
A Consistency Constraint-Based Approach to Coupled State
Constraints in Distributed Model Predictive Control

Adrian Wiltz, Fei Chen, Dimos V. Dimarogonas

Abstract— In this paper, we present a distributed model
predictive control (DMPC) scheme for dynamically decoupled
systems which are subject to state constraints, coupling state
constraints and input constraints. In the proposed control
scheme, neighbor-to-neighbor communication suffices and all
subsystems solve their local optimization problem in parallel.
The approach relies on consistency constraints which define
a neighborhood around each subsystem’s reference trajectory
where the state of the respective subsystem is guaranteed to
stay in. Reference trajectories and consistency constraints are
known to neighboring subsystems. Contrary to other relevant
approaches, the reference trajectories are improved iteratively.
Besides, the presented approach allows the formulation of con-
vex optimization problems even in the presence of non-convex
state constraints. The algorithm’s effectiveness is demonstrated
with a simulation.

I. INTRODUCTION

Since the publication of the first distributed model predic-
tive control (DMPC) schemes [3], their development became
a thriving branch in the research on model predictive control
(MPC). The motivation behind the development of DMPC
is that centralized MPC [16] becomes computationally in-
tractable for large-scale systems, and in the case of spatially
distributed systems a reliable communication with a central
control-unit is difficult to realize [9], [12].

In [17], the methods by which distributed MPC algo-
rithms compute control input trajectories are classified into
four groups: iterative methods, sequential methods, methods
employing consistency constraints, and approaches based
on robustness considerations. In iterative methods, the local
controllers exchange the solutions to their local optimization
problems several times among each other until they converge.
In sequential approaches, local optimization problems of
neighboring subsystems are not evaluated in parallel but one
after another. In algorithms based on consistency constraints,
neighboring subsystems exchange reference trajectories and
guarantee to stay in their neighborhood. Other DMPC al-
gorithms consider the neighbors’ control decisions as a
disturbance. Examples can be found in [17]. As remarked in
[19], the task of distributing MPC algorithms is too complex
in order to solve it with one single approach. Instead,
for various types of centralized MPC problems, distributed
controllers have been taylored. A broad collection of notable
DMPC algorithms can be found in [20]. Many available

This work was supported by the ERC Consolidator Grant LEAFHOUND,
the Swedish Foundation for Strategic Research (SSF) COIN, the Swedish
Research Council (VR) and the Knut and Alice Wallenberg Foundation.

The authors are with the Division of Decision and Control Systems,
KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
{wiltz,fchen,dimos}@kth.se.

DMPC schemes follow in their proofs of recursive feasibility
and asymptotic stability an argumentation similar to [4] for
continuous-time systems, and [5] for discrete-time systems.

Especially the distribution of MPC problems subject to
coupled state constraints turned out to be complicated [13],
and most available DMPC schemes that are capable of
handling them cannot avoid a sequential scheme [14], [21],
[22], [23]. However, sequential schemes have the drawback
that the computation of the control input of all subsystems
becomes very time-consuming for highly connected net-
works when each subsystem has a large number of neighbors.
A notable exception that does not rely on a sequential scheme
can be found in [8], where a consistency constraint approach
is used instead. This admits that even in the presence of
coupled state constraints all subsystems can solve their local
optimization problem in parallel and still retain recursive fea-
sibility. However, [8] does not allow to modify the reference
trajectory once it is established which restricts the possibility
to optimize the system’s performance significantly.

In this paper, we overcome this limitation. Taking in-
spiration from [8], we employ consistency constraints in
our approach. However, we allow to vary and further im-
prove an already established reference trajectory at each
time-step. For guaranteeing recursive feasibility, we check
some conditions and correspondingly update the reference
trajectories afterwards. All computations are carried out in
a distributed fashion. The proposed algorithm only requires
neighbor-to-neighbor communication. Interestingly, the us-
age of consistency constraints allows us to formulate the
local optimization problems as convex problems even in the
presence of non-convex state and coupled state constraints. In
contrast to [8], we formulate the algorithm for dynamically
decoupled systems.

The remainder is structured as follows: In Section II,
we present the partitioned system and the control objective.
In Section III, we define the local optimization problems,
the proposed DMPC algorithm, and derive guarantees. In
Section IV, the algorithm’s effectiveness is demonstrated,
and in Section V some conclusions are drawn.

Notation: A continuous function γ : R+ → R+ is a K∞
function if γ(0) = 0, it is strictly increasing and γ(t)→∞
as t→∞. If the domain of a trajectory x[κ] with κ=a,. . .,b,
a, b ∈ N, is clear from the context, we also write x[·]. By
x[·|k] we denote a trajectory that is computed at time-step k.
The short-hand xi∈V is equivalent to {xi}i∈V where V is an
index set. The Minkowski sum is denoted by ⊕. Finally,
0,1 denote vectors of all zeros or ones, and for x ∈ Rn and
P ∈ Rn×n, we define the weighted norm ||x||P = xTPx.

II. PROBLEM FORMULATION

A. System Dynamics and Constraints
Consider a distributed system consisting of subsystems

i ∈ V = {1, . . . , |V|} which are dynamically decoupled and
behave according to the discrete-time dynamics

xi[k + 1] = fi(xi[k], ui[k]), xi[k0] = x0,i (1)
where xi ∈ Rni and ui ∈ Rmi . The dynamics of the overall
system are denoted by

x[k + 1] = f(x[k], u[k]), x[k0] = x0 (2)
with stack vectors x=[xT1 , . . . , x

T
|V|]

T , u=[uT1 , . . . , u
T
|V|]

T ,
and x0=[xT0,1, . . . , x

T
0,|V|]

T . All subsystems i∈V are subject
to state constraints xi∈Xi ⊆ Rni and input constraints

ui ∈ Ui ⊆ Rmi . (3)
Moreover, some of the subsystems are coupled to each other
by coupled state constraints. For subsystems i and j, if there
exists a coupled state constraint xi[k] ∈ Xij(xj [k]), then we
call subsystem j a neighbor of subsystem i and write j ∈ Ni,
where Ni is the set of all neighboring subsystems of i. We
define the state constraints via inequalities, namely

hi(xi) ≤ 0 (4a)
cij(xi, xj) ≤ 0, j ∈ Ni (4b)

where hi, cij are continuous; hi : Rni → Rri defines the
state constraint with ri as the number of inequalities defining
the state constraint of subsystem i; cij : Rni×Rnj → Rsi
defines the coupled state constraints with si as the number of
inequalities defining the coupled state constraints that couple
subsystem i with j. The state constraint sets are defined as

Xi := {xi ∈ Rni |hi(xi) ≤ 0}
Xij(xj) := {xi ∈ Rni | cij(xi, xj) ≤ 0}, j ∈ Ni

where Xij : Rnj → P(Rni) is a set valued function and
P(Rni) denotes the power set of Rni .

A state xi of subsystem i is called infeasible if (4) is not
satisfied. Besides, we assume that neighboring subsystems
that are coupled by state constraints both respect these
constraints. In particular, we assume that for all subsystems
i ∈ V and their neighbors j ∈ Ni we have

cij(xi, xj) = cji(xj , xi).

Otherwise, this would result in an asymmetry in the subsys-
tems capabilities which is beyond the scope of this paper.

B. Network Topology
The coupled state constraints define a graph structure on

the distributed system under consideration. The graph is
given as G = (V, E) where E is the set of edges defined
as E := {(i, j) | j ∈ Ni}. We assume that E defines the
communication links among the subsystems V and hence that
neighboring subsystems can communicate with each other.

C. Control Objective
Let ξi = fi(ξi, uξi) be a steady state of subsystem i for

a constant input uξi and denote by ξ = [ξT1 , . . . , ξ
T
|V|]

T the
stack vector of all steady states. The control objective is to
steer subsystems i ∈ V to target states {ξi}i∈V which satisfy
ξ ∈ Ξ:={ξ|ξi∈Xi, ξi∈Xij(ξj), uξi ∈Ui, ∀i∈V, ∀j∈Ni}.

III. MAIN RESULTS

A. Local Optimization Problems
In the proposed DMPC scheme, a subsystem i predicts a

state-trajectory xi[κ|k] for κ = k, . . . , k + N and a corre-
sponding input-trajectory ui[κ|k] for κ = k, . . . , k +N − 1
based on dynamics (1) at every time-step k minimizing a cost
function Ji(xi[·|k], ui[·|k]) where N denotes the prediction
horizon. Input trajectories ui∈V [·|k] are determined such
that they satisfy input constraints (3), and state trajectories
xi∈V [·|k] such that they start in xi∈V [k] measured at time k
and it holds xi[k|k] = xi[k], i ∈ V . The satisfaction of state
constraints (4) is ensured by consistency constraints

xi[κ|k] ∈ xref
i [κ|k]⊕ Ci (5)

where i ∈ V , κ = k, . . . , k+N and Ci ⊆ Rni is a closed
neighborhood of the origin. Thereby, subsystem i guarantees
to its neighbors j ∈ Ni that its predicted state trajectory
xi[κ|k] always stays in a neighborhood Ci of reference states
xref
i [κ|k] for κ = k, . . . , k+N . Reference states xref

i [κ|k]
are determined at every time-step and communicated to all
neighbors j ∈ Ni. Contrary to other DMPC approaches
employing consistency constraints [6], [7], [8], here the ref-
erence trajectories xref

i∈V [·|k] need not to satisfy dynamics (2).
The local optimization problem of subsystem i at time-

step k is given as
J∗
i (xi[k]) = min

ui[·|k]
Ji(xi[·|k], ui[·|k]) (6)

where

Ji(xi[·|k], ui[·|k]) =
k+N−1∑
κ=k

li(xi[κ|k], ui[κ|k])

+ Jfi (xi[k +N |k])
li(xi[κ|k], ui[κ|k]) = ||xi[κ|k]− ξi||Qi

+ ||ui[κ|k]− uξi ||Ri

with stage-cost-function li, terminal cost-function Jfi , and
quadratic positive-definite matrices Qi, Ri. By x∗i [·|k] and
u∗i [·|k], we denote those trajectories that minimize Ji. The
local optimality criterion (6) is subject to

xi[k|k] = xi[k]

xi[κ+ 1|k] = fi(xi[κ|k], ui[κ|k])
(7a)

xi[κ|k] ∈ xref
i [κ|k]⊕ Ci (7b)

ui[κ|k] ∈ Ui (7c)

xi[k +N |k] ∈ X fi (7d)

for κ = k, . . . , k + N − 1 and with terminal set X fi . The
optimal control input applied by subsystem i at time k given
current state xi[k] is µi(xi[k]) := u∗i [k|k].

In order to ensure recursive feasibility and that the consis-
tency constraint do not admit states that result in a violation
of state constraints (4), the reference states xref

i [κ|k], κ =
k, . . . , k +N , are updated in every time-step k. We impose
the following assumption on reference states and consistency
constraint sets.
Assumption 1. For κ = k, . . . , k + N − 1 and k ≥ k0,
reference states xref

i [κ|k] are chosen
(A1.1) such that

hi(xi) ≤ 0 ∀xi ∈ xref
i [κ|k]⊕ Ci (8)

and for all j ∈ Ni
cij(xi, xj) ≤ 0 ∀xi ∈ xref

i [κ|k]⊕ Ci,
∀xj ∈ xref

j [κ|k]⊕ Cj ;
(9)

(A1.2) and if k > k0 additionally such that
x∗i [κ|k − 1] ∈ xref

i [κ|k]⊕ Ci. (10)

Whereas (A1.1) ensures the satisfaction of (4), (A1.2)
leads to recursive feasibility of the local optimization prob-
lems. In Section III-D, we show how to satisfy Assumption 1.

Moreover, we impose the following standard assumptions
on terminal sets X fi and terminal cost Jfi [8], [10] in a
slightly modified way.
Assumption 2. For the terminal sets X fi , the terminal costs
Jfi : X fi → R≥0 with i ∈ V , and a state-feedback controller
kaux
i (xi), we assume that

(A2.1) all X fi , i ∈ V , are feasible, i.e., there exist αi ∈
R>1, i ∈ V , such that αiX fi ⊆ Xi and cij(xi, xj) ≤
0 ∀xi ∈ αiX fi ,∀xj ∈ αjX

f
j for all j ∈ Ni;

(A2.2) kaux
i : X fi → Ui;

(A2.3) fi(xi, kaux
i (xi)) ∈ X fi ;

(A2.4) Jfi (f(xi, k
aux
i (xi))) + li(xi, k

aux
i (xi)) ≤ Jfi (xi).

By (A2.1), it is ensured that state constraints (4) are
satisfied for any states in the terminal regions X fi∈V and a
neighborhood around them. We suggest to determine Jfi and
X fi as outlined in [10, Remark 5.15].

B. Distributed MPC Algorithm
First, initial state trajectories xinit

i [κ|k0], κ = k0, . . . , k0 +
N , and input trajectories uinit

i [κ|k0], κ = k0, . . . , k0+N −1,
must be determined for all i ∈ V such that

xinit
i [k0|k0] = x0,i

xinit
i [κ+ 1|k0] = fi(x

init
i [κ|k0], uinit

i [κ|k0])
(11a)

hi(x
init
i [κ|k0]) ≤ −βi1 (11b)

cij(x
init
i [κ|k0], xinit

j [κ|k0]) ≤ −βi1 (11c)

uinit
i [κ|k0] ∈ Ui (11d)

xinit
i [k0 +N |k0] ∈ X fi (11e)

where βi ∈ R>0. Then, we define initial reference trajec-
tories as xref

i [·|k0] := xinit
i [·|k0] for all i ∈ V . Note, that

(11b) and (11c) imply (4) but are stricter. Similarly, (A2.1)
ensures that for each state in X fi there exists a neighborhood
whose states satisfy (4) as well. Hence, there always exist
sufficiently small sets Ci for all i ∈ V such that (8) and (9)
hold with xref

i [κ|k0] = xinit
i [κ|k0], and such that

X fi ⊕ Ci ⊆ αiX
f
i . (12)

We call trajectories xinit
i∈V [·|k0], uinit

i∈V [·|k0] that satisfy (11)
initially feasible. We define X 0

N as the set of states x0 for
which initially feasible trajectories exist when the prediction
horizon is N . For computing the sets Ci, i ∈ V , we suggest
to start with an initial guess of Ci denoted by Ĉi, and check
if (8), (9) and (12) are satisfied. If these hold, enlarge Ĉi
by multiplication with a scalar ρi > 1; otherwise, shrink Ĉi
by multiplication with 1/ρi. Then, we choose Ci = ρ

ιmax
i
i Ĉi

where ιmax
i ∈ Z is the largest integer such that (8), (9) and

(12) are still satisfied. If Ĉi is defined as the intersection of
half-spaces (polytopes), and hi and cij are linear, then (8), (9)
and (12) can be efficiently evaluated using common libraries
for computations with polyhedra, e.g., MPT3 (Matlab) [11],
Polyhedra (Julia) [15] and Polytope (Python) [2]. In (8) and
(9), Ci and Cj can be replaced by outer approximations which
often results in more conservative conditions, but allows for
an easier evaluation. An example is given in Section IV.

The entire distributed MPC algorithm, which comprises
initialization steps 1 and the DMPC routine 2, is as follows:
1.1. Set k = k0 and determine Jfi ,X

f
i and kaux

i for all i ∈ V .
1.2. Compute xinit

i [κ|k0] for κ = k0, . . . , k0 + N and
uinit
i [κ|k0] for κ = k0, . . . , k0 + N − 1 for all i ∈ V

such that (11) holds. All subsystems i ∈ V communicate
xinit
i [·|k0], uinit

i [·|k0] to their neighbors j ∈ Ni.
1.3. For all i ∈ V , set xref

i [κ|k0] = xinit
i [κ|k0] for κ =

k0, . . . , k0 +N − 1 and compute Ci ⊆ Rni as a closed
neighborhood of the origin such that (8), (9) and (12)
hold. All subsystems i ∈ V communicate xref

i [·|k0] and
Ci to their neighbors j ∈ Ni.

2.1. All i ∈ V measure xi[k], solve their local optimization
problem (6) subject to (7) in parallel and thereby
determine x∗i [κ|k] for κ = k, . . . , k + N and u∗i [κ|k]
for κ = k, . . . , k + N − 1. All i ∈ V communicate
x∗i [·|k] to their neighbors j ∈ Ni.

2.2. All i ∈ V apply µi(xi[k]) := u∗i [k|k].
2.3. All i ∈ V determine reference states xref

i [κ|k + 1] for
κ = k + 1, . . . , k + N such that Assumption 1 holds
(see Section III-D). All i ∈ V communicate xref

i [·|k+1]
to their neighbors j ∈ Ni.

2.4. Set k ← k + 1 and go to step 2.1.

C. Guarantees and Properties of the DMPC Algorithm
At first, we observe that the proposed DMPC algorithm

ensures the satisfaction of the constraints introduced in
Section II-A which each subsystem has to satisfy.
Lemma 1. Let Assumption 1 and 2 hold. For all i∈V , let
x∗i [κ|k], κ = k,. . ., k+N , and u∗i [κ|k], κ = k,. . ., k+N −
1, be the solution to local optimization problem (6) with
constraints (7). Then, constraints (3) and (4) are satisfied by
x∗i [·|k] and u∗i [·|k].
Proof. This result is straightforward: (7c) implies input
constraint (3), consistency constraints (7b) imply state con-
straints (4) for κ = k, . . . , k+N −1 due to (A1.1), and (7d)
and (A2.1) together imply (4) for κ = k +N .

Next, we prove recursive feasibility of the proposed
DMPC algorithm and show that the states xi∈V asymptoti-
cally converge to their target states ξi∈V .
Theorem 2. For i ∈ V , let xinit

i [κ|k0] for κ = k0, . . . , k0+N
and uinit

i [κ|k0] for κ = k0, . . . , k0+N−1 be initially feasible
trajectories that satisfy (11). Besides, let Assumptions 1
and 2 hold. Then, the DMPC algorithm comprising steps 1.1
to 2.4 is recursively feasible, ξ is an asymptotically stable
equilibrium of the closed-loop system

x[k + 1] = f(x[k], µN (x[k])),

on X 0
N and x asymptotically converges to ξ.

Proof. In a first step, we prove recursive feasibility and
thereafter asymptotic stability and asymptotic convergence.

Recursive Feasibility: In order to show recursive feasi-
bility, we have to show that for all k ≥ k0, there exist
candidate trajectories xc

i[κ|k] for κ = k, . . . , k + N and
uc
i[κ|k] for κ = k, . . . , k + N − 1 that satisfy (7). Thereby

it is ensured, that there always exist feasible solutions to the
local optimization problems (6)-(7).

First, consider k = k0 and choose candidate trajectories
xc
i[κ|k0] = xinit

i [κ|k0] for κ = k0, . . . , k0 +N,

uc
i[κ|k0] = uinit

i [κ|k0] for κ = k0, . . . , k0 +N − 1

for all i ∈ V where xinit
i [·|k0], uinit

i [·|k0] denote the ini-
tially feasible trajectories determined in step 1.2. Since
xinit
i [·|k0], uinit

i [·|k0] satisfy (11a), it trivially follows that
xc
i[·|k0], uc

i[·|k0] satisfy (7a) for all i∈V . Because xref
i [·|k0]=

xinit
i [·|k0] = xc

i[·|k0] and Ci is a closed neighborhood of
the origin, it also follows that xc

i[κ|k0] satisfies (7b). The
satisfaction of (7c)-(7d) trivially follows from (11d)-(11e).
Thereby, we have shown that there exists at least one feasible
solution to the optimization problem (6)-(7) for k=k0.

In a next step, we show the existence of feasible solutions
for k>k0. Therefore, consider the candidate trajectories

xc
i[κ|k] =


x∗i [κ|k − 1] for κ = k, . . . , k +N − 1

fi(x
∗
i [κ− 1|k − 1], kaux

i (x∗i [κ− 1|k − 1]))

for κ = k +N

(14a)

uc
i[κ|k] =

{
u∗i [κ|k − 1] for κ = k, . . . , k +N − 2

kaux
i (xi[κ|k − 1]) for κ = k +N − 1

(14b)
for all i ∈ V . Since

xc
i[k|k] = x∗i [k|k − 1]

= fi(x
∗
i [k − 1|k − 1], u∗i [k − 1|k − 1])

= fi(xi[k − 1], ui[k − 1]) = xi[k]

and since x∗i [·|k−1], u∗i [·|k−1] satisfy (7a), it follows from
(14) that also xc

i[·|k], uc
i[·|k] satisfy (7a). Because xc

i[κ|k] =
x∗i [κ|k − 1] for κ = k, . . . , k + N − 1 and (A1.2) holds,
xc
i[·|k] satisfies (7b). Besides, as uc

i[κ|k+1] = u∗i [κ|k], (7c)
is trivially satisfied for κ = k, . . . , k +N − 2. Furthermore,
uc
i[k + N − 1|k] = kaux

i (x∗i [k + N − 1|k − 1]) ∈ Ui holds
due to (A2.2) because x∗i [k + N − 1|k − 1] ∈ X fi , and the
satisfaction of (7c) is shown. At last, because xc

i[k+N |k] =
fi(x

∗
i [k+N−1|k−1], kaux

i (x∗i [k+N−1|k−1])) and due to
(A2.3), also xc

i[k + N |k] ∈ X fi holds and (7d) is satisfied.
Thereby, we have shown that there also exists for all k > k0
at least one feasible solution to optimization problem (6)-(7),
and we conclude that the algorithm is recursively feasible.

Asymptotic stability and asymptotic convergence (Sketch):
Using standard arguments [10], we can derive that Vi(xi) :=
J∗
i (xi) is a Lyapunov function for (1) by showing that
Vi(xi[k + 1])− Vi(xi[k]) ≤ −li(xi[k], µN (xi[k]))

≤ ||xi[k]− ξi||Qi
= −γVi

(xi[k])

where γVi
is a K∞ function. Moreover, we can show that

V (x) :=
∑
i∈V Vi(x) is a Lyapunov function for the overall

system (2) on X 0
N . Then, the asymptotic stability of ξ on

X 0
N and the asymptotic convergence to ξ follows, cf. e.g.

[10, Theorem 2.19].

D. Determination of Reference States
For k = k0, reference states xref

i∈V [·|k] are determined in
step 1.3 of the DMPC algorithm such that Assumption 1
holds. For k > k0, we can determine the reference states
xref
i [κ|k] for κ = k, . . . , k +N − 1 as follows:
1. For κ = k, . . . , k +N − 2, check if

hi(xi) ≤ 0 ∀xi ∈ x∗i [κ|k − 1]⊕ Ci (15)
and
cij(xi, xj) ≤ 0 ∀xi ∈ x∗i [κ|k − 1]⊕ Ci,
∀xj ∈ (x∗j [κ|k − 1]⊕ Cj) ∪ (xref

j [κ|k − 1]⊕ Cj)
(16)

for all j ∈ Ni hold.
2. For κ = k, . . . , k + N − 2, if (15) and (16) hold for

all j ∈ Ni, then set xref
i [κ|k] = x∗i [κ|k − 1], else set

xref
i [κ|k] = xref

i [κ|k − 1].
3. For κ = k +N − 1, set xref

i [κ|k] = x∗i [κ|k − 1].

Proposition 3. Let Assumption 1 be satisfied at time-
step k0. Then Assumption 1 holds for k > k0, if xref

i [κ|k]
is determined according to steps 1 to 3 above for κ =
k, . . . , k +N − 1 and all i ∈ V .

Proof. This result follows recursively. To start with, consider
κ = k, . . . , k+N − 2. At first note that the reference states
of all subsystems i ∈ V are chosen such that xref

i [κ|k] ∈
{x∗i [κ|k− 1], xref

i [κ|k− 1]}. In step 1, each subsystem i ∈ V
checks if xref

i [κ|k] = x∗i [κ|k−1] is a viable choice such that
(A1.1) is fulfilled for any xref

j [κ|k]∈{x∗j [κ|k−1], xref
j [κ|k−1]}.

Therefore, (15) and (16) imply (8) and (9), respectively, and
(10) trivially follows from xref

i [κ|k] = x∗i [κ|k − 1]. Thus,
Assumption 1 holds if (15) and (16) hold.

Next, we show that xref
i [κ|k] = xref

i [κ|k − 1] fulfills As-
sumption 1 independently of the satisfaction of (15) and (16).
As xref

i [κ|k−1] satisfied (8) at time-step k−1, it does so at k
since (8) is decoupled. Next, consider any neighbor j ∈ Ni of
subsystem i. If subsystem j sets xref

j [κ|k] = x∗j [κ|k−1], then
(16) holds according to step 2 and the satisfaction of (10)
follows. If however subsystem j sets xref

j [κ|k] = xref
j [κ|k−1],

the satisfaction of (9) follows recursively from the previous
time-step. The initial existence of reference states xref

i that
satisfy (9) is ensured by the assumption that xref

i [κ|k0]
satisfies Assumption 1. At last, (10) is satisfied because
the consistency constraint (7b) constraining the optimization
problem (6)-(7) at time-step k − 1 implies x∗i [κ|k − 1] ∈
xref
i [κ|k−1]⊕Ci = xref

i [κ|k]⊕Ci which is equivalent to (10).
Hence, it is shown that Assumption 1 is also fulfilled, even
if (15) or (16) do not hold. At last, consider κ=k+N − 1.
Since x∗i [k+N−1|k−1] ∈ X

f
i according to (7d), the choice

xref
i [κ|k] = x∗i [κ|k−1] ensures the satisfaction of (A1.1) due

to (12) and (A2.1). (A1.2) is trivially satisfied.
Remark 1. The aforementioned libraries for computations
with polyhedra can be also used for the evaluation of
conditions (15) and (16). In particular, note that if sets Ci,
i ∈ V , are polytopes, and hi and cij , j ∈ Ni, i ∈ V,
are linear, then conditions (15) and (16) reduce to simple

algebraic inequalities. Besides, observe that Ci and Cj in (15)
and (16) can be replaced by an outer approximation which
results in more conservative conditions but does not change
the result of Proposition 3. This is possible because the
choice xref

i [κ|k] = xref
i [κ|k−1] always ensures the fulfillment

of Assumption 1 independently of (15) and (16) as it can be
seen from the proof of Proposition 3. Outer approximations
can help to simplify conditions (15) and (16) especially if
hi, cij are nonlinear. We give an example in the next section.

IV. SIMULATION

We consider three-wheeled omni-directional robots, which
behave according to their kinematic model with states xi :=
[pi,x, pi,y, ψi]

T where pi,x and pi,y denote the position
coordinates and ψi the orientation of robot i. The position
of robot i is denoted by p :=[pi,x, pi,y]

T . Its dynamics are
ẋi = R(ψi) (B

T
i)

−1 ri ui

where

R(ψi)=

[
cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

]
, Bi=

[
0 cos(π/6) − cos(π/6)
−1 sin(π/6) sin(π/6)
li li li

]
,

li is the radius of the robot body, ri is the wheel radius, and
ui = [ui,1, ui,2, ui,3]

T the angular velocity of the wheels.
In the sequel, we consider three robots which shall move

from an initial formation x0 to a target formation ξ, where
all robots i ∈ V are subject to connectivity constraints

||pi − pj || ≤ dmax, j ∈ Ni := V \ {i} (17)
with dmax = 2.6, and input constraints ||ui||∞ ≤ 15 where
||·||∞ denotes the maximum norm. The performance matrices
are chosen as Q1 = diag(100, 100, 100), Q2 = Q3 =
diag(1, 1, 50), R1 = diag(1, 1, 1), R2 = R3 = diag(5, 5, 5);
the terminal cost functions Jfi∈V and terminal sets X fi∈V
are computed via the algebraic Riccati equation as outlined
in [10]. The consistency constraint set is chosen as a box
Ci = {η ∈ R3 | ||[η1, η2]||∞ ≤ ci} with ci = 0.125 for all
i ∈ V; since ψi is unconstrained, the third coordinate η3 is
unconstrained as well. A suitable outer approximation of Ci
is C̄i := {η̄ ∈ R3 | ||[η̄1, η̄2]|| ≤ c̄i} with c̄i =

√
2 ci where

the box constraint on the position coordinates is replaced by
a circle that encloses it. By using the outer approximations
C̄i, we rewrite (9) more conservatively as

cij(xi, xj) = ||pi − pj || − dmax ≤ −2c̄i, (18)
i.e., the satisfaction of (18) implies the satisfaction of (9).
Thereby, it is sufficient to check a simple inequality and
set valued operations can be avoided. Although (9) cannot
be simplified in all cases as much as in this example, a
problem dependent outer approximation of Ci can often still
lead to significant simplifications. If terminal sets X fi∈V are
chosen sufficiently small such that (18) is satisfied by all
xi ∈ X fi for all i ∈ V , then (A2.1) is satisfied. Furthermore,
if βi = 2c̄i in (11c), then xref

i [·|k0] = xinit
i [·|k0] fulfills

also Assumption 1. We compute initially feasible trajectories
xinit
i∈V using a sequential MPC approach.
In the scenario considered in the simulation, three robots

solve a formation control task. Starting in the initial for-
mation x0,1 = [−1, 0, 0]T , x0,2 = [−3, 1, 7π/4]T , x0,3 =
[−3,−1, π/4]T , the robots move to the target formation

-3 -2 -1 0 1 2
px

-2

-1

0

1

2

p
y

robot 2

robot 3

robot 1

Fig. 1. Trajectories of robots for ξ11 = 2.5. The markers indicate the
robots’ orientations.

ξ11 Proposed DMPC DMPC with fixed
reference [8]

Sequential DMPC
[18]

2.0 1.00,1.00,1.00 0.94,1.42,1.42 0.87,0.71,0.71
2.5 1.00,1.00,1.00 1.00,1.35,1.32 0.93,0.68,0.67
2.75 1.00,1.00,1.00 1.00,1.18,1.17 0.94,0.60,0.59
3.0 1.00,1.00,1.00 1.01,1.06,1.05 0.93,0.53,0.53

TABLE I
RELATIVE ACTUAL COST FOR SUBSYSTEMS 1, 2 AND 3.

ξ11 Proposed DMPC DMPC with fixed
reference [8]

Sequential DMPC
[18]

2.0 0.0234 0.0253 0.0935
2.5 0.0237 0.0259 0.0975
2.75 0.0233 0.0262 0.1060
3.0 0.0224 0.0249 0.1405

TABLE II
AVERAGE COMPUTIONAL TIMES IN SECONDS.

ξ1 = [ξ11, 0, π]
T , ξ2 = [1,−1, π/4]T , ξ3 = [1, 1, 7π/4]T

where ξ11 ∈ {2.0, 2.5, 2.75, 3.0}. The prediction time is
chosen as T = 12s and the prediction horizon as N = 36.
We discretize the time-continuous dynamics using a 4-th
order Runge-Kutta method with a time-step ∆t = T/N .

In order to evaluate the performance of the proposed
algorithm with respect to computation time and actual cost,
we compare it with two other common DMPC algorithms:
(1) DMPC algorithm of [8] with fixed reference trajectories
which cannot be updated once they are established; (2)
Sequential DMPC as presented in [18, Section 2] which
is based on the sequential scheme proposed in [22]. The
MPC controllers have been implemented using Casadi [1]
and Matlab, the simulations have been performed on an Intel
Core i5-10310U with 16GB RAM.

The resulting trajectories of the robots are depicted in
Figure 1, the inter-robot distances in Figure 2. From Figure 2,
it can be seen that distance constraints (17) are clearly
satisfied. However, simulations using an MPC algorithm
that does not take the coupled state constraints (17) into
account resulted for ξ11 ∈ {2.5, 2.75, 3.0} in a violation of
(17) which emphasizes the importance of explicitly taking
coupled state constraints into account. If the inter-robot
distances exceed the dashed-line in Figure 2, then (16) is
not satisfied anymore. As a result, the reference state at the
respective time is not changed in order to prevent a potential
violation of the coupled state constraints (cf. Section III-D).
This causes some conservativeness which also can be seen
from the relative actual costs listed in Table I. For robot i, the
actual cost is computed over the simulated time interval as
Jai =

∑60
κ=0 ||xi[κ]−ξi||Qi + ||ui[κ]−uξi ||Ri ; the i-th entry

in each field of Table I is the actual cost Jai obtained with

0 20 40 60
0

0.5
1

1.5
2

2.5

time t
(a) ξ11 = 2.0

0 20 40 60
0

0.5
1

1.5
2

2.5

time t
(b) ξ11 = 2.5

0 20 40 60
0

0.5
1

1.5
2

2.5

time t
(c) ξ11 = 2.75

0 20 40 60
0

0.5
1

1.5
2

2.5

d12
d13
d23

time t
(d) ξ11 = 3.0

Fig. 2. Inter robot distances. Distance dij denotes the distance between robot i and j.

the respective DMPC algorithm normed with the actual cost
Jai obtained using the proposed DMPC. Comparing Figure 2
and Table I shows, that the more often a subsystem is close to
a violation of one of its coupled state constraints and (16) is
violated (in this example: the more often the distance curve
exceeds the dashed line), the closer is its performance to
the performance of fixed reference DMPC (cf. ξ11 = 3.0).
However, if the distance curves do not exceed the dashed
line, or only for small time intervals, the proposed algorithm
results in a notably improved performance compared to fixed
reference DMPC where the actual costs are 17-42% higher.
Most importantly, however, the proposed DMPC computes
the control inputs more than 4-6 times faster (Table II) than
the sequential DMPC. This is due to the parallel evaluation
of the local optimization problems in the proposed DMPC
and the reduced number of constraints because all state
constraints are incorporated into the consistency constraint.
This ratio further improves in favor of the proposed DMPC
if more subsystems are added because computations of
neighboring subsystems must be carried out sequentially.

V. CONCLUSION

We presented a DMPC algorithm that allows for the
parallel evaluation of the local optimization problems in
the presence of coupled state constraints while it admits to
iteratively alter and improve already established reference
trajectories at every time-step. For the case of dynamically
decoupled systems subject to coupled constraints, we thereby
provide a novel DMPC scheme that allows for a faster
distributed control input computation compared to sequential
DMPC schemes. Guarantees are provided when applying it to
the nominal, i.e., undisturbed and known dynamics. In a next
step, we plan to extend the presented basic algorithm such
that model uncertainties and disturbances can be handled.

REFERENCES

[1] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[2] “Caltech Control and Dynamical Systems”, “polytope 0.2.3,” Nov.
2020. [Online]. Available: https://github.com/tulip-control/polytope

[3] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE Control Systems Magazine, vol. 22,
no. 1, pp. 44–52, 2002.

[4] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1205 – 1217, 1998.

[5] G. De Nicolao, L. Magni, and R. Scattolini, “Stabilizing receding-
horizon control of nonlinear time-varying systems,” IEEE Transactions
on Automatic Control, vol. 43, no. 7, pp. 1030–1036, 1998.

[6] W. B. Dunbar, “Distributed receding horizon control of dynamically
coupled nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 52, no. 7, pp. 1249–1263, 2007.

[7] M. Farina, G. Betti, and R. Scattolini, “Distributed predictive control
of continuous-time systems,” Systems & Control Letters, pp. 32 – 40,
2014.

[8] M. Farina and R. Scattolini, “Distributed predictive control: A non-
cooperative algorithm with neighbor-to-neighbor communication for
linear systems,” Automatica, vol. 48, no. 6, pp. 1088 – 1096, 2012.

[9] J. R. D. Frejo and E. F. Camacho, “Global versus local mpc algorithms
in freeway traffic control with ramp metering and variable speed
limits,” IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 4, pp. 1556–1565, 2012.

[10] L. Grüne and J. Pannek, Nonlinear Model Predictive Control Theory
and Algorithms, 1st ed., ser. Communications and Control Engineer-
ing. Springer, London, 2011.

[11] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the European Control Conference, Zürich,
Switzerland, 2013, pp. 502–510, http://control.ee.ethz.ch/ mpt.

[12] R. M. Hermans, A. Jokić, M. Lazar, A. Alessio, P. P. van den Bosch,
I. A. Hiskens, and A. Bemporad, “Assessment of non-centralised
model predictive control techniques for electrical power networks,”
International Journal of Control, vol. 85, no. 8, pp. 1162–1177, 2012.

[13] T. Keviczky, F. Borrelli, and G. J. Balas, “Decentralized receding
horizon control for large scale dynamically decoupled systems,” Au-
tomatica, vol. 42, no. 12, pp. 2105–2115, 2006.

[14] Y. Kuwata and J. P. How, “Cooperative distributed robust trajectory
optimization using receding horizon milp,” IEEE Transactions on
Control Systems Technology, vol. 19, no. 2, pp. 423–431, 2011.

[15] B. Legat, R. Deits, G. Goretkin, T. Koolen, J. Huchette, D. Oyama,
and M. Forets, “Juliapolyhedra/polyhedra.jl: v0.6.16,” Jun. 2021.

[16] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789 – 814, 2000.

[17] M. A. Müller and F. Allgöwer, “Economic and distributed model
predictive control: Recent developments in optimization-based con-
trol,” SICE Journal of Control, Measurement, and System Integration,
vol. 10, no. 2, pp. 39 – 52, 2017.

[18] M. A. Müller, M. Reble, and F. Allgöwer, “Cooperative control
of dynamically decoupled systems via distributed model predictive
control,” International Journal of Robust and Nonlinear Control,
vol. 22, no. 12, pp. 1376–1397, 2012.

[19] R. Negenborn and J. Maestre, “Distributed model predictive control:
An overview and roadmap of future research opportunities,” IEEE
Control Systems Magazine, vol. 34, no. 4, pp. 87–97, 2014.

[20] R. Negenborn and J. Maestre, Eds., Distributed Model Predictive
Control Made Easy, 2014th ed., ser. Intelligent Systems, Control
and Automation: Science and Engineering. Dordrecht: Springer
Netherlands, 2014, vol. 69.

[21] A. Nikou and D. V. Dimarogonas, “Decentralized tube-based model
predictive control of uncertain nonlinear multiagent systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 29, no. 10, pp.
2799–2818, 2019.

[22] A. Richards and J. P. How, “Robust distributed model predictive
control,” International Journal of Control, vol. 80, no. 9, pp. 1517–
1531, 2007.

[23] P. Trodden and A. Richards, “Distributed model predictive control of
linear systems with persistent disturbances,” International Journal of
Control, vol. 83, no. 8, pp. 1653–1663, 2010.

