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Abstract— Modern data-driven techniques have rapidly
progressed beyond modelling and systems identification,
with a growing interest in learning high-level dynamical
properties of a system, such as safe-set invariance,
reachability, input-to-state stability etc. In this paper, we
propose a novel supervised Deep Learning technique for
constructing Lyapunov certificates, by leveraging Koopman
Operator theory-based numerical tools (Extended Dynamic
Mode Decomposition and Generalized Laplace Analysis)
to robustly and efficiently generate explicit ground truth
data for training. This is in stark contrast to existing Deep
Learning methods where the loss functions plainly penalize
Lyapunov condition violation in the absence of labelled
data for direct regression. Furthermore, our approach
leads to a linear parameterization of Lyapunov candidate
functions in terms of stable eigenfunctions of the Koopman
operator, making them more interpretable compared to
standard DNN-based architecture. We demonstrate and
validate our approach numerically using 2-dimensional and
10-dimensional examples.

Index Terms— Data-driven modeling, Koopman operator,
Lyapunov function, Machine learning, Neural networks

I. INTRODUCTION

DEVELOPING formal guarantees for safety and
performance of dynamical systems is an essential step in

the design and control of cyber-physical systems. Lyapunov
functions primarily provide stability and robustness guarantees
for a large class of dynamical systems [1][2]. More recently,
data-driven certification of such critical behaviours and
properties within cyber-physical systems has become an area
of growing interest to the controls and machine learning
communities alike. In the absence of a well-known dynamical
model, leveraging trajectory data for control and analysis is
particularly well-suited. Even for the cases where we have
a model, it often takes expert intuition and knowledge to
handcraft Lyapunov functions. Therefore, learning-based
approaches show promise in constructing certificates from
data. For example, Deep Learning techniques were utilized for
synthesizing Lyapunov functions in [3][4][5].

In this paper, we are interested in leveraging tools from
Koopman Operator theory towards learning Lyapunov functions
by efficient utilization of data, in an interpretable manner.
These infinite dimensional linear operators provide powerful
and practical techniques that allow well-developed control
and analysis principles from linear systems to be applied
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Fig. 1. Flowchart summarizing the use of local and global trajectory data
in conjugation with EDMD and GLA approaches to learn eigenfunction
parameterized Lyapunov functions. The bottom-most block is optional, in
case system dynamics 𝒇 is unknown.

to nonlinear dynamical systems. Koopman theory has been
successfully utilized for a wide range of applications, including
modelling and identification in robotics, nonlinear optimal
control and MPC via global bi-/linearization, as well as
dynamical systems analysis (please see [6] and the references
therein). The eigenfunctions of Koopman operators encode
useful information about the underlying dynamics, such as
invariant sets and stable/unstable manifolds, and are central
to our work. In this paper, we are primarily interested in
finding Lyapunov functions, for which we utilize Koopman
eigenfunctions. We propose a data-driven technique to learn
Lyapunov functions parameterized via Deep Neural Networks
(DNN), that are interpretable through the lens of Koopman
operator theory: We construct Lyapunov basis functions using
Koopman eigenfunctions, which then provide a linear space of
Lyapunov candidates. The linearity of this space is instrumental
in further refining it and formally verifying the learnt Lyapunov
functions [7].

Towards that end, we present a novel learning-based
framework that efficiently integrates together and complements
the strengths of different techniques, namely Extended Dynamic
Mode Decomposition (EDMD) [8][9], Generalized Laplace
Analysis (GLA) [10][11], and Deep Learning [12]. Thus,
the main contributions of our paper are as follows: (i) We
leverage dense “local trajectories” (that are initialized inside a
local neighborhood 𝜀 of the equilibrium) and sparse “global



trajectories” (that are initialized anywhere inside the domain
of attraction  ⊃ 𝜀) by combining EDMD with GLA, to
create explicit ground truth data for Koopman eigenfunctions
in absence of a dynamic model. Ground truth data means
that corresponding to any point 𝑥′ ∈ , we can obtain the
actual value of an unknown eigenfunction 𝜓 evaluated at 𝑥′.
Figure 1 outlines our proposed approach. (ii) Exploiting the
ground truth labels

(

𝑥′, 𝜓(𝑥′)
)

renders our learning problem
into a simplified regression problem, allowing the use of vanilla
neural network architectures. This distinguishes our work from
related literature [7][13][14][15], that design their training
loss criterion primarily on the eigenfunction PDE equation
and/or prediction error, and commonly require additional
regularization, like autoencoders within their architecture.
Similarly, [3][4][5] train indirectly using so-called “Lyapunov
risk” which penalizes violation of Lyapunov condition. (iii)
Finally, we provide technical results to complement our
proposed computation technique, leading to numerically well-
behaved implementation1, as often times, Laplace averages
suffer from convergence issues due to exponential terms within
the integral [11].

II. BACKGROUND

Notations: 𝑅𝑒(⋅) denotes the real part of its argument, which
can be a scalar or a complex-valued function. 𝑓𝑔 represents
the Lie-derivative of a function 𝑔(𝑥) with respect to vector
field 𝑓 (𝑥). The space of continuously differentiable functions
on 𝑋 is denoted by 𝐶1(𝑋). The notation spec(𝑀) denotes
the spectrum of a matrix 𝑀 ∈ ℂ𝑛×𝑛. Positive definiteness of
a matrix 𝑃 is denoted using 𝑃 ≻ 0. 𝜆𝑚𝑖𝑛(⋅) and 𝜆𝑚𝑎𝑥(⋅) are
eigenvalues with smallest and largest magnitudes, respectively.
ℝ denotes set of reals and ℂ is the complex set. The notation
‖ ⋅ ‖ is used for 2-norm of a complex vector.

We now consider the nonlinear dynamical system
𝑑𝑥
𝑑𝑡

= 𝑓 (𝑥) (1)

where function 𝑓 ∶ 𝑋 → ℝ𝑛 is continuously differentiable and
states 𝑥(𝑡) evolve in the compact set 𝑋 ⊂ ℝ𝑛 for all 𝑡 ≥ 0.
Let 𝜙𝑡 ∶ 𝑋 → 𝑋 denote the flow-map of this system, that is,
𝜙𝑡(𝑥) = 𝑥 + ∫ 𝑡0 𝑓 (𝑥(𝑠))𝑑𝑠, for all 𝑡 ≥ 0 and 𝑥 ∈ 𝑋.

Definition 1. The Koopman semigroup2 of operators is defined
as the linear operators 𝑡 acting on a (Banach) space  of
functions 𝑔 ∶ 𝑋 → ℂ such that

[

𝑡𝑔
]

(𝑥) = 𝑔(𝜙𝑡(𝑥)), for every
𝑔 ∈  . Elements of  are referred to as ‘observables’.

In the rest of this paper, we shall take our observable space 
to be the Banach space 𝐶1(𝑋) due to mathematical convenience.
Corresponding to this infinite dimensional linear operator, one
can define Koopman eigenfunctions as functions 𝜓(𝑥) ∈ 
that satisfy

[

𝑡𝜓
]

(𝑥) = 𝑒𝜆𝑡𝜓(𝑥) for some constant 𝜆 ∈ ℂ (in
other words, 𝑑

𝑑𝑡𝜓(𝑥(𝑡)) = 𝜆𝜓(𝑥(𝑡))). Scalar 𝜆 is the eigenvalue
associated with eigenfunction 𝜓 .

Assume system (1) has an asymptotically stable equilibrium
at 𝑥𝑒. We call a Koopman eigenfunction 𝜓 as a principle
eigenfunction if 𝜓(𝑥𝑒) = 0 and ∇𝑥𝜓(𝑥𝑒) ≠ 0, such that its
corresponding eigenvalue belongs to spec(∇𝑥𝑓 (𝑥𝑒)). Given the

1Code for this paper can be accessed online by clicking [this link].
2Informally, a semigroup is a set that is closed under an associative binary

operation. Particularly, note that 𝑡1 ⋅𝑡2 = 𝑡2 ⋅𝑡1 = 𝑡1+𝑡2 .

semigroup of eigenpairs 𝐸 (which is the set comprising of
(𝜆, 𝜓) pairs), the set of principle eigenpairs are the minimal
generator 𝐺 of the set 𝐸. That is,

𝐸 =

{( 𝑚
∑

𝑖=1
𝑛𝑖𝜆𝑖,

𝑚
∏

𝑖=1
𝜓𝑛𝑖𝑖

)

|

|

|

|

(𝜆𝑖, 𝜓𝑖) ⊂ 𝐺, 𝑚 ∈ ℕ, 𝑛𝑖 ∈ ℕ

}

.

For systems with a hyperbolic equilibrium 𝑥𝑒, the uniqueness
and existence of principle eigenpairs can be characterized by
spec(∇𝑥𝑓 (𝑥𝑒)) under conditions of nonresonance [16].

Definition 2. Let 𝜆 ∈ ℂ be a scalar and 𝑔 ∶ 𝑋 → ℂ be an
observable. Then the Laplace average of 𝑔 is defined as

𝑔∗𝜆(𝑥) ≐ lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡. (2)

If the above limit converges for the observable 𝑔, this Laplace
average 𝑔∗ can be verified to be a Koopman eigenfunction
corresponding to eigenvalue 𝜆, since

[𝜏𝑔∗𝜆](𝑥) = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡[𝑡+𝜏𝑔](𝑥)𝑑𝑡

= 𝑒𝜆𝜏 lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒−𝜆(𝑡+𝜏)[𝑡+𝜏𝑔](𝑥)𝑑𝑡

𝑠=𝑡+𝜏
= 𝑒𝜆𝜏 lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑠[𝑠𝑔](𝑥)𝑑𝑠 = 𝑒𝜆𝜏𝑔∗𝜆(𝑥).

Note that stable Koopman eigenfunctions can be used to
describe invariant sets [17]. Given Koopman eigenfunctions
𝜓𝑖(𝑥) ∶  ⊆ 𝑋 → ℂ for 𝑖 = 1,… , 𝑁 (with corresponding
eigenvalues 𝜆𝑖 ∈ ℂ with negative real parts), we can define
functions 𝑉𝑖(𝑥) ≐ 1

2‖𝜓𝑖(𝑥)‖
2 ≥ 0, which means 𝑉̇𝑖(𝑥) =

𝑅𝑒(𝜆𝑖)‖𝜓𝑖(𝑥)‖2 ≤ 0. This implies every 𝛾−sublevel set of
𝑉𝑖 denoted by 𝑀𝛾

𝑖 ≐
{

𝑥 | 𝑉𝑖(𝑥) ≤ 𝛾
}

is forward-invariant.
In particular, it follows that all trajectories starting inside 
converge to the set 𝑀0

𝑖 , due to LaSalle’s Invariance Principle,
i.e., 𝜙𝑡(𝑥) →

⋂

𝑖𝑀
0
𝑖 , ∀𝑥 ∈ . We use these 𝑉𝑖’s in our final

step for constructing Lyapunov functions from data.

III. MAIN RESULTS

In this section and the rest of the paper, we shall focus
our attention on nonlinear systems that have an asymptotically
stable equilibrium point (taken to be origin without loss of
generality). We first present convergence results for Laplace
averages based on easy to verify conditions. Next, we show
how one may use trajectory data to exactly compute Koopman
eigenfunctions using the combination of EDMD and GLA.
In the final part of this section, we present how the learned
eigenfunctions are used for linearly parameterizing a space of
candidate Lyapunov functions.

A. Convergence results for Laplace averages
GLA has been discussed widely in [10][11] as an analysis

tool for obtaining Koopman mode decomposition of observables
onto the space spanned by eigenfunctions. It is important to
note that the computation of Laplace averages in general is
not numerically amenable, due to convergence issues posed by
the exponentially growing term within the integral. Thus, we
first present some convergence results that ultimately aid us in
their numerical computations.



Lemma 1. Consider the system (1) with asymptotically stable
equilibrium 𝑥𝑒 = 0. If an observable 𝑔 with an isolated root
at 𝑥𝑒 locally satisfies 𝑓𝑔 = 𝜆𝑔 (for a stable 𝜆 with 𝑅𝑒(𝜆)<0)
in some 𝜀-neighborhood 𝜀 of the equilibrium 𝑥𝑒, then 𝑔∗𝜆(𝑥)
is well-defined for all 𝑥 in the domain of attraction  ⊇𝜀.

Proof. Without loss of generality, we can consider 𝜀 to be
forward-invariant due to the following. Since 𝑥𝑒 is an isolated
root of 𝑔, by definition, there is a positive 𝑟 such that ‖𝑔(𝑥)‖ >
0 if 0 < ‖𝑥 − 𝑥𝑒‖ ≤ 𝑟. Thus, for any 𝛼 < min

‖𝑥−𝑥𝑒‖=𝑟 ‖𝑔(𝑥)‖,
the 𝛼-sublevel set of ‖𝑔‖ has a connected component 𝐶𝛼 strictly
contained inside the ball ‖𝑥 − 𝑥𝑒‖ ≤ 𝑟. This ball can itself be
contained inside 𝜀 by choosing a small enough 𝑟, so that
𝐶𝛼 ⊆𝜀. Since 𝑑

𝑑𝑡‖𝑔‖
2 = 2𝑅𝑒(𝜆)‖𝑔‖ < 0 inside 𝜀, the set

𝐶𝛼 is forward-invariant.
Next, for any point 𝑥 ∈ , let us define 𝑇 ∗(𝑥) as

𝑇 ∗(𝑥) = inf
𝑡≥0

{

𝑡 | 𝜙𝑡(𝑥) ∈ 𝜀
}

(3)

which is the time it takes for a trajectory starting at point
𝑥 to reach the set 𝜀, and is always finite for all 𝑥 in the
region of attraction . Thus, the Laplace average is 𝑔∗𝜆(𝑥) =
lim𝑇→∞

1
𝑇

[

∫ 𝑇
∗

0 𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡 + ∫ 𝑇𝑇 ∗ 𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡
]

. The
first term in the right-hand side of the above equation is
equal to zero since the integral is finite. In the second term,
𝑡 ≥ 𝑇 ∗(𝑥), which by definition (3) along with the forward-
invariance of 𝜀 means that 𝜙𝑡(𝑥) ∈ 𝜀. Furthermore, inside
this set, 𝑓𝑔 = 𝜆𝑔. Thus, 𝑔(𝜙𝑡(𝑥)) = 𝑒𝜆(𝑡−𝑇 ∗)𝑔(𝜙𝑇 ∗ (𝑥)) for all
𝑡 > 𝑇 ∗, giving us

𝑔∗𝜆(𝑥) = lim
𝑇→∞

1
𝑇 ∫

𝑇

𝑇 ∗
𝑒−𝜆𝑡𝑒𝜆(𝑡−𝑇

∗)𝑔(𝜙𝑇 ∗ (𝑥))𝑑𝑡 = 𝑒−𝜆𝑇
∗
𝑔(𝜙𝑇 ∗ (𝑥))

(4)
which is finite for all 𝑥 ∈  since 𝑔 is continuous.

Hartman-Grobman theorem applies to the asymptotically
stable system of Lemma 1 (and any system with a hyperbolic
equilibrium in general), guaranteeing the existence of a local
neighborhood of the equilibrium where the flow of the nonlinear
system is homeomorphic to that of its linearization. One may
note that (3)-(4) provide a more numerically robust way of
computing the Laplace average compared to equation (2), since
the approximation errors in the function 𝑔(𝑥) may accumulate
and grow exponentially under the integral. We show in the
following theorem how the Laplace average computations of
any function may be robust to approximation errors up to a
certain order.

Theorem 1. Let us again consider the function 𝑔(𝑥) as
described in Lemma 1 and its approximation 𝑔̂(𝑥) such that
‖𝑔(𝑥) − 𝑔̂(𝑥)‖ ≐ 𝜉(𝑥) = 𝑜(‖𝑥‖2). For any matrices 𝑃 ,𝑄 ≻ 0
and 𝐴 = ∇𝑥𝑓 (0) satisfying the Lyapunov equation 𝑃𝐴+𝐴⊤𝑃 =
−𝑄, if the matrix

−𝐴 −
𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

𝐼 (5)

is Hurwitz, then 𝑔̂∗𝜆(𝑥) = 𝑔∗𝜆(𝑥) ∀𝜆 ∈ spec(𝐴) and ∀𝑥 ∈ .

Proof. Let us pick any 𝜆 from the set spec(𝐴). Since 𝑔 satisfies
conditions of Lemma 1, its Laplace average 𝑔∗𝜆 is well-defined
on the entire set . Now, using the triangular inequality for
integrals in equation (2), we get

𝑔̂∗𝜆(𝑥) − 𝑔
∗
𝜆(𝑥) = lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡 [𝑔̂ − 𝑔] (𝜙𝑡(𝑥))𝑑𝑡

⇒ ‖𝑔̂∗𝜆 − 𝑔
∗
𝜆‖ ≤ lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡𝜉(𝜙𝑡(𝑥))𝑑𝑡.

We then need to show that the integrand in the above inequality
converges to zero under the stated conditions.

Let us rewrite the right-hand side of dynamics (1) as 𝑓 (𝑥) =
𝐴𝑥 + ℎ(𝑥), where 𝐴 = ∇𝑥𝑓 (0) (assuming 𝑓 is analytic and
the equilibrium is hyperbolic allows to do this). One can show
that since ℎ(0) = 0 and ∇𝑥ℎ(0) = 0, ‖ℎ(𝑥)‖ ≤ 𝑐𝜀‖𝑥‖2 for a
positive constant 𝑐𝜀 in some compact set ‖𝑥‖ ≤ 𝜀 using the
Mean Value Theorem for function in several variables [18]. We
can then estimate the convergence rate of ‖𝑥‖2 in this compact
set. Let the matrix 𝑃 ≻ 0 be the solution to the Lyapunov
equation 𝑃𝐴 + 𝐴⊤𝑃 = −𝑄 for a given matrix 𝑄 ≻ 0. This
means 𝑑

𝑑𝑡𝑥
⊤𝑃𝑥 = −𝑥⊤𝑄𝑥 + 2𝑥⊤𝑃ℎ(𝑥).

Now, in the region ‖𝑥‖ ≤ 𝜀,
𝑑
𝑑𝑡
𝑥⊤𝑃𝑥 ≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑥‖2 + 2𝑐𝜀‖𝑃‖ ⋅ ‖𝑥‖3

≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑥‖2
(

1 −
2𝜀𝑐𝜀‖𝑃‖
𝜆𝑚𝑖𝑛(𝑄)

)

≤ −
𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

𝜅𝜀𝑥
⊤𝑃𝑥,

where 𝜅𝜀 ≐ 1 − 2𝜀𝑐𝜀‖𝑃‖
𝜆𝑚𝑖𝑛(𝑄)

increases monotonically as 𝜀 gets
smaller (and 𝜀 is henceforth taken to be small enough so
that 𝜅𝜀 > 0). Therefore, it follows that ‖𝑥‖2 exponentially
decays with rate 𝜆𝑚𝑖𝑛(𝑄)

𝜆𝑚𝑎𝑥(𝑃 )
𝜅𝜀. Since the matrix expression in

equation (5) is Hurwitz, every eigenvalue 𝜆 of 𝐴 satisfies
𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

+𝑅𝑒(𝜆) > 0. We can pick 𝜀 small enough such that 𝜅𝜀
is arbitrarily close to 1, thus leading to

𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

𝜅𝜀 + 𝑅𝑒(𝜆) ≐ Δ𝜆 > 0

by continuity. Finally, whenever ‖𝑥‖ ≤ 𝜀, we get

𝜉(𝜙𝑡(𝑥))
‖𝜙𝑡(𝑥)‖2

≥
𝜉(𝜙𝑡(𝑥))
𝑒𝑅𝑒(𝜆)𝑡‖𝑥‖2

≥
‖𝑒−𝜆𝑡𝜉(𝜙𝑡(𝑥))‖

𝜀2
.

Since 𝜉(𝑥) = 𝑜(‖𝑥‖2), taking the limit 𝑡 → ∞ on both sides,
we obtain lim𝑡→∞ ‖𝑒−𝜆𝑡𝜉(𝜙𝑡(𝑥))‖ = 0.

All trajectories starting anywhere in  will eventually enter
the region ‖𝑥‖ ≤ 𝜀, and so this limit holds true for all 𝑥 in .
This completes the proof.

Remark. Equation (5) imposes a condition on the distribution
of the eigenfunctions of 𝐴, such that they are not spread too far
apart. Intuitively, if 𝑅𝑒(𝜆𝑎) << 𝑅𝑒(𝜆𝑏) < 0 , then the Laplace
average of an observable 𝑔 corresponding to 𝜆𝑎 (i.e. 𝑔∗𝜆𝑎 ) may
not converge, since the exponential term 𝑒−𝜆𝑎𝑡 inside integral
(2) will grow very fast, whereas 𝑔(𝜙𝑡(𝑥)) will decay relatively
slower due to the “slow” eigenvalues in spec(𝐴).
Numerical Example 1. Consider a system with asymptotically
stable equilibrium at the origin as follows:

𝑥̇1 =
(

−7.2𝑥31 + 7.2𝑥1 − 2.4𝑥32 + 2.4𝑥2
)

∕
(

7(3𝑥21 − 1)
)

𝑥̇2 =
(

−0.8𝑥31 + 0.8𝑥1 − 6.8𝑥32 + 6.8𝑥2
)

∕
(

7(3𝑥22 − 1)
)

.

For this system, we obtain eigenvalues 𝜆1 = −1.2, 𝜆2 = −0.8
corresponding to 𝐴 =

[ −1.03 −0.11
−0.34 −0.97

]

. Taking 𝑄 to be
the identity matrix and solving 𝑃𝐴 + 𝐴⊤𝑃 = −𝑄, we get
𝑃 =

[ 0.52 −0.12
−0.12 0.53

]

. Thus, the matrix in equation (5) is



[ −0.52 0.11
0.34 −0.58

]

which satisfies the Hurwitz condition of
Theorem 1. Additionally, corresponding to the eigenvalue −0.8,
this system has a principle eigenfunction 𝜓(𝑥) = 𝑥31 − 𝑥1 −
2𝑥32+2𝑥2, which means that the function 𝑔(𝑥) = 𝜓(𝑥) satisfies
the condition of Lemma (1). Thus, any approximation of 𝑔(𝑥)
within an error of 𝑜(‖𝑥‖2) must result in the same Laplace
average 𝑔∗−0.8(𝑥) according to Theorem 1. We revisit this later
in Example 2.

B. Numerical computation from trajectory data
We have shown in the previous subsection how any function

𝑔 defined on 𝑋 that locally satisfies 𝑓𝑔 = 𝜆𝑔 in some
neighborhood of the asymptotically stable equilibrium results in
a well-defined Laplace average 𝑔∗𝜆(𝑥) everywhere in the region
of attraction . This function 𝑔∗𝜆 can then be used further as
a Koopman eigenfunction. However, such a function 𝑔 itself
needs to be obtained first. In this section, we see how EDMD
can be effectively combined with GLA to compute Koopman
eigenfunctions through dense local trajectory data near 𝑥𝑒 and
sparse global trajectory data throughout the set . We propose
to first utilize just local trajectory data with EDMD towards
obtaining accurate local estimates of suitable functions 𝑔.
With these local estimates, we compute their Laplace averages
𝑔∗𝜆 defined over the larger domain . The local estimates
via EDMD are expected to have approximation errors, but
thankfully, through Theorem 1, the GLA computations are
shown to be robust to small (𝑜(‖𝑥‖2)) approximation errors in
𝑔. One may use the global trajectory data to directly perform
EDMD and estimate Koopman eigenfunctions defined over
the entire set . However, this may lead to poor estimates if
global trajectory data is insufficient; thus utilizing dense, local
data for local estimates is a more reasonable alternative.

We now outline the EDMD process, which is a well
studied data-driven algorithm to approximate the Koopman
operator in finite dimensions by lifting the state space into
a higher dimensional embedding wherein the dynamics are
(approximately) linear [8][9]. This approximation is obtained
as a solution to a least squares optimization problem. Consider
the function 𝜃(𝑥) =

[

𝜃1(𝑥), 𝜃2(𝑥),… , 𝜃𝑁 (𝑥)
]⊤ comprised of

basis functions 𝜃𝑖(𝑥) ∈  , 𝑖 = 1, 2, .., 𝑁 . Given that we
have trajectory snapshots at some uniform sampling time 𝜏,
in form of 𝑀 pairs (𝑥𝑖, 𝑦𝑖) ∈ 𝜀 × 𝜀 where 𝑦𝑖 = 𝜙𝜏 (𝑥𝑖)
for 𝑖 = 1, 2, ...,𝑀 , the EDMD procedure is used to estimate a
finite dimensional approximation of the Koopman Operator 𝜏
restricted to the space spanned by the basis functions. This is
expressed as the Koopman matrix 𝐾 , by solving the following
least-squares problem:

𝐾 = argmin
𝐴∈ℂ𝑁×𝑁

‖𝜃(𝑌 ) − 𝐴𝜃(𝑋)‖2𝐹 (6)

where ‖ ⋅‖𝐹 denotes the Frobenius norm, and matrices 𝜃(𝑋) =
[𝜃(𝑥1), 𝜃(𝑥2),⋯ , 𝜃(𝑥𝑀 )] and 𝜃(𝑌 ) = [𝜃(𝑦1), 𝜃(𝑦2),⋯ , 𝜃(𝑦𝑀 )].
The 𝐾 that minimizes (6) is obtained in closed-form as
𝐾 = 𝜃𝑋𝑌 𝜃

†
𝑋𝑋 , where † denotes the pseudo-inverse, 𝜃𝑋𝑌 =

𝜃(𝑌 )𝜃(𝑋)⊤ and 𝜃𝑋𝑋 = 𝜃(𝑋)𝜃(𝑋)⊤. Suppose that (𝑣𝑖, 𝜇𝑖) are
the eigenvectors and eigenvalues of 𝐾⊤ for 𝑖 = 1, 2, .., 𝑁 . Then,
in the set 𝜀, letting 𝑔𝑖(𝑥) ≐ 𝑣⊤𝑖 𝜃(𝑥) and 𝜆𝑖 ≐

1
𝜏 log(𝜇𝑖), we

get

𝜃(𝜙𝜏 (𝑥)) ≈ 𝐾𝜃(𝑥) ⇒ 𝑔𝑖(𝜙𝜏 (𝑥)) ≈ 𝜇𝑖𝑔𝑖(𝑥) = 𝑒𝜆𝑖𝜏𝑔𝑖(𝑥)
⟺ 𝑓𝑔𝑖(𝑥) ≈ 𝜆𝑖𝑔𝑖(𝑥). (7)

Next, with these functions 𝑔𝑖 obtained by EDMD, we
compute the Laplace averages 𝑔∗𝜆𝑖 (𝑥) for any point 𝑥 ∈ ,
by ‘unrolling’ the trajectory 𝜙𝑡(𝑥) starting at 𝑥 forward for a
sufficiently large time3, followed by numerically integrating
(2) using the unrolled trajectory. Note that one can combine
the trajectory unrolling and GLA integration steps into one, by
augmenting the system dynamics (1) using a new scalar state
variable 𝑧 as

[

𝑥̇(𝑡)
𝑧̇(𝑡)

]

=
[ 𝑓 (𝑥(𝑡))

1
𝑡+𝛿

(

−𝑧(𝑡) + 𝑒−𝜆𝑡𝑔(𝑥(𝑡))
)

]

, 𝑡 ≥ 0 (8)

for some small constant 𝛿 > 0. If 𝑧(0) = 0, this state 𝑧 can be
shown to evolve as 𝑧(𝑡) = 1

𝑡+𝛿 ∫
𝑡
0 𝑒

−𝜆𝑠𝑔(𝜙𝑠(𝑥))𝑑𝑠 for all 𝑡 ≥ 0.
Thus, when 𝑧(0) = 0 and 𝑥(0) = 𝑥, we get 𝑧(𝑡) → 𝑔∗𝜆(𝑥) as
𝑡 → 0. In other words, unrolling this augmented dynamics
(8) from an initial point (𝑥, 0) gives us the Laplace average
through the augmented state variable 𝑧.

Once we obtain the ground truth values of the eigenfunctions
at randomly sampled points in , we create a training dataset
to learn DNN-based approximations of the eigenfunctions. Due
to space limitations, we kindly refer readers to our code link
for details.

Numerical Example 2. Consider the system described in
Example 1 with an asymptotically stable equilibrium at the
origin. We consider the neighbourhood 𝜀 = [−0.05, 0.05] ×
[−0.05, 0.05], and sample 100 trajectories of length 100
seconds each, with a sampling period 𝜏 = 0.01s. Basis functions
𝜃𝑖 are taken to be monomials of degree up to 3. From EDMD,
we obtain

𝑔(𝑥) = 1.014𝑥31 − 𝑥1 − 2.027𝑥32 + 2.00𝑥2

corresponding to the principle eigenvalue 𝜆 = −0.8, which
is a very close estimate of the actual principle eigenfunction
𝑥31 − 𝑥1 − 2𝑥32 + 2𝑥2, with an approximation error 𝜉(𝑥) in the
order of 𝑜(‖𝑥‖2). We compute the Laplace average 𝑔∗−0.8(𝑥)
at randomly sampled points in [−0.4, 0.4] × [−0.4, 0.4] using
this 𝑔(𝑥) obtained from EDMD using trajectory data within
a much smaller domain 𝜀. Figure 2 compares this Laplace
average with the actual eigenfunction 𝑥31 − 𝑥1 − 2𝑥32 + 2𝑥2.

Fig. 2. Actual eigenfunction 𝒙𝟑𝟏 − 𝒙𝟏 − 𝟐𝒙𝟑𝟐 + 𝟐𝒙𝟐 (translucent surface) vs
computed Laplace average 𝒈∗−𝟎.𝟖(𝒙) evaluated at random points (black
dots).

3In practice, this simply means until 1
𝑇 ∫ 𝑇0 𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡 numerically

converges to a steady state.



C. Lyapunov certificates from Koopman eigenfunctions

Our main goal for this paper is to develop a data-driven
technique that efficiently leverages trajectory samples of a
dynamical system to construct Lyapunov certificates. We
particularly focus on developing an approach suitable for high-
dimensional systems wherein several learning techniques may
need to be combined together to make the best use of the
available trajectory data.

One can use functions 𝑉𝑖 = 1
2‖𝜓𝑖(𝑥)‖

2 in a number of
different ways to construct Lyapunov functions, but we are
primarily interested in the linearly parameterized space of
candidate Lyapunov functions given by

𝐿𝑦𝑎𝑝 =

{

∑

𝑖
𝛼𝑖𝑉𝑖(𝑥)

|

|

|

𝛼𝑖 ∈ [0, 1],
∑

𝑖
𝛼𝑖 ≠ 0

}

. (9)

Each 𝑉 ∈ 𝐿𝑦𝑎𝑝 is a Lyapunov function since 𝑉 (𝑥) ≥
0 and 𝑉̇ (𝑥) =

∑

𝑖 2𝛼𝑖𝑅𝑒(𝜆𝑖)𝑉𝑖(𝑥) ≤ 0 by construction.
𝐿𝑦𝑎𝑝 is particularly interesting for the case when Koopman
eigenfunction 𝜓𝑖’s are represented as polynomials. In that case,
each element in 𝐿𝑦𝑎𝑝 is a sum-of-squares (SOS) polynomial,
and one can leverage SOS semi-definite programming to verify
Lyapunov conditions (when the system dynamics are also
polynomial)[7].

In our prior work [7], we discuss how inaccuracies in
the computation of Koopman eigenfunction via data-driven
techniques may lead to violations in the Lyapunov conditions
for functions 𝑉𝑖 and consequently, not every element of
the space 𝐿𝑦𝑎𝑝 would be a valid Lyapunov candidate for
establishing asymptotic stability guarantees for the equilibrium
point/manifold. Nevertheless, thanks to linearity of the space
𝐿𝑦𝑎𝑝, it was shown that under certain approximation error
bounds on the basis 𝑉𝑖, one can still pick functions 𝑉 (𝑥) ∈
𝐿𝑦𝑎𝑝 that satisfy 𝑉̇ (𝑥) ≤ 𝛽

(

𝛾 − 𝑉 (𝑥)
)

for some constants
𝛽, 𝛾 > 0, thus providing certificates for forward-invariance. In
this paper however, we develop efficient computation techniques
for Koopman eigenfunctions which are more accurate in
comparison to [7], enabling us to directly obtain Lyapunov
functions via the estimated eigenfunctions through (9), as
evidenced from our numerical experiments.

IV. NUMERICAL RESULTS

In this section, we demonstrate our method towards
construction of Lyapunov certificates for nonlinear consensus
in a 10-dimensional multi-agent system. We demonstrate how
trajectory data from the agents are used in the absence of agent
model and communication graph to represent the dynamics
via Koopman eigenfunctions, which then serve as a building
block for obtaining Lyapunov functions.

Consider a graph 𝒢 , with vertices denoted by the set 𝒱 =
{0,… , 𝑛 − 1} and edge set denoted by ℰ = {1,… , 𝑚}. The
set of neighboring nodes of agent 𝑖 is denoted by 𝑁𝑖 ⊂ 𝒱 . We
are interested in consensus problem for multi-agent systems
corresponding to this network 𝒢 , wherein scalar state 𝑥𝑖 ∈ ℝ
for each agent 𝑖 ∈ 𝒱 is required to converge to a common
value. Let us next consider the following nonlinear distributed
consensus protocol for single-integrator agent dynamics:

𝑥̇𝑖 = 𝑢𝑖 = −𝜎𝑖(𝑥𝑖)
∑

𝑗∈𝑁𝑖

𝑎𝑖𝑗(𝑥𝑖 − 𝑥𝑗), 𝑖 ∈ 𝒱 (10)

where 𝜎𝑖(⋅) is continuous and positive for all 𝑖 ∈ 𝒱 , and 𝑎𝑖𝑗(⋅)
is Lipschitz continuous for all (𝑖, 𝑗) ∈ ℰ with 𝑥𝑎𝑖𝑗(𝑥) > 0
when 𝑥 ≠ 0 and 𝑎𝑖𝑗(0) = 0.

It was shown in [19] that if 𝒢 is a connected, undirected
graph and 𝑎𝑖𝑗(⋅) are odd functions for all (𝑖, 𝑗) ∈ ℰ , then
the states 𝑥 converge to a point 𝑥∗ uniquely determined by
∑

𝑖∈𝒱 ∫ 𝑥
∗

0
1

𝜎𝑖(𝑦)
𝑑𝑦 =

∑

𝑖∈𝒱 ∫ 𝑥𝑖(0)0
1

𝜎𝑖(𝑦)
𝑑𝑦. The converse holds

as well. The proof utilizes a Lyapunov function of the form
𝑉 (𝑥) =

∑

𝑖∈𝒱
∑

𝑗∈𝑁𝑖
∫ 𝑥𝑖−𝑥𝑗0 𝑎𝑖𝑗(𝑦)𝑑𝑦.

Note that this Lyapunov function needs knowledge of
both the underlying dynamics of the system as well as the
graph topology. Our goal is to directly learn a Lyapunov
function just from the trajectory data of the agents. As a
specific example, we consider a 𝑛 = 10 agent system, with
𝑎𝑖𝑗(𝑦) = 𝑟𝑖𝑗

[

1.2 tanh(𝑦) + sin(𝑦)
]

, for some random constants
𝑟𝑖𝑗 ∈ (0, 1), 𝜎𝑖(𝑦) =

1
1+exp(−𝑦) , and graph 𝒢 as follows:

Fig. 3. A 10 agent system with fully connected network

We modify this system slightly by adding a linear term
−𝑥𝑖 to the right-hand side of equation (10) to ensure that the
origin is an asymptotically stable isolated equilibrium and that
condition (5) holds. We begin our approach with the EDMD
step, by sampling 𝑁 = 100 trajectories of length 10 seconds
from within a local neighborhood 𝜀 = [−0.05, 0.05]𝑛, with
sampling interval of 0.01s. We pick monomials of degree up
to 3 as our choice of basis functions 𝜃(𝑥) for EDMD. By
allowing the sampling neighbourhood 𝜀 to be small in our
approach, we are able to precisely extract principle eigenvalues
of this system, of which we pick four with the smallest
magnitude, given by 𝜆1 = −0.55, 𝜆2 = −0.59, 𝜆3 = −0.69,
and 𝜆4 = −0.76. The local eigenfunction estimates 𝑔𝑖 (that
are valid within 𝜀) corresponding to these four eigenvalues
are used to compute Laplace averages over a much larger
domain [−0.45, 0.45]𝑛. The Laplace average computations are
numerically stable and the integral (2) converges, in agreement
with our technical results.

In the final step, we train the DNN parameterizing principle
eigenfunctions 𝜓𝑖(𝑥) corresponding to those four principle
eigenvalues, over the larger domain [−0.45, 0.45]𝑛 using
supervised learning, as outlined in Figure 1. We use a multilayer
perceptron (MLP) architecture with sine activation function.
For every 𝑖 = 1,… , 4, our MLP 𝜓𝑖 consists of 3 hidden layers
with 128 neurons each. The loss is comprised of a supervised
learning term 𝐿1(𝑥) and a physics-informed term 𝐿2(𝑥):

‖𝜓𝑖(𝑥) − 𝑔∗𝜆𝑖 (𝑥)‖
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≐𝐿1(𝑥)

+ 0.01 ⋅ ‖𝑓𝜓𝑖(𝑥) − 𝜆𝑖𝜓𝑖(𝑥)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≐𝐿2(𝑥)

,

where 𝑔∗𝜆𝑖 is the Laplace average of the function 𝑔𝑖 obtained by
EDMD that locally satisfies (7). For this example, loss 𝐿1 is
computed at 3000 randomly sampled points in [−0.45, 0.45]𝑛
and 𝐿2 is computed at 2000 randomly sampled points in



[−0.45, 0.45]𝑛 during training. For further details, please see the
associated Pytorch code implementation. In Figure 4, we show
the Lyapunov basis functions 𝑉𝑖(𝑥) =

1
2‖𝜓𝑖(𝑥)‖

2 corresponding
to 𝑖 = 1,… , 4 along random trajectories, as well as an example
of a Lyapunov function from linear combination of the basis
𝑉𝑖’s.

(a)

(b)

Fig. 4. Learned Lyapunov basis functions for (unknown) dynamics (10)
with damping. (a) Each panel shows 𝑽𝒊(𝒙) =

𝟏
𝟐‖𝝍𝒊(𝒙)‖

𝟐 for 𝒊 = 𝟏,… , 𝟒
decreasing strictly monotonically along 𝟓𝟎𝟎 randomly sampled trajectories
in [−𝟎.𝟒𝟓, 𝟎.𝟒𝟓]𝒏, as expected from our data-driven construction. (b) Using
the Lyapunov basis 𝑽𝒊’s, we construct our Lyapunov candidate using
randomly chosen 𝜶𝒊’s. The red lines show 𝑽 decreases monotonically
along 𝟏𝟎𝟎𝟎 trajectories randomly initialized on a larger domain [−𝟏.𝟓, 𝟏.𝟓]𝒏
compared to the domain on which the eigenfunctions 𝝍𝒊 were trained on.

V. CONCLUSION AND DISCUSSION

This work presents a Deep Learning approach for
construction of Lyapunov certificates, parameterized linearly
using Koopman eigenfunctions of the underlying dynamical
system. One of the novelty of our approach lies in the creation
of labelled training dataset for supervised learning of Lyapunov
basis functions via Koopman eigenfunctions, by combining
EDMD and GLA. Trajectory data near the equilibrium are used
to locally estimate eigenfunctions. Laplace averages of these
local estimates computed along sparse but global trajectories
are then used to evaluate eigenfunctions at sample points
throughout the domain of attraction, generating ground truth
function values for the final deep supervised learning step. The
paper additionally contributes towards addressing numerical
challenges involved with GLA computations, both in terms of
analysis and efficient implementation.

The assumption on the second order estimation error bounds
of eigenfunctions obtained in the EDMD step requires further
investigation, and is a matter of our current focus. To the

best of our knowledge, only constant error bounds for EDMD
are available in present literature. Additionally, once the
ground truth values for the eigenfunctions are obtained, a key
question to be answered is how well can a particular choice
of function approximator (DNNs in our specific case) fit the
synthesized training data. Studying the sample complexity
of our approach as well as formal verification of the learnt
Lyapunov function are therefore important future directions.
Fortunately, despite both these open questions, our numerical
examples successfully illustrate the practicality of our approach.
For the low-dimensional example where the eigenfunctions are
known in closed analytical form, the second order EDMD error
bound is found to hold true and consequently our computed
eigenfunction estimates exactly match the actual eigenfunctions.
The high-dimensional example illustrates scalability of our
proposed method, thereby alleviating concerns surrounding
sample complexity of the deep learning step, since ground
truth training labels can be generated efficiently for our 10-d
system.
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