊥}. Signal temporal logic
(STL) [13] consists of predicates µ : Rn → B which are
obtained by evaluating a continuously differentiable predi-
cate function h : Rn → R and assigning the respective true
or false boolean value as: µ = ⊤, if h(x) ≥ 0; µ = ⊥, if
h(x) < 0, where x ∈ Rn. The STL syntax is defined as

ϕ ::= ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | F[a,b]ϕ | G[a,b]ϕ, (4)

where ϕ1, ϕ2 are STL formulas and ¬,∧,F[a,b],G[a,b] are
the respective negation, conjunction, eventually, always op-
erators with 0 ≤ a ≤ b < ∞. For a continuous-time
signal x : R≥0 → Rn, (x, t) |= ϕ denotes the satisfaction
relation, which holds if x satisfies ϕ at time t. Robust
semantics have been introduced in [5] in order to quan-
tify how robustly the signal x satisfies the STL formula
ϕ at time t. Space robustness semantics [4] for STL are
defined as: ρµ(x, t) := h(x(t)); ρ¬ϕ(x, t) := −ρϕ(x, t);
ρϕ1∧ϕ2(x, t) := min(ρϕ1(x, t), ρϕ2(x, t)); ρF[a,b]ϕ(x, t) :=

max
t1∈[t+a,t+b]

ρϕ(x, t1); ρ
G[a,b]ϕ(x, t) := min

t1∈[t+a,t+b]
ρϕ(x, t1).

Note that it holds that (x, t) |= ϕ if ρϕ(x, t) > 0. In this
work, we consider a fragment of the STL introduced above,
which is defined as follows:

ψ := ⊤ | µ | ¬µ | ψ1 ∧ ψ2 (5a)
ϕ := F[a,b]ψ | G[a,b]ψ (5b)

ϕ′ :=
M∧
i=1

ϕi (5c)

where ψ in (5b) and ψ1, ψ2 in (5a) are non-temporal formulas
of class ψ as in (5a), and where ϕi, i ∈ {1, · · · ,M} in (5c)
are temporal formulas of class ϕ as in (5b) with time intervals
[ai, bi] satisfying bi ≤ ai+1,∀i ∈ {1, · · · ,M − 1}. In this

work, we focus on the fragment of STL in the form of (5b),
(5c), which are expressive enough to tackle leader-follower
multi-agent planning tasks, e.g. formation control, collision
avoidance and connectivity maintenance. It is also possible
to expand to full fragments that include more expressive
tasks according to recent work, e.g., [12]. The non-smooth
robust semantics ρϕ1∧ϕ2(x, t) can be replaced by a smooth

approximation ρϕ1∧ϕ2(x, t) ≈ − 1
η ln(

2∑
i=1

exp(−ηρϕi(x, t)))
with the parameter η > 0 determining the accuracy of the ap-
proximation. No matter the choice of η, it always holds that

− 1
η ln(

2∑
i=1

exp(−ηρϕi(x, t))) ≤ min(ρϕ1(x, t), ρϕ2(x, t))

with the equality holding as η → ∞, which indicates that
this smooth approximation is further an under approximation.
Consequently, we can conclude that (x, t) |= ϕ1∧ϕ2 as long

as − 1
η ln(

2∑
i=1

exp(−ηρϕi(x, t))) > 0.

C. Problem Statement

The aim of this work is to design the control strategy
only for the leaders such that the leader-follower multi-agent
system (3) can fulfill the target task which is represented by
an STL formula. Formally, we define the problem as follows:

Problem 1. Consider the leader-follower multi-agent system
(3), given an STL formula ϕ as in (5b) or ϕ′ as in (5c).
Design a control strategy u for (3) such that the closed-loop
trajectory x : [0,∞) → RnN guarantees ρϕ(x, 0) > 0 or
ρϕ

′
(x, 0) > 0.

III. SATISFACTION OF STL USING PPC

In this section, we show how to synthesise a control
strategy u for the temporal formulas ϕ as in (5b) using
prescribed performance control such that ρϕ(x, 0) > 0 can
be achieved where x : [0,∞) → RnN is the closed-loop
solution of (3). PPC is a funnel-based approach to prescribe
the transient behavior within some predefined region, which
can be described as follows according to our problem in
hand:

− p(t) + ρ⋆ < ρψ(x, 0) < ρ⋆, (6)

where ψ is the corresponding non-temporal formula inside
the F,G operators as in (5b), which in combination with
the temporal operators F,G forms the temporal formulas
of class ϕ. Note that the robustness function ρψ(x, 0) is
time-dependent since it is evaluated based on the timed
trajectory x(t), but we sometimes replace x(t) by x in
the paper for simplicity. We aim to achieve ρϕ(x, 0) > 0
by prescribing a temporal behavior to the corresponding
ρψ(x, 0) by appropriately designing the parameters p(t) and
the positive scalar ρ⋆. Here p(t) : R+ → R+ \ {0} is
the so called performance function [1] which is positive,
smooth and strictly decreasing, and introduces the funnel
to prescribe the behavior of ρψ(x, 0). We define p(t) :=
(p0 − p∞)e−lt + p∞ with p0,p∞, l as positive parameters
and p0 > p∞. We aim to design p(t), ρ⋆ such that the
satisfaction of (6) implies that ρϕ(x, 0) > 0 holds. How



to choose these parameters has been elucidated in [11]. We
further define e(x) = ρψ(x, 0)− ρ⋆ and the modulated error
ē(x, t) = e(x)

p(t) together with the corresponding prescribed
performance region D := {ē : ē ∈ (−1, 0)}. Then the
modulated error is transformed through a transformation
function T that defines the smooth and strictly increasing
mapping T : D → R. The transformed error is then defined
as

ε(x, t) = T (ē(x, t)) = ln

(
−1 + ē(x, t)

ē(x, t)

)
. (7)

It can be verified that if the transformed error ε(x, t) is
bounded, then the modulated error ē(x, t) is constrained
within the prescribed performance region D [1]. This also
in turn implies the satisfaction of (6).

A. Control design for basic temporal formulas

In this subsection, we derive a control strategy for the
leader-follower multi-agent system such that the prescribed
behavior on ρψ(x, 0), i.e., (6) can be achieved, which will be
utilised later for the more complex sequential STL formulas.
Before presenting the main results of this section, we first
state the following assumption that is assumed in this paper.

Assumption 1. The leaders have access to ∂ρψ(x,0)
∂xL

, which
involves the knowledge of the robustness function ρψ(x, 0)
and the corresponding agent states it comprises. In addition
∂ρψ(x,0)
∂xL

is a nonzero vector.

Next, we propose a control strategy such that ρψ(x, 0) is
always within the funnel (6).

Theorem 1. Consider the leader-follower multi-agent system
(3), given an STL formula ϕ as in (5b), with the corre-
sponding ψ satisfying Assumption 1. If the initial condition
ρψ(x(0), 0) is within the funnel (6), then the control strategy

u(x, t) = −ε(x, t)∂ρ
ψ(x, 0)

∂xL
(8)

guarantees the satisfaction of (6) for all t ≥ 0, where ε(x, t)
is the transformed error defined as in (7).

Proof. The proof is based on the following three steps. We
first show that there exists a maximal solution for ē(x, t),
which means that ē(x, t) remains in D within the maximal
time solution interval [0, τmax). Next, we prove that the
proposed control strategy (8) restricts ē(x, t) in a compact
subset of D, which by contradiction results in τmax = ∞ in
the last step and the proof is completed. In the sequel, we
show the proof in detail step by step.

Step 1. Since the initial condition ρψ(x(0), 0) is within the
funnel (6), this implies that the initial condition ē(x(0), 0)
is within the prescribed performance region D accord-
ing to equation (6) and the modulated error. Inserting
(8) to (3), we obtain the closed-loop dynamics as ẋ :=

f1(x, ē) = −(L ⊗ In)x − (B ⊗ In) ln
(
− 1+ē

ē

) ∂ρψ(x,0)
∂xL

.
By calculating the derivative of ē = (ρψ(x, 0) − ρ⋆)/p(t),
we have ˙̄e =

(
∂ρψ(x,0)

∂x ẋp(t)− ṗ(t)e(x)
)
/p2(t) =

(
∂ρψ(x,0)

∂x ẋ− ṗ(t)ē
)
/p(t). Replacing ẋ, we further obtain

˙̄e := f2(x, ē, t) = 1
p(t)

(
∂ρψ(x,0)

∂x f1(x, ē)− ēṗ(t)
)
. Let

z = [xT , ē]T , then ż = f(z, t) = [fT1 (x, ē), f2(x, ē, t)]
T .

The initial condition x(0) is such that ē(x(0), 0) ∈ D,
which is an open set. We then define Dx := {x ∈ RnN |
ē(x(0), 0) ∈ D}, which is also an open, non-empty and
bounded set. Therefore, Dz := Dx × D is an open, non-
empty and bounded set, and the initial condition satisfies
z(0) = [xT (0), ē(x(0), 0)]T ∈ Dz . We now consider the
initial value problem ż = f(z, t) with z(0) ∈ Dz . We
can verify that f(z, t) is continuous on t due to continuity
of p(t) and ṗ(t). Moreover, since the transformed function
ln

(
− 1+ē

ē

)
is locally Lipschitz continuous and ∂ρψ(x,0)

∂x is
also locally Lipschitz continuous due to the smooth approx-
imation discussed previously, we can conclude that f(z, t)
is locally Lipschitz on z. Hence, according to Theorem 54
of [16], there exists a maximal solution z(t) of the initial
value problem ż = f(z, t) in a time interval [0, τmax) such
that z(t) ∈ Dz,∀t ∈ [0, τmax).

Step 2. Based on Step 1, we know that ρψ(x(t), 0)
satisfies (6) for all t ∈ [0, τmax). This is due to the fact
that z(t) ∈ Dz,∀t ∈ [0, τmax), thus ē(x(t), t) ∈ D,∀t ∈
[0, τmax), which in turn implies the satisfaction of (6) for
all t ∈ [0, τmax). We now consider the Lyapunov function
candidate V (ε) = 1

2ε
2. Taking the derivative on (7), we have

ε̇ = ē
1+ē

˙̄eē− ˙̄e(1+ē)
ē2 = − ˙̄e

ē(1+ē) . By replacing ˙̄e, which is
derived in Step 1, V̇ can be obtained as

V̇ = εε̇ = ε

(
− 1

pē(1 + ē)

(
∂ρψ(x, 0)T

∂x
ẋ− ēṗ

))
. (9)

Replacing ẋ by (3), we further obtain

V̇ = − ε

pē(1 + ē)

(
∂ρψ(x, 0)T

∂x

(
− (L⊗ In)x

+ (B ⊗ In)u
)
− ēṗ

)
.

(10)

Then, since the performance function p(t) := (p0 −
p∞)e−lt +p∞ is strictly decreasing, we have p∞ ≤ p(t) ≤
p0. Moreover, since ē ∈ (−1, 0), we can verify that 4

p0
≤

− 1
p0ē(1+ē)

≤ − 1
pē(1+ē) ≤ − 1

p∞ē(1+ē) < ∞, ∀ē ∈ D.
Denote now k1 = − 1

pē(1+ē) which is always positive and
bounded since 0 < 4

p0
≤ k1 < ∞, and we then can further

upper bound V̇ by

V̇ ≤ |ε|k1
(
∥∂ρ

ψ(x, 0)T

∂x
∥∥ − (L⊗ In)x∥+ |ēṗ|

)
+ εk1

∂ρψ(x, 0)T

∂x
(B ⊗ In)u.

(11)

Since ∂ρψ(x,0)T

∂x and (L ⊗ In)x are both bounded for all
t ∈ [0, τmax), we can additionally upper bound the term
∥∂ρ

ψ(x,0)T

∂x ∥∥− (L⊗ In)x∥+ |ēṗ| by a positive constant k2,
which results in

V̇ ≤ |ε|k1k2 + εk1
∂ρψ(x, 0)T

∂x
(B ⊗ In)u. (12)



Next, we replace the control law (8) for the leaders in (12)
and derive that

V̇ ≤ |ε|k1k2 − ε2k1
∂ρψ(x, 0)T

∂x
(B ⊗ In)

∂ρψ(x, 0)

∂xL
(13)

Due to the structure of the B matrix, we have that
∂ρψ(x,0)T

∂x (B ⊗ In) = ∂ρψ(x,0)T

∂xL
. Based on Assumption

1 that ∂ρψ(x,0)
∂xL

is a nonzero vector, we can obtain that

∥∂ρ
ψ(x,0)
∂xL

∥2 ≥ k3 > 0. Therefore, V̇ can be further upper
bounded by

V̇ ≤ |ε|k1k2 − ε2k1k3. (14)

From (14), we know that V̇ ≤ 0 as long as |ε| ≥ k2
k3

.
Therefore, we can conclude that the transformed error is
upper bounded by |ε| ≤ ε⋆ = max

{
|ε(0)|, k2k3

}
, ∀t ∈

[0, τmax) [9]. Due to the boundedness of |ε| in t ∈ [0, τmax),
we can restrict ē in a compact subset of D as

ē(x, t) ∈ [δ, δ̄] ≜ [T−1(−ε⋆), T−1(ε⋆)] ⊂ D, (15)

where T−1 is the inverse function of T .
Step 3. Finally, we need to prove that τmax can be extended

to ∞. According to (15), we know that ē(x, t) ∈ D′,∀t ∈
[0, τmax), where D′ = [δ, δ̄]. Hence, D′ ⊂ D is a nonempty
and compact subset of D and it can be concluded that
ē(x, t) ∈ D′,∀t ∈ [0, τmax). Let us now assume that τmax <
∞. According to Proposition C.3.6 of [16], there then exists
a t′ ∈ [0, τmax) such that ē(x, t) /∈ D′, which leads to a
contradiction. Hence, we conclude that τmax is extended to
∞, that is ē(x, t) ∈ D′ ⊂ D,∀t ≥ 0. Therefore ε is bounded
for all t ≥ 0 and the boundedness of the transformed error ε
implies that ρψ(x, 0) satisfies (6) for all t ≥ 0. Therefore, we
can conclude that the satisfaction of (6) is guaranteed when
applying the control strategy (8).

Remark 1. In Assumption 1, we assume that ∂ρψ(x,0)
∂xL

is
a nonzero vector, which is used to avoid the local optima
that may cause infeasibility issues. This assumption is not
conservative: for example, in the popular connectivity main-
tenance [14] task (STL task ϕ := F[0,4](||xN − x1|| < 1)),
∂ρψ(x,0)
∂xL

is a zero vector if and only if xN = x1 holds,
which trivially satisfies the task specification. In addition, we
design the funnel such that local optima can not be reached,
which guarantees that Assumption 1 holds. Using the same
example, we can choose ρ⋆ < 1, and then the local optima
is avoid. This assumption also requires that there exists at
least one leader involved in the robustness function.

We then derive conditions on the funnels such that the
satisfaction of (6) will enforce that 0 < ρϕ(x, 0) < ρ⋆ holds.
This is generally done by prescribing the transient behavior
of the funnel. We first define the so called crossing time as

t⋆ =

{
a if ϕ = G[a,b]ψ;

a′ if ϕ = F[a,b]ψ,
(16)

where a′ ∈ [a, b]. The crossing time t⋆ characterises when the
funnel which is described by the function −p(t) + ρ⋆ will
traverse across zero. If we consider the “always” operator

ϕ = G[a,b]ψ, we need that ρϕ(x(t), 0) > 0 for all t ∈ [a, b],
that is why we set the crossing time t⋆ = a. As long as
−p(t⋆) + ρ⋆ = 0, we know that −p(t) + ρ⋆ > 0,∀t ∈ (a, b]
since the function −p(t)+ρ⋆ is strictly increasing. Similarly,
if we consider the “eventually” operator ϕ = F[a,b]ψ, we only
require that there exists t ∈ [a, b] such that ρϕ(x, 0) > 0 ,
that is why we set the crossing time t⋆ = a′ ∈ [a, b] for
ϕ = F[a,b]ψ. Now, recall the performance function p(t) :=
(p0 − p∞)e−lt + p∞. The following theorem shows how to
choose the parameters p0,p∞ and l such that the satisfaction
of (6) ensures (x, t) |= ϕ.

Theorem 2. Consider the leader-follower multi-agent system
(3), given an STL formula ϕ as in (5b) with the corresponding
ψ satisfying Assumption 1. If the initial condition ρψ(x(0), 0)
is within the funnel (6), and it further holds that

• for t⋆ = 0, p0 ∈ (ρ⋆ − ρψ(x(0), 0), ρ⋆]; p∞ ∈
(0,min(p0, ρ

⋆)); l > 0; ρ⋆ > ρψ(x(0), 0).
• for t⋆ > 0, p0 ∈ (ρ⋆ − ρψ(x(0), 0),∞);

p∞ ∈ (0,min(p0, ρ
⋆)); l = − 1

t⋆
ln(ρ

⋆−p∞
p0−p∞

); ρ⋆ >

ρψ(x(0), 0).
Then, the control strategy (8) guarantees that 0 < ρϕ(x, 0) <
ρ⋆ holds.

Proof. According to Theorem 1, since the initial condition
ρψ(x(0), 0) is within the funnel (6), the control strategy (8)
guarantees the satisfaction of (6) for all t ≥ 0. What remains
to prove is that by appropriately choosing the parameters
p0,p∞ and l as above, the satisfaction of (6) further ensures
that 0 < ρϕ(x, 0) < ρ⋆ holds. In general, the choices of
the parameters should guarantee the initial condition, i.e.,
ρψ(x(0), 0) is within the funnel (6). Moreover, −p(t⋆) +
ρ⋆ ≥ 0 should hold in order to enforce the satisfaction of
the STL formula (5b) by prescribing the transient behavior
of the funnel. For t⋆ = 0, p0 ∈ (ρ⋆ − ρψ(x(0), 0), ρ⋆] will
ensure that p0 > ρ⋆ − ρψ(x(0), 0), which is equivalent to
−p0+ρ

⋆ < ρψ(x(0), 0), and by further choosing ρ⋆ such that
ρψ(x(0), 0) < ρ⋆, the initial condition is satisfied. Moreover,
p0 ≤ ρ⋆ means that −p(t⋆)+ ρ

⋆ = −p0+ ρ
⋆ ≥ 0. Next, we

use the fact that the function −p(t⋆)+ρ
⋆ is strictly increasing

in order to conclude on the satisfaction of ϕ = G[a,b]ψ or
ϕ = F[a,b]ψ. For t⋆ > 0, we can check similarly that the
initial condition holds, i.e., the initial condition ρψ(x(0), 0)
is within the funnel (6). In addition l = − 1

t⋆
ln(ρ

⋆−p∞
p0−p∞

)

results in −p(t⋆) + ρ⋆ = −(p0 − p∞)e−lt⋆ − p∞ + ρ⋆ = 0,
and thus we can also obtain the satisfaction of ϕ = G[a,b]ψ
or ϕ = F[a,b]ψ according to the fact that −p(t⋆) + ρ⋆

is strictly increasing. Therefore, we can conclude that the
control strategy (8) guarantees that 0 < ρϕ(x, 0) < ρ⋆ holds
for ϕ as in (5b) by appropriately choosing the parameters
p0,p∞ and l as above.

IV. CONTROL FOR SEQUENTIAL STL FORMULAS

In this section, we design a hybrid control strategy for the
leader-follower multi-agent system (3) such that the sequen-
tial STL formula as in (5c) is satisfied. The sequential STL

formula ϕ′ :=
M∧
i=1

ϕi is composed by M STL formulas of the



form (5b), for which the control strategy has been discussed
in the previous section. The time intervals [ai, bi] of the basic
STL formulas satisfy bi ≤ ai+1,∀i ∈ {1, · · · ,M − 1}.
For each basic STL formula ϕi, i ∈ {1, · · · ,M}, i.e.,
ϕi = G[ai,bi]ψi or ϕi = F[ai,bi]ψi we denote its robust-
ness function as ρϕi(x, 0), and the corresponding robustness
function ρψi(x, 0) with respect to ψi. For each ρψi(x, 0), the
corresponding funnel is designed as

− pi(t) + ρ⋆i < ρψi(x, 0) < ρ⋆i , (17)

with ρ⋆i being a positive scalar and pi(t) := (p0,i −
p∞,i)e

−li(t−τi)+p∞,i, where τi are the switching moments
that will be defined afterwards. Next, We define ei(x) =

ρψi(x, 0)−ρ⋆i , the modulated error ēi(x, t) =
ei(x)
pi(t)

, and the

transformed error εi(x, t) = Ti(ēi(x, t)) = ln
(
− 1+ēi(x,t)

ēi(x,t)

)
.

All these parameters are defined in a similar manner as in
previous section. For each ϕi, we also define the crossing
time as

t⋆,i =

{
ai if ϕi = G[ai,bi]ψi;

a′i if ϕi = F[ai,bi]ψi,
(18)

with a′i ∈ [ai, bi]. There is only one basic STL formula ϕi
active for every moment and the switch from ϕi to ϕi+1, i ∈
{1, · · · ,M − 1} occurs once ϕi is satisfied. We then define
the switching moments as τ1, · · · , τM with τ1 = 0, τi ≤
τi+1: τi represents the moment that the basic STL formula
ϕi becomes active, and for i ∈ {2, · · · ,M}, we have that

τi =

{
bi−1 if ϕi−1 = G[ai−1,bi−1]ψi−1;

t⋆,i−1 if ϕi−1 = F[ai−1,bi−1]ψi−1.
(19)

Now, based on the Theorems 1 and 2, we derive the fol-
lowing result that proposes a hybrid control strategy for the
satisfaction of the sequential STL formulas as in (5c) and
also completes the solution for Problem 1.

Theorem 3. Consider the leader-follower multi-agent system
(3), given a sequential STL formula ϕ′ as in (5c) such that
Assumption 1 holds for each ψi. Assume that the following
conditions hold for all i ∈ {1, · · · ,M}:

• for t⋆,i−τi = 0, p0,i ∈ (ρ⋆i −ρψi(x(τi), 0), ρ⋆i ]; p∞,i ∈
(0,min(p0,i, ρ

⋆
i )); li > 0; ρ⋆i > ρψi(x(τi), 0).

• for t⋆,i−τi > 0, p0,i ∈ (ρ⋆i −ρψi(x(τi), 0),∞); p∞,i ∈
(0,min(p0,i, ρ

⋆
i )); li = − 1

t⋆,i−τi ln(
ρ⋆i−p∞,i

p0,i−p∞,i
); ρ⋆i >

ρψi(x(τi), 0).
Let i ∈ {1, · · · ,M − 1}, then the hybrid control strategy

u(x, t) =

{
−εi(x, t)∂ρ

ψi (x,0)
∂xL

, t ∈ [τi, τi+1);

−εM (x, t)∂ρ
ψM (x,0)
∂xL

, t ∈ [τM , bM ].
(20)

guarantees that 0 < ρϕi(x, 0) < ρ⋆i holds for all t ∈
[τi, τi+1], i ∈ {1, · · · ,M − 1} and for all t ∈ [τM , bM ],
thus (x, t) |= ϕ′.

Proof. The proof is constructed iteratively based on the
proofs of Theorems 1 and 2. Starting from t = 0 when
the basic STL formula ϕ1 is active and τ1 = 0. Based
on the above conditions, we know that the initial condition

ρψ1(x(0), 0) is within the funnel −p1(t)+ρ
⋆
1 < ρψ1(x, 0) <

ρ⋆1. Then, according to Theorems 1 and 2, we can conclude
that 0 < ρϕ1(x(t), 0) < ρ⋆1 is satisfied for all t ∈ [τ1, τ2].
When t = τ2, the basic STL formula ϕ2 is active and the
the control strategy is also switched according to (20). By
choosing appropriately the parameters p0,2,p∞,2, ρ

⋆
2 and l2

as Theorem 3, the initial condition ρψ2(x(τ2), 0) for this
iteration is also within the funnel −p2(t)+ρ

⋆
2 < ρψ2(x, 0) <

ρ⋆2. Similarly, we can also conclude that 0 < ρϕ2(x(t), 0) <
ρ⋆2 is satisfied for all t ∈ [τ2, τ3]. Next, for each active basic
STL formula ϕi, i ∈ {3, · · · ,M}, we can use the similar
arguments that the initial condition ρψi(x(τi), 0) of each
iteration is within the funnel −pi(t) + ρ⋆i < ρψi(x, 0) < ρ⋆i
by appropriately designing the parameters p0,i,p∞,i, ρ

⋆
i and

li as Theorem 3. Then, according to Theorems 1 and 2,
we can conclude that 0 < ρϕi(x(t), 0) < ρ⋆i holds for all
t ∈ [τi, τi+1], i ∈ {1, · · · ,M − 1} and for all t ∈ [τM , bM ],
which means that the STL formula ϕ′ is satisfied by applying
the hybrid control strategy (20), i.e., (x, t) |= ϕ′.

V. SIMULATIONS

In this section, we show a simulation of the derived results.
We consider 3 followers and 2 leaders in the plane as shown
in Fig. 1, where the leaders and followers are represented by
grey and white nodes, respectively. The edges are represented
by the black links that indicate the neighboring relations.
We denote the position of agent i as xi = [xi1, xi2]

T , i =
{1, 2, 3, 4, 5}, which is initialised as x1 = [0, 0]T , x2 =
[6, 0]T , x3 = [12, 0]T , x4 = [3, 3]T , x5 = [9, 3]T .

1 2

4 5

e1
e2 e3 e4

3

Fig. 1: Leader-follower graph topology.

The leader-follower multi-agent system is assigned a se-
quential STL task ϕ′ = ϕ1∧ϕ2 with two basic STL sub-tasks
given by ϕ1 = F[0,2](ψ1 ∧ ψ2) and ϕ2 = G[3,5](ψ3 ∧ ψ4),
where ψ1 = (||x4 − x1||2 < 2), ψ2 = (||x4 − x2||2 < 2),
ψ3 = (||x5 − x3||2 < 2) and ψ4 = (||x5 − x2||2 < 2). This
sequential task means that 1) within 2 seconds, the leader
indexed by 4 keeps a distance of 2 to the first follower,
while in the mean-time it keeps a distance of 2 to the second
follower. 2) Within 3 to 5 seconds, the leader indexed by 5
always keeps a distance of 2 to the second follower and
simultaneously keeps a distance of 2 to the third follower.

The simulation results when applying the control strategy
(20) are shown in Fig. 2 and 3. In the first task, the
performance function regarding the first funnel is chosen
as p1(t) = 19e−l1t + 1 with t⋆,1 = 1, ρ⋆1 = 2,p0,1 =
20,p∞,1 = 1 and l1 = ln(19). The evolution of the agents
is shown as in Fig. 2, where the black lines show the initial
formation, while the blue lines show the final positions of
the agents. The dashed lines indicate the trajectories of the
agents. Fig. 3 depicts the evolution of the robustness function



(red curve) against the corresponding funnel (black curve).
We can see that ϕ1 is active until t⋆,1 = 1 according to
(19). The performance function −p1(t) + ρ⋆1 enforces the
satisfaction of ϕ1 as it crosses zero (dashed line) at exactly
t⋆,1 = 1. We can conclude that the first task is fulfilled
due to the fact that the robustness function evolves within
the funnel. At τ2 = t⋆,1 = 1, the second task ϕ2 becomes
active. The corresponding performance function is chosen
as p2(t) = 9e−l2(t−1) + 1 with t⋆,2 = 3, ρ⋆2 = 2,p0,2 =
10,p∞,2 = 1 and l2 = 0.5 ln(9). Similarly, the evolution of
the agents is shown as in Fig. 2, where the blue lines show
the initial formation of the second task, which is the same
as the final formation of the first task at t = 1, while the red
lines show the final positions of the agents at t = 5. In Fig.
3, we can also check the evolution of the robustness function
against the second funnel. The jumps at t = 1 for both the
robustness function and the funnel indicate that ϕ2 becomes
active. The performance function −p2(t)+ρ

⋆
2 crosses zero at

t⋆,2 = 3, which in turn enforces the satisfaction of ϕ2. Since
the evolution of the robustness function is always within the
funnel for t ∈ [1, 5], we can also conclude that ϕ2 is fulfilled.
Therefore, we can conclude that the sequential STL task ϕ′

is satisfied by applying the control strategy (20).
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Fig. 2: Agents evolution for ϕ1 and ϕ2.
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Fig. 3: Evolution of the robustness functions (red curves) and
the funnels (black curves).

VI. CONCLUSIONS

In this paper, control of leader-follower multi-agent sys-
tems under certain fragments of signal temporal logic spec-
ifications has been investigated. In order to enforce the
satisfaction the basic STL formulas, a funnel-based control
strategy has been proposed through appropriately design the
funnel parameters to prescribe certain transient behavior on
the funnels that constrain the closed-loop trajectories. Then,
a hybrid control strategy has been leveraged to satisfy the
sequential STL formulas.

Future research directions include control of leader-
follower multi-agent systems under a set of local STL formu-
las that may also present couplings and conflicts. Moreover,
a more general class of STL formulas will be further studied.
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