
Reactive and human-in-the-loop planning and control of multi-robot
systems under LTL specifications in dynamic environments*

Pian Yu1, Gianmarco Fedeli2, and Dimos V. Dimarogonas3

Abstract— This paper investigates the planning and control
problems for multi-robot systems under linear temporal logic
(LTL) specifications. In contrast to most of existing literature,
which presumes a static and known environment, our study
focuses on dynamic environments that can have unknown
moving obstacles like humans walking through. Depending on
whether local communication is allowed between robots, we
consider two different online re-planning approaches. When
local communication is allowed, we propose a local trajectory
generation algorithm for each robot to resolve conflicts that
are detected on-line. In the other case, i.e., no communication
is allowed, we develop a model predictive controller to reactively
avoid potential collisions. In both cases, task satisfaction is
guaranteed whenever it is feasible. In addition, we consider
the human-in-the-loop scenario where humans may additionally
take control of one or multiple robots. We design a mixed
initiative controller for each robot to prevent unsafe human
behaviors while guarantee the LTL satisfaction. Using our pre-
vious developed ROS software package, several experiments are
conducted to demonstrate the effectiveness and the applicability
of the proposed strategies.

I. INTRODUCTION

During the past decade, there is a surge of using temporal
logic formulas, such as linear temporal logic (LTL) [1], to
concisely specify desired behaviors of robotic systems [2]–
[10]. This is due to the expressiveness of LTL formulas in
capturing many common robotic tasks, e.g., ordered reach-
ability, collision avoidance, surveillance, and ordered sup-
ply delivery [11]. In addition, the availability of automated
toolboxes [1], [12] make the use of LTL more appealing.
The planning and control under LTL specifications have
been extensively investigated for a single robot [2]–[5] and
multi-robot systems (MRSs) [6]–[10]. However, most of the
existing literature assume that the environment is static and
known a priori. When the environment is dynamic (e.g.,
there are moving obstacles like humans walking through), for
which online replanning becomes a necessity, the problem
of safe and efficient replanning under LTL specifications
becomes challenging during the online execution of robots.

Along the rapid advancement of automation technology,
the past decade has witnessed a growing emphasis on human-

*This work was partially supported by the Swedish Research Coun-
cil (VR), the Knut and Alice Wallenberg Foundation (KAW), the EIC
Horizon Europe SymAware, the EU project CANOPIES, the ERC COG
LEAFHOUND (Grant agreement ID: 864720), and the ERC ADG
FUN2MODEL (Grant agreement ID: 834115).

1Pian Yu is with the Department of Computer Science, Oxford University,
Oxford, United Kingdom pian.yu@cs.ox.ac.uk

2Fedeli Gianmarco is with Bosch, Braga, Portugal
gianmarco.fedeli1@gmail.com

3Dimos Dimarogonas is with the Division of Decison and Control
Systems, KTH, Stockholm, Sweden dimos@kth.se

robot collaboration. Indeed, many autonomous systems are
performing their designated tasks while being supervised
or collaborating with human operators [13]. On one hand,
having a human-in-the-loop is useful for guiding the robot
through challenging tasks. On the other hand, the possibly
erroneous inputs from the human can be dangerous for
the autonomous systems. Therefore, effectively managing
real-time interactions between the autonomous system and
humans is crucial for ensuring the safety and efficiency of
the entire system.

When a single robot is considered, authors in [14] propose
a plan revising mechanism assuming the environment is static
and partially known. Once a transition in the current plan
becomes invalid, it finds the shortest path bridging up the
two components. The work [15] develops an iterative repair
strategy to resolve unknown obstacles by combining local
patching with refined triangulation. However, this strategy
cannot deal with moving obstacles. For the case of MRSs,
most of research assumes that the MRS adheres to a global
LTL specification, subsequently addressing an offline motion
planning problem through a centralized approach [6], [7]. In
[16], MRSs under local LTL specifications are studied and
a distributed motion coordination algorithm is proposed to
resolve conflicts. In this work, the environment is static and
local communication between robots is required for conflict
resolution. Furthermore, when humans are involved in the
robot control, the concept of a mixed-initiative controller
(MIC) is introduced in [17], which integrates external hu-
man inputs with the conventional navigation controller. This
method is further investigated in [18], where the human
initiative influences both the high level tasks and the low
level continuous inputs.

This work aims to develop reactive planning and control
algorithms for MRSs under LTL specifications. First, we
build upon our prior research [16] by addressing dynamic
environments, which present a non-trivial challenge. Addi-
tionally, when humans participate in controlling the robots,
we expand the MIC proposed in our previous work [18]
to accommodate MRSs. The contributions are threefold:
i) Depending on whether local communication is allowed
between robots, we propose two different online re-planning
approaches for MRSs operating in dynamic environments. In
the first scenario, where local communication among robots
is allowed, we propose a local trajectory generation algorithm
to resolve conflicts. In the second scenario, where there is
no communication between the robots, we develop a model
predictive controller to reactively handle potential collisions.
In both cases task satisfaction is guaranteed whenever it

is feasible. ii) When one or multiple robots are controlled
by human operators, a MIC is designed for the MRSs
to guarantee safety and LTL task satisfaction. iii) Several
experiments are carried out to demonstrate the effectiveness
of the proposed strategies.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Linear temporal logic (LTL)

We use LTL to concisely specify the desired robot be-
haviour. LTL is built from a set of atomic propositions AP ,
the logic connectives of negation (¬), conjunction (∧), and
disjunction (∧), and the temporal operators next (⃝), until
(U), eventually (♢), and always (□). An LTL formula is
formed inductively according to the following syntax [1]:

φ ::= ⊤|a|¬φ|φ1 ∧ φ2| ⃝ φ|φ1Uφ2, (1)

where a ∈ AP,φ, φ1, φ2 are LTL formulas. The logic
connective ∨ and temporal operators ♢ and □ can be derived
inductively. We omit the full LTL semantics due to space lim-
itations and refer the reader to [1] for details. The satisfaction
of an LTL formula φ over AP can be captured through a
nondeterministic Büchi automaton (NBA) [19], defined as a
tuple B = (S, S0, 2

AP , δ, F), where
• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• 2AP is the input alphabet,
• δ : S × 2AP → 2S is the transition function, and
• F ⊆ S is the set of accepting states.

An infinite run s = s0s1 . . . is called accepting if Inf(s)∩
F ̸= ∅, where Inf(s) is the set of states that appear in s
infinitely often. Several translation tools, e.g., LTL2BA [20],
are available to obtain B given φ.

B. Robot dynamics and motion abstraction

Consider a set of N robots navigating within a bounded
workspace W . The dynamics of robot i is given by:

ẋi(t) = vi(t) cos(θi(t)),

ẏi(t) = vi(t) sin(θi(t)),

θ̇i(t) = wi(t),

(2)

where pi = [xi, yi]
T is the Cartesian position, θi is the

orientation, and ui = [vi, wi]
T is the input vector of robot

i. The input of robot i is constrained to the compact set Ui,
i.e., ui(t) ∈ Ui,∀t ≥ 0.

Within the workspace W , there is a set of properties
(atomic propositions) AP = {a1, a2, · · · , aM}, e.g. ”this
is a goal region”, “this is a charging station”. Let Φ :=
{X1, . . . , XM} be a partition of W such that W = ∪Ml=1Xl.
Define L : W → 2AP as a labelling function. Given
a point p ∈ W , define the function Q : W → Φ as
Q(p) := {Xl ∈ Φ : p ∈ Xl}. It maps a state p into the region
Xl that contains it. We say Φ is an observation preserving
partition of W if it satisfies

L(p) = L(p′),∀p, p′ : Q(p) = Q(p′).

Given an observation preserving partition of the workspace,
the dynamics of robot i (2) can be abstracted as a controlled
transition system (CTS) Ti = (Φ, ϕ0,i,Ui, AP,→i, L), where
ϕ0,i ∈ Φ is the initial state and →i: Φ × Ui → Φ is the
transition relation.

C. Objectives

We assign an LTL specification φi to each robot i,
which is specified over the set of atomic propositions AP .
Nevertheless, the workspace is dynamic, for instance, there
may be moving obstacles like humans walking through. In
addition, it is assumed that each robot has only limited
sensing capabilities, that is, the robot can detect other robots
or the unknown moving obstacles only if they are within
its sensing region B(pi, Ri), where pi is the position and
Ri is the sensing radius of robot i. The initial trajectory
planning (which is detailed in the next section) cannot take
into account these unpredictable situations, and thus online
replanning is necessary for each robot to guarantee safe
operation and task satisfaction.

Given the abstract model, i.e., the CTS Ti, and the task
specification φi of each robot i, the first objective (O1) is
to design a planning algorithm for each robot i such that
the LTL task φi is satisfied and safety is always guaranteed
despite of the dynamic environments. In addition, we fur-
ther consider the human-in-the-loop context, where human
operators can take over the control of the robots from the
on-board autonomous controller. The second objective (O2)
is to design control algorithm for each robot i, which can
react to (possibly dangerous) human inputs while preserving
safety and task satisfaction.

III. ONLINE REPLANNING IN DYNAMIC ENVIRONMENTS

Before implementation, an initial satisfying plan needs to
be generated for each robot i. This procedure is implemented
in the package LTL core & planner [21]. It is based on
constructing a product Büchi automaton (PBA) Pi between
the CTS Ti and the NBA Bi (which is translated from φi).
Using model-checking methods [12], an accepting run can be
obtained from the PBA Pi and projected back to the CTS Ti
intersection Bi. Accepting runs have a prefix-suffix structure
of this kind: rPi = p0, p1 · · · pk (pk+1 pnpk)

ω . The
output word is composed of two separate parts: a finite prefix
that is executed only once from the initial state p0 to an
accepting state pk and a suffix that is repeated infinitely
from the accepting state pk to itself. The accepting run has
a corresponding action sequence that each robot must carry
out in a prefix-suffix structure in order to fulfill φi.

Note that the initially planned trajectory for each robot i
does not account for the motion of other robots or changing
of the environment. Thus, online replanning is necessary
during the implementation. Two distinct cases are considered
for online replanning, one is based on local communication
between robots and the other assumes no communication
between robots. In the former case, each robot has access
to information (i.e., broadcast data from other robots) within
its sensing region while the latter case does not.

A. Local communication case

In this section, we consider that each robot can identify
conflicts within its sensing region using the information
broadcast by other robots. Before proceeding, the definition
of a conflict is needed.

Let pi(t) = [xi(t), yi(t)]
T be the position of robot i at time

t. Denote by pi([t, t + ∆i]) the local trajectory of robot i,
where ∆i = mint′≥t{pi(t′) /∈ Bi(pi(t), Ri)}. We say there
is a conflict between robot i and j at time t if there exists
a region Xk ∈ Φ such that pi([t, t + ∆i]) ∩ Xk ̸= ∅ and
pj([t, t+∆j])∩Xk ̸= ∅. This means that the local trajectories
of robots i and j pass through the same region Xk.

Using the local trajectory information pj([t, t + ∆j])
broadcast by the neighboring robots j ∈ Ni(t) := {j :
∥pi(t) − pj(t)∥ ≤ Ri}, each robot i can detect conflicts.
Once conflicts are detected, online replanning is conducted to
ensure that conflicts are avoided and the LTL task is satisfied.
The online replanning procedure consists of a local and a
global trajectory generation algorithms, which are built upon
our previous work [16].

The local trajectory generation algorithm is detailed in
Algorithm 1. Whenever conflicts are detected among robots,
a priority hierarchy is first created to coordinate the planning
order. Subsequently, a sampling-based algorithm is employed
to create a local collision-free trajectory.

Algorithm 1 localTrajectoryGeneration
Input: ξi, Bi, Pi, VPi

,O,Oconf

Return: A local transition system T L
i and a leaf node ξfi .

1: Initialize T L
i = (SL

i , S
L
i,0,Ui, AP,→L

i , L) and ξfi = ∅,
where SL

i = SL
i,0 = ξi and →L

i = ∅.
2: for k = 1, . . . , Nmax

i do,
3: ξs ← generateSample(SAi),
4: ξn ← nearest(SL

i , ξs),
5: Solve the optimization program P(ξn, ξs, τs), which

returns (ξr, u
∗
i),

6: Bi(ξr)← trackBuchiStates(Bi),
7: if Bi(ξr) ̸= ∅ ∧ VPi(ξr, Bi(ξr)) <∞ then,
8: if proj2 ([ξn, ξr]) isObstaclesFree(O,Oconf) ∧

safeMotion(ξr, Rsafe) then,

9: SL
i ← SL

i ∪ {ξr};→L
i =→L

i ∪{ξn
u∗
i−→ ξr},

10: end if
11: end if
12: if proj2(ξr) /∈ B(pi, Ri), then
13: k = Nmax

i + 1,
14: ξfi ← ξr,
15: end if
16: end for

Algorithm 1 starts with randomly sampling the expanded
sensing region of robot i. Then by constructing a local
transition system, a collision-free trajectory is synthesized
that simultaneously guarantees the fulfillment of the LTL
task φi. It takes as input the current state ξi = (xi, yi, θi)
of robot i, the offline constructed NBA Bi and PBA Pi, the

offline computed potential function VPi
(the definition and

computation can be found in [16]), the set of known static
obstacles O, and the set of conflict regions Ot

conf as input.
Firstly, a local transition system T L

i is initialized (line 1).
At each iteration, a new state ξs is taken randomly from
the sampling area SAi := {(p, θ) : p ∈ B (pi, Ri + η)} (line
3), where η > 0 is an offline constant which ensures that
one can sample outside of the sensing region B (pi, Ri),
where pi is the current position of robot i. Then through
the function nearest

(
SL
i , ξs

)
an RRT primitive is applied,

which returns the nearest state to ξs in SL
i (line 4). At this

stage an optimization problem P (ξn, ξs, τs) is solved, so as
to find the closest reachable state from the new sample ξs:

min
ui∈Ui

∥ξr − ξs∥

subject to: ξi(0) = ξn,

ξr = ξn +

∫ τs

0

Fi (ξi(s), ui) ds,

ui ∈ Ui,

where τs represents the sampling time, while Fi (ξi(s), ui)
describes the robot’s dynamics (2) (line 5). Once ξr is
obtained, the corresponding subset of valid Büchi states
Bi (ξr) is computed using algorithm trackBuchiState (given
in [22], Algorithm 1) (line 6). If both conditions Bi (ξr) ̸= ∅
and VPi

(ξr, Bi (ξr)) < ∞ are satisfied (which ensures the
existence of a path originating from ξr that leads to a
self-reachable accepting state of Pi), then a potential new
state is considered. Such state ξr is added into SL

i and the

corresponding transition relation ξn
u∗
i→ ξr is added into

→L
i , if the path connecting ξn with ξr is obstacles free

and the motion is considered safe. To verify these require-
ments, two new algorithms are designed in this work. The
collision free requirement is checked through the algorithm
isObstaclesFree, which computes the distance between the
line segment proj2 ([ξn, ξr]) and the set of obstacles O ∪
Oconf . If the line segment proj2 ([ξn, ξr]) is collision-free,
we further check the safety of the motion using algorithm
safeMotion(ξr, Rsafe) (considering the base footprint of
the robot), where Rsafe is the safe distance that we specified
a priori (lines 7-11). The algorithm halts when the local
sampling tree extends beyond the sensing area, and the leaf
node ξfi is subsequently returned (as determined by the
corresponding state ξr) (lines 12-15).

The global trajectory generation is similar to the initial
trajectory generation, which uses the leaf node ξfi (which is
obtained by Algorithm 1) as input of the LTL core & planner,
and replans the sequence of actions in order to accomplish
the LTL task φi.

B. Communication-free case

A communication-free scenario is also considered in pur-
suit of extending the work to other real-world scenarios
where reliable communications between robots may not be
available. A reactive collision avoidance algorithm is de-
signed in combination with the local planner.

Before proceeding, the concept of “trap state” is needed.
Trap states are PBA states from which the Büchi acceptance
condition cannot be fulfilled, i.e., states that cannot reach
accepting states that appear infinitely often. For the PBA
Pi of robot i, the set of all trap states is denoted Gi. An
algorithm for computing trap states is implemented in [21].

In this case, the online replanning is activated for robot
i whenever obstacles (can be other robots and unknown
static/moving obstacles) are detected within its sensing re-
gion Bi(pi, Ri). Let Ot

obs be the set of moving obstacles
detected at time t. In order to avoid trap states Gi (thus guar-
anteeing task feasibility), the set of known static obstacles
O, and the set of moving obstacles Ot

obs (thus guaranteeing
safety), we consider a local model predictive controller:

min
ui

∫ T

t=0

(ξi(t)−Xdes)
TQ(ξi(t)−Xdes) + uT

i Rui

+ (ξ(T)−Xdes)
TQN (ξ(T)−Xdes)

+

∫ T

t=0

wOi

1

dist(ξ(t),Ot
obs ∪O)

+ wGi

1

dist(ξ(t),Gi)

subject to: ξi(t) = ξi(0) +

∫ t

0

Fi (ξi(s), ui) ds,

ui ∈ Ui,
ξi(T) ∈ Xdes

ξi(0) = ξi,
(3)

where T is the horizon and ξi is the current state. The first 2
terms of the cost function constitute a quadratic cost of both
state and input with the matrices Q,R,QN being positive
definite and Xdes ∈ Φ denotes the goal state that one can
choose based on the current satisfying trajectory (recall that
the satisfying trajectory is discrete and have a prefix-suffix
structure). The last term of the cost function considers both
the distance between robot i and the obstacles Ot

obs ∪ O
(which is updated at each time step) and the distance between
robot i and the trap states Gi, where the distance function
is defined as dist(x,A) := infy∈A{||x − y∥} and wOi , wGi

are the corresponding weight parameters. For instance if one
prioritizes the satisfaction of the given LTL task rather than
not collide with obstacles, the weight wGi

can be set higher
than wOi .

IV. HUMAN-IN-THE-LOOP CONTROL

In this section, we consider the human-in-the-loop context,
where the robots are assigned to complete complex tasks
specified by an LTL formula, while a human operator can
take over the control of the robot from the on-board au-
tonomous controller. The robot is required to respect human
inputs, but at the same time react to undesired (possibly
dangerous) human behaviors in order to preserve safety and
task satisfaction. This is useful for guiding the robot through
challenging assignments.

The proposed strategy is a MIC with the intention of
extending existing work [17], [18] to MRSs. The MIC,
inspired by [17], [18], for robot i is given by:

ui(t) ≜ ur
i (t) + κ (r,O,Gi)u

h(t), (4)

where ur
i (t) is a given autonomous controller, the function

κ (ξi,O,Gi) ∈ [0, 1] is a smooth function to be designed, and
uh(t) is the human input function, which is uncontrollable
and unknown by the robot.

The autonomous controller ur
i (t) can be a function that

navigates the robot from one region Xs of the current discrete
plan to the next one Xg while staying within the workspace
W when there are no conflicts/obstacles are detected. Other-
wise, the local trajectory generation algorithm or the model
predictive controller developed in Section III is implemented
to get ur

i (t). In order to guarantee the task satisfaction for
all human inputs, the function κ (ξi,O,Gi) is designed as:

κ (ξi,O,Gi) ≜Gmix ·
ρ (do − ds)

ρ (do − ds) + ρ (ε+ ds − dt)

+ (1−Gmix) ·
ρ (dt − ds)

ρ (dt − ds) + ρ (ε+ ds − dt)

where dt ≜ minπ∈Gi
∥ξi − π∥ is the minimum distance be-

tween robot i and any region within Gi; do ≜ minπ∈Ot
i
∥ξi−

π∥ is the minimum distance between the robot and any
obstacle within O; ρ(s) ≜ e−1/s for s > 0 and ρ(s) ≜ 0
for s ≤ 0, and ds, ε > 0 are design parameters as the
safety distance and a small buffer. Moreover Gmix ∈ [0, 1]
represents a gain parameter, in order to manage the trade-
off between two aspects: preventing trap states and obstacle
avoidance.

V. EXPERIMENTAL RESULTS

In this section, we present experimental studies to validate
our results, which is also the main contribution of this paper.
The proposed strategies hold potential for application in
precision agriculture, enabling farmworkers to collaborate
effectively with robot teams in carrying out agronomic tasks,
such as harvesting or pruning in table-grape vineyards.

We use the Rosie HEBI mobile base (see Fig. 1 left),
which is an omnidirectional mobile platform with three om-
nidirectional wheels. Through the use of the Qualisys motion
capture system, the motion of the involved rigid bodies is
tracked in real time. Each HEBI Rosie mobile base includes
an on-board computer equipped with a proper ROS version,
and autonomous control is accomplished from the user PC
using the ROS API in conjunction with a wireless platform
connection. The experiment workspace is an 5m×6m region
as shown in Fig. 1 right, which is abstracted into 30 1m×1m
squares. We consider a group of 2 or 3 HEBI Rosie robots
(Rosies 0, 1, and 2), and the dynamics of each robot is
given by (2). In addition, each Rosie is subject to the inputs
constraints |vi| ≤ 0.35m/s and |wi| ≤ 0.35rad/s. The
sensing radius of each robot is Ri = 0.8m,∀i.

A. Online replanning

In this section, we consider N = 2 HEBI Rosie robots.
The LTL specification for each robot is given by

• φ0 = ((□♢R8) ∧ (□♢R20)),
• φ1 = (□♢R17) ∧ (□♢R21).

Fig. 1. Rosie HEBI mobile base (left) and workspace discretization (right).

1) Local communication case: Initially each robot syn-
thesizes a satisfying trajectory using the LTL core & planner
[21]. During the online implementation, possible collisions
are detected, and then the local trajectory generation al-
gorithm (Algorithm 1) is executed taking into considera-
tion the future trajectories of neighboring robots (which
is acquired through local communication). The real-time
position trajectories of the 2 Rosies are depicted in Fig.
2. During the experiment time horizon 140s, both robots
successfully complete the surveillance tasks. Conflicts are
detected 4 times in total, and the local trajectory generation
algorithm is activated to resolve them every time. Note also
that the input constraints are satisfied at all time. A video
demonstration of this experiment can be found at https:
//www.youtube.com/watch?v=mKWpqvMrW9Y.

Fig. 2. Local communication case: the real-time position trajectories of
Rosies 0 (green line) and 1 (purple line). The light green and purple regions
represent the target regions of Rosies 0 and 1, respectively.

2) Communication-free case with human as moving obsta-
cle: In this case, we additionally consider a human walking
in the workspace W to evaluate the effectiveness of the
model predictive controller.

Fig. 3 depicts the real-time position trajectories of the 2
Rosies and the human, where the proposed model predictive
controller (3) is applied for both Rosies. Differently from
the local communication case where replanning is activated

Fig. 3. Communication-free case: the real-time position trajectories of
Rosies 0 (green line), 1 (purple line), and human (black line).

only if conflicts are detected, in the communication-free case,
the online replanning is activated whenever a robot detects
obstacles in its sensing region. As a result, the motion of
each robot is affected not only by other robots, but also by
the human randomly walking through the workspace.

Replanning is conducted 14 times in total over the exper-
iment time horizon 120s, and one can see that the model
predictive controller (3) guarantees the task satisfaction and
collision avoidance (with other robots and the moving hu-
man) for each robot. When compared to the local com-
munication case, the number of replanning is higher since
the replanning process is activated whenever obstacles are
detected and the model predictive controller does not take
into account future trajectories of other robots. A video
demonstration of this experiment can be found at https:
//youtu.be/TYgfbrk7hDs.

B. Human in-the-loop control

Fig. 4. Human in-the-loop control.

This section aims to evaluate the MIC explained in Section
V in the human in-the-loop context, where a human may take
control of one or more robots during the motion. We consider
N = 3 HEBI Rosie robots and the LTL specification for each
robot is given by:

• φ0 = (□♢R8) ∧ (□♢R20),
• φ1 = (□♢R22) ∧ (□♢R28),
• φ2 = (□♢R10) ∧ (□♢R11).

Each robot can be controlled by a human with control
inputs executed through a joystick equipped with bluetooth,
see Fig. 4. The human operator, on one hand, influences robot
autonomy when evaluating the performance of the proposed
MIC, where the human inputs and autonomous inputs are
fused, as detailed in Section V. On the other hand, the
human operator is also walking through the workspace as a
moving obstacle. For the first 60s, all robots are not affected
by the human obstacle and no joystick inputs are applied.
After that, the human starts to control Rosie 1 and walk
through the workspace, and the model predictive controller
(communication-free case) is applied to deal with potential
conflicts for each robot. Additionally, some dangerous human
behaviours are tested, including the human attempting to
guide the robot towards itself. The real-time position tra-
jectories of the 3 Rosies and the human are depicted in Fig.
5. One can see that the MIC (4) prevents undesired actions
and ensures safety. A video demonstration of this experiment
can be found at https://youtu.be/2hWe5Wu52Bg.

Fig. 5. Human-in-the-loop: the real-time position trajectories of Rosies
0 (green line), 1 (purple line), 2 (red line), and human (black line), where
Rosie 1 is controlled by the human operator. The light green, purple, and
red regions represent the target regions of Rosies 0, 1, and 2, respectively.

VI. CONCLUSIONS

The work focuses on the design of efficient planning and
control algorithms for MRSs that are subject to LTL specifi-
cations. Due to the practical assumption of local sensing and
dynamic environments, online replanning is needed for each
robot to guarantee safety and task satisfaction. Two distinct
cases are considered for online replanning. The former one
assumes local communication between robots and a local tra-
jectory generation algorithm is proposed to resolve conflicts.
The latter one assumes no communication between robots
and a model predictive controller is designed to deal with
penitential collisions. Finally, the human-in-the-loop context
is considered a MIC is adopted to prevent unsafe human
behavior.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press,
2008.

[2] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion [grand chal-
lenges of robotics],” IEEE Robotics Automation Magazine, vol. 14,
no. 1, pp. 61–70, 2007.

[4] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[5] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[6] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal-
ity and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[7] Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with
counting temporal logics,” IEEE Transactions on Robotics, 2019.

[8] Y. Kantaros and M. M. Zavlanos, “STyLuS*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” The
International Journal of Robotics Research, vol. 39, no. 7, pp. 812–
836, 2020.

[9] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-
Gazit, “Reactive mission and motion planning with deadlock resolu-
tion avoiding dynamic obstacles,” Autonomous Robots, vol. 42, no. 4,
pp. 801–824, 2018.

[10] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[11] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under
temporal tasks and soft constraints,” IEEE Transactions on Automatic
Control, vol. 63, no. 12, pp. 4051–4066, 2018.

[12] C. Belta, B. Yordanov, and E. A. Gol, Formal methods for discrete-
time dynamical systems. Springer, 2017, vol. 15.

[13] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,” Robotics and autonomous systems, vol. 42, no. 3-
4, pp. 143–166, 2003.

[14] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in 2013 IEEE international conference on robotics and
automation. IEEE, 2013, pp. 5025–5032.

[15] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Transactions
on Robotics, vol. 32, no. 3, pp. 583–599, 2016.

[16] P. Yu and D. V. Dimarogonas, “Distributed motion coordination for
multirobot systems under LTL specifications,” IEEE Transactions on
Robotics, vol. 38, no. 2, pp. 1047–1062, 2021.

[17] S. G. Loizou and V. Kumar, “Mixed initiative control of autonomous
vehicles,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation. IEEE, 2007, pp. 1431–1436.

[18] M. Guo, S. Andersson, and D. V. Dimarogonas, “Human-in-the-
loop mixed-initiative control under temporal tasks,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 6395–6400.

[19] J. R. Büchi, “On a decision method in restricted second order arith-
metic,” in The Collected Works of J. Richard Büchi. Springer, 1990,
pp. 425–435.

[20] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
International Conference on Computer Aided Verification. Springer,
2001, pp. 53–65.

[21] R. Baran, X. Tan, P. Varnai, P. Yu, S. Ahlberg, M. Guo, W. S.
Cortez, and D. V. Dimarogonas, “A ros package for human-in-the-loop
planning and control under linear temporal logic tasks,” in 2021 IEEE
17th International Conference on Automation Science and Engineering
(CASE). IEEE, 2021, pp. 2182–2187.

[22] C. I. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 4817–4822.

