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Abstract— This paper proposes a funnel control method
under time-varying hard and soft output constraints. First,
an online funnel planning scheme is designed that generates a
constraint consistent funnel, which always respects hard (safety)
constraints, and soft (performance) constraints are met only
when they are not conflicting with the hard constraints. Next,
the prescribed performance control method is employed for
designing a robust low-complexity funnel-based controller for
uncertain nonlinear Euler-Lagrangian systems such that the
outputs always remain within the planned constraint consistent
funnels. Finally, the results are verified with a simulation
example of a mobile robot tracking a moving object while
staying in a box-constrained safe space.

I. INTRODUCTION

During the past decades, reference/trajectory tracking, as
well as stabilization of complex and uncertain nonlinear
dynamical systems, has attracted considerable research effort.
Constraints are ubiquitous in controller design of practical
nonlinear systems and they mainly emerge as performance
and safety specifications. Constraint violation may result in
performance degradation, system damage and hazards, there-
fore, owing to practical needs and theoretical challenges,
the rigorous handling of constraints in the control design
of nonlinear systems has become a dominant research topic
during the past decade. Common existing methods in dealing
with different types of constraints include model predictive
control [1], reference governors [2], set invariance based
approaches such as control barrier functions [3], barrier
lyapunov functions [4], funnel control [5], and prescribed
performance control [6].

Funnel-based control methods offer low-complexity and
robust (model-free) control designs for handling (time-
varying) output constraints for uncertain nonlinear systems.
During the past years, funnel-based control designs were
particularly utilized to ensure a user-defined transient and
steady-state performance on output tracking/stabilization er-
rors through confining the evolution of the output error
signals within predefined time-varying funnels. Two main
control approaches that have been proposed to handle the
aforementioned objective are Funnel Control (FC) [7]–[9]
and Prescribed Performance Control (PPC) [10]–[12]. Funnel
control builds on the adaptive high-gain control methodol-
ogy, where a time-varying and state-dependent function is
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replaced by the monotonically increasing control gain. In
PPC, initially, a transformation that incorporates the desired
performance specifications is defined. Then, an appropriate
control action is designed that establishes the uniform bound-
edness of the transformed system and gives the necessary
and sufficient conditions for the satisfaction of the predefined
performance (funnel) constraint. PPC was first presented in
[6], [10] within a robust adaptive control framework for
systems having known high relative degree and later was
further extended to the approximation-free paradigm in [11],
[12], significantly reducing the complexity of the designed
controller. Besides FC and PPC, Time-Varying Barrier Lya-
punov Functions (TVBLFs) have been also employed to deal
with similar problems, e.g., [13].

Despite their successful application for controlling output
constrained systems, FC, PPC, and TVBLF have been mainly
focused on satisfying output performance constraints with
specific cases of safety specifications (i.e., usually as constant
upper and lower bounds on the tracking errors) provided
that safety specifications are consistent (compatible) with the
performance requirements. However, in general, performance
constraints on tracking/stabilization may not be always in
agreement with safety specifications. Recently, Control Bar-
rier Functions (CBFs) have been introduced, for handling
tracking/stabilization in the presence of safety specifications
through the application of Quadratic Programs (QPs), in
which safety specifications are considered as hard constraints
and stabilization/tracking requirements are considered as a
soft constraint1in the optimization problem [3], [14]. While
typical CBFs are confined to constant constraints, recently
[15] presented control synthesis using time-varying CBFs to
deal with time-varying hard output constraints. Nevertheless,
CBF-based control synthesis requires exact knowledge of the
system dynamics.

In the present paper, we propose a novel funnel-based con-
trol scheme capable of handling time-varying soft and hard
(funnel-like) output constraints. First, we provide a novel
online funnel planning scheme that constructs a Constraint
Consistent Funnel (CCF) for each output of the system.
Hard output constraints are always respected and soft output
constraints are met only when they are not conflicting with
the hard constraints. Then, a model-free robust controller is
designed under a low-complexity PPC scheme to keep each
system’s output within its corresponding (online) planned
CCF. The controller design is provided for uncertain nonlin-
ear Euler-Lagrangian systems, which constitute a large class

1Note that under this scheme, the quality of the tracking/stabilization task
is not predetermined (constrained), unlike the funnel-based control methods.



of practical physical systems (mobile robotic vehicles, robot
manipulators, etc.). To the best of the authors’ knowledge,
this is the first work that considers hard and soft constraints
under funnel-based control designs. Moreover, concerning
the existing time-varying CBF-based control synthesis meth-
ods our work provides model-free and more computationally
tractable control laws (i.e., optimization-free) to deal with
time-varying hard/soft output constraints.

II. PROBLEM FORMULATION

Consider the following Euler-Lagrange (EL) system:{
M(x)v̇ + C(x, v)v + g(x) +D(x)v = u+ d(t),

y = x,
(1)

where x := col(xi) := [x1, x2, . . . , xn]> ∈ Rn and v :=
col(vi) = ẋ are the generalized coordinates and their veloc-
ities, respectively, M(·) : Rn → Rn×n is the inertia matrix,
C(·) : Rn × Rn → Rn×n is the centrifugal and Coriolis
forces matrix, g(·) : Rn → Rn is the vector of gravitational
forces, D(·) : Rn → Rn×n is the matrix of friction like
terms, d(·) : R → Rn is the vector of unknown bounded
piecewise continuous external disturbances, u ∈ Rn and
y ∈ Rn denote the control input and the output, respectively.

Assumption 1: M(x), C(x, v), g(x), D(x), and the upper
bound of d(t) are unknown for the controller design.

The following property holds for the EL system (1):
Property 1: M(·) is symmetric and positive definite.

Moreover, M(x), g(x), D(x) are continuous over x and
C(x, v) is continuous over x and v.

Suppose that the outputs of (1) are required to satisfy the
following time-varying constraints:

ρh
i
(t) < xi(t) <ρ̄

h
i (t), i = {1, . . . , n}, (2)

ρs
i
(t) < xi(t) <ρ̄

s
i (t), i = {1, . . . , n}, (3)

where ρh
i
(·), ρ̄hi (·), ρs

i
(·), ρ̄si (·) : R → R, i = {1, . . . , n}

are bounded continuously differentiable functions of time
with bounded derivatives. Let ρh

i
(t), ρ̄hi (t) and ρs

i
(t), ρ̄si (t)

represent hard and soft constraints on xi(t), respectively.
Assumption 2 (Feasibility of hard/soft constraints): Let

ρ̄hi (t) − ρh
i
(t) ≥ εhi > 0 and ρ̄si (t) − ρs

i
(t) ≥ εsi > 0,

∀t ≥ 0, i = {1, . . . , n}.
Note that under Assumption 2, inequalities (2) and (3)

denote separate hard and soft constrained feasible time-
varying funnels for xi(t). Hard and soft constraints on xi(t)
are said to be compatible whenever both (2) and (3) can be
satisfied at the same time (see Fig.1a). In other words, (2) and
(3) on xi(t) are compatible at time t if both ρ̄hi (t) > ρs

i
(t)

and ρ̄si (t) > ρh
i
(t) hold.

Assumption 3: The hard (2) and soft (3) constraints are
compatible at t = 0 and the initial conditions, xi(0), i =
{1, . . . , n} satisfy both (2) and (3) at t = 0.

Problem (Hard and soft constrained funnel control):
Given the aforementioned hard and soft output constraints in
(2) and (3), design under Assumptions 1-3:

1) a continuous time-varying Constraint Consistent Fun-
nel (CCF) with boundary functions ρUi (t), ρLi (t) :

R≥0 → R for each output xi(t), i = {1, . . . , n}, where
ρUi (t) − ρLi (t) ≥ εci > 0,∀t ≥ 0 (funnel feasibility
condition);

2) a robust model-free control law u(t, x) to ensure:
ρLi (t) < xi(t) < ρUi (t), ∀t ≥ 0, i = {1, . . . , n}, (4)

where constraint consistency of ρUi (t), ρLi (t) means: (i) sat-
isfaction of (4) always implies satisfaction of (2), i.e., (4)
always respects the hard constraints (2), and (ii) whenever
hard and soft constraints (2) and (3) are compatible, (4)
ensures satisfaction of (3) (or exponentially fast recovery of
(3), which will be explained in detail later), i.e., (4) respects
(recovers) the soft constraints (3) only when its satisfaction
is not conflicting with the hard constraints (2).

Fig.1 shows examples of Constraint Consistent Regions
(CCRs) for xi(t), in which hard constraints are always
satisfied and the soft constraints are met only when they
are compatible with the hard constraints. As can be seen in
Fig.1a, if hard and soft constraints are compatible for all
t ≥ 0, then the boundaries of the CCR can determine the
boundary functions of a CCF in (4). However, this is not
the case if hard and soft constraints become incompatible
for a time interval since the upper or the lower boundary
of the CCR becomes discontinuous and thus cannot be
used to construct a feasible (well-defined) continuous CCF.
For example, in Fig.1b the upper bound of the CCR is
discontinuous. Hence, to have a continuous transition region
for the evolution of xi(t), ρUi (t) in (4) needs to be designed
(planned), as depicted in Fig.1b (dashed curve), while a
continuous ρLi (t) can be directly determined by the lower
boundary of the CCR.

Remark 1: In practical applications, soft constraints (3)
can be considered as the required performance for reference
tracking or stabilization, while hard constraints (2) can be
considered as safety requirements. For example, consider a
mobile robot in the plane whose motion is modeled by (1)
and it requires to: (i) always remain in a box shaped region
indicated by |xi(t)| < si, i = {1, 2} for safety consideration,
and (ii) track a desired time-varying continuously differen-
tiable reference trajectory xd(t) = [xd1(t), xd2(t)]>, such
that |xi(t)−xdi(t)| < γi(t), i = {1, 2}, where γi(t) indicate
user-defined positive (performance) functions decaying to a
sufficiently small neighborhood of zero, e.g., γi(t) = (ρ0i −
ρ∞i

) exp(−lit) + ρ∞i
, in which li, ρ∞i

> 0 determine the
convergence rate and ultimate bound of the tracking errors,
respectively, and ρ0i > |xi(0) − xdi(0)|, i = {1, 2}. Note
that, in general, the desired trajectory xd(t) may not always
be within the safe region. In this application example, (2)
and (3) will become −si < xi(t) < si and xdi(t)− γi(t) <
xi(t) < xdi(t) + γi(t), i = {1, 2}, respectively.

III. MAIN RESULTS

In this section, given the hard and soft constraints in (2)
and (3), we will first propose an online funnel planning
method to construct the constraint consistent feasible funnel
boundary functions in (4). Then, we will design a robust
model-free funnel-based control law using the prescribed
performance control method to ensure (4).



(a) (b)

Fig. 1: (a) compatible (∀t ≥ 0), and (b) incompatible hard and soft
constraints.

A. Online Constraint Consistent Funnel Planning

Consider the hard and soft constraints in (2) and (3). Note
that whenever hard and soft constraints are compatible one
can simply choose ρLi (t) = maxt{ρsi (t), ρ

h
i
(t)} and ρUi (t) =

mint{ρ̄si (t), ρ̄hi (t)}, i = {1, . . . , n} as proper candidates for
CCF’s boundary functions within which xi(t) is allowed
to evolve2(see Fig.1a). However, whenever hard and soft
constraints become incompatible for some time interval (see
Fig.1b) the above choice leads to mint{ρ̄si (t), ρ̄hi (t)} ≤
maxt{ρsi (t), ρ

h
i
(t)}, which gives an infeasible funnel in (4).

In this respect, for each xi(t), i = {1, . . . , n}, we design
ρLi (t) and ρUi (t) in (4) as follows:ρLi (t) := max

t
{ρs
i
(t)− ϕLi (t), ρh

i
(t)}, (5a)

ρUi (t) := min
t
{ρ̄si (t) + ϕUi (t), ρ̄hi (t)}, (5b)

where ϕLi (t), ϕUi (t) : R≥0 → R≥0, i = {1, . . . , n} are con-
tinuous nonnegative modification signals that are governed
by the following dynamics:

ϕ̇Li =
1

2

(
1− sign(ηLi − µ)

) 1

ηLi + ϕLi
− kc ϕLi , (6a)

ϕ̇Ui =
1

2

(
1− sign(ηUi − µ)

) 1

ηUi + ϕUi
− kc ϕUi , (6b)

with ϕLi (0) = ϕUi (0) = 0, in which ηLi (t) = ρ̄hi (t) − ρs
i
(t),

ηUi (t) = ρ̄si (t) − ρhi (t), i = {1, . . . , n}, and µ, kc > 0 are
user-defined arbitrary positive constants. The modification
signals ϕLi (t), ϕUi (t) in (5), adjust ρLi (t) and ρUi (t) whenever
hard and soft constraints on xi(t) become conflicting so that
the soft constraints (3) are violated in favor of satisfying the
hard constraints (2).

In the sequel, we summarize the philosophy behind adopt-
ing (5) and (6), as well as the impact of choosing µ and kc.
Recall that when hard and soft constraints are compatible and
ϕLi (t) = ϕUi (t) = 0, (5) determines continuous boundary
functions of the CCF (4). Therefore, due to Assumption 3
and ϕLi (0) = ϕUi (0) = 0, (5) gives a feasible CCF for xi(t)
at t = 0. Note that, the hard and soft constraints (2) and (3)
become conflicting (incompatible) when there exists t > 0
such that: (i) ρ̄hi (t) − ρs

i
(t) < 0 or (ii) ρ̄si (t) − ρhi (t) < 0,

which lead to discontinuous CCR boundaries as mentioned
in Section II (see Fig.1b). Now consider case (ii) and let

2By the notation maxt (resp. mint) we denote taking max (resp. min)
of their (time-varying) arguments with respect to time t.

ρ̄si (t) < ρ̄hi (t),∀t ≥ 0 (as it is illustrated in Fig.1b). Based
on a user-defined minimal distance µ > 0 between ρh

i
(t)

and ρ̄si (t), the idea is to design a triggering process, by
which ρUi (t) in (5b) starts disregarding the soft constraint
ρ̄si (t), thus allowing the output xi(t) to enter the region
ρ̄si (t) < xi(t) < ρ̄si (t) + ϕUi (t). In this respect, as soon
as ρ̄si (t) − ρhi (t) ≤ µ, the term 1/(ηUi + ϕUi ) = 1/((ρ̄si +

ϕUi )− ρh
i
) in (6b) becomes active and sufficiently increases

ϕUi (t). Note that the magnitude of µ determines the level
of conservatism for triggering the process of disregarding
the soft constraints when hard and soft constraints tend
to become conflicting. On the other hand, whenever the
conflict between hard and soft constraints is resolved (i.e.,
ρ̄si (t)−ρhi (t) > µ), (6b) reduces to ϕ̇Ui = −kcϕUi and ensures
exponential convergence of ϕUi (t) to zero. Owing to (6b),
this allows ρUi (t) to converge exponentially towards ρ̄si (t)
(i.e, the violated soft constraint gets recovered exponentially
fast). In this case, the rate of convergence of ρUi (t) to the
soft constraint ρ̄si (t) can be adjusted by tuning kc. Moreover,
a larger kc can impede the growth of ϕUi (t) (also ϕLi (t)),
leading to a less conservative violation of the soft constraints.
Finally, notice that if at some time ϕUi (t) increases such
that ρ̄si (t) + ϕUi (t) > ρ̄hi (t), according to (5b), ρUi (t) will
become equal to ρ̄hi (t) to respect the hard constraint and due
to Assumption 2 the CCF’s boundaries ρLi (t) = ρh

i
(t) and

ρUi (t) = ρ̄hi (t) will remain feasible. In a similar fashion,
one can justify the modification of ρLi (t) in (5a). Finally,
we emphasize that ρLi (t) and ρUi (t), i = {1, . . . , n} obtained
from (5) are continuous (but in general nonsmooth) functions
of time. Moreover, from (6), ϕ̇Li (t) and ϕ̇Ui (t) are piecewise
continuous functions of time.

Lemma 1: Under Assumptions 2 and 3, equations (5) and
(6) construct ρLi (t) and ρUi (t) such that: (i) ρ̇Li , ρ̇

U
i , ρ

L
i , ρ

U
i ∈

L∞ (are bounded signals), and (ii) ρUi (t) − ρLi (t) ≥ εci >
0,∀t ≥ 0, i = {1, . . . , n}.

Proof: First, we establish ϕLi , ϕ̇
L
i ∈ L∞, i =

{1, . . . , n}. Consider ϕ̇Li given by (6a), which operates in
two modes:
Mode I. When ηLi (t) > µ, (6a) reduces to ϕ̇Li = −kcϕLi ,
thus ϕLi (t) becomes exponentially stable and ϕLi , ϕ̇

L
i ∈ L∞.

Mode II. When ηLi (t) ≤ µ, the first term on the right hand-
side of (6a) is active. It holds that if ηLi (t) + ϕLi (t) 9 0
(does not converge to zero), then ϕ̇Li ∈ L∞. Note that, by
assumption we have ρ̄hi , ˙̄ρhi , ρ

s
i
, ρ̇s
i
∈ L∞, which leads to

ηLi , η̇
L
i ∈ L∞. Now, let ηLi (t) + ϕLi (t) → 0, which also

indicates η̇Li + ϕ̇Li < 0 or η̇Li + ϕ̇Li > 0 depending on the
sign of ηLi (t) + ϕLi (t) at Mode II’s activation time. Owing
to (6a), ηLi (t) + ϕLi (t) → 0 leads to ϕ̇Li → +∞, which
also requires η̇Li → −∞ or η̇Li → +∞ , however, this is a
contradiction, since we had assumed η̇Li ∈ L∞. Therefore,
ηLi (t)+ϕLi (t) 9 0 and ϕ̇Li ∈ L∞. Now let ϕLi → +∞ (resp.
ϕLi → −∞), since ηLi ∈ L∞, from (6a) we get ϕ̇Li (t) →
−∞ (resp. ϕ̇Li (t) → +∞), which contradicts the infinite
growth of ϕLi , thus ϕLi ∈ L∞.

Next we prove that if ϕLi (0) ≥ 0, indeed we will have
ηLi (t) + ϕLi (t) ≥ εLi > 0 (εLi is a positive constant)



and ϕLi (t) ≥ 0,∀t ≥ 0, i = {1, . . . , n}. Consider a
sequence of switching times between Modes I and II in (6a):
{t1, . . . , tj}, j ∈ N, where 0 < t1 < . . . < tj . Notice that
Zeno behavior is excluded as ηLi (t) and ηUi (t) in (6) are
continuous time-varying signals independent of ϕLi and ϕUi .
Now consider two cases:
Case I. Suppose that at t = 0 (6a) starts evolving under
Mode I (that means ηLi (0) > µ). In this case, since (6a) in
Mode I is an exponentially stable system if ϕLi (0) ≥ 0, then
ϕLi (t) ≥ 0 for all t ≤ t1. As soon as Mode II becomes active
at time t = t1, we have ηLi (t1) = µ > 0 and ϕLi (t1) ≥ 0.
Since it is proved that ηLi (t) + ϕLi (t) 9 0, for t1 ≤ t ≤ t2
and we also have ηLi (t1) + ϕLi (t1) > 0, we can infer that
there exists a εLi > 0 such that ηLi (t) + ϕLi (t) ≥ εLi > 0,
for t1 ≤ t ≤ t2. Moreover, as ηLi (t) + ϕLi (t) > 0, for t1 ≤
t ≤ t2, if ϕLi (t) = 0 for t ∈ [t1, t2], ϕ̇Li (t) in (6a) (operating
in Mode II) will remain positive and prevents ϕLi (t) from
getting negative, thus ϕLi (t) ≥ 0, for t1 ≤ t ≤ t2. Followed
by this, when (6a) switches to Mode I at t = t3, again we
will have ϕLi (t3) ≥ 0, and ηLi (t3) > µ > 0 so the above
results can be repeatedly extended for any t ≥ t3. Therefore,
ηLi (t) + ϕLi (t) ≥ εLi > 0 and ϕLi (t) ≥ 0,∀t ≥ 0.
Case II. Now this time suppose that at t = 0 (6a) starts
running under Mode II (that means ηLi (0) ≤ µ). Note
that due to Assumption 3 we have ηLi (0) > 0. Therefore,
similarly to Case I, we can prove that ηLi (t)+ϕLi (t) ≥ εLi >
0 and ϕLi (t) ≥ 0,∀t ≥ 0.

In a similar fashion, based on (6b) one can show that:
(i) ηUi (t) + ϕUi (t) 9 0 and ϕUi , ϕ̇

U
i ∈ L∞, (ii) ηUi (t) +

ϕUi (t) ≥ εUi > 0, and (iii) the nonnegativity of ϕUi (t) (i.e.,
ϕUi (t) ≥ 0), ∀t ≥ 0, i = {1, . . . , n}.

Owing to (5), we know that ρ̇Li (t) ∈ {ρ̇s
i
(t)−ϕ̇Li (t), ρ̇h

i
(t)}

and ρ̇Ui (t) ∈ { ˙̄ρsi (t) + ϕ̇Ui (t), ˙̄ρhi (t)}. Since ρ̇s
i
, ρ̇h
i
, ˙̄ρsi , ˙̄ρhi ∈

L∞ and ϕ̇Li , ϕ̇
U
i ∈ L∞ hold, we get ρ̇Li , ρ̇

U
i ∈ L∞,∀t ≥

0, i = {1, . . . , n}. Moreover, followed by ρs
i
, ρh
i
, ρ̄si , ρ̄

h
i ∈

L∞ and boundedness of ϕLi , ϕ
U
i , (5) establishes ρLi , ρ

U
i ∈

L∞,∀t ≥ 0, i = {1, . . . , n}.
Finally, from (5) we get ρUi (t)− ρLi (t) ∈ {ρ̄hi − ρhi , ρ̄

h
i −

ρs
i

+ ϕLi , ρ̄
s
i − ρh

i
+ ϕUi , ρ̄

s
i − ρs

i
+ ϕUi + ϕLi }, where due

to Assumption 2 and the nonnegativity of ϕUi (t), ϕLi (t), the
first and the fourth elements are lower bounded by a positive
constant. Moreover, the second and third elements of the
above set are always lower bounded by a positive constant,
owing to ηLi (t)+ϕLi (t) ≥ εLi > 0 and ηUi (t)+ϕUi (t) ≥ εUi >
0, respectively. Therefore, there exists a positive constant
εci = min{εhi , εsi , εLi , εUi } such that ρUi (t) − ρLi (t) ≥ εci >
0,∀t ≥ 0, i = {1, . . . , n}.

Remark 2 (Smooth CCF): The online funnel planning
scheme given by (5) and (6) provides a continuous but
(in general) nonsmooth CCF, which can lead to continuous
but nonsmooth control inputs under funnel-based control
design methods. To generate smooth ρLi (t), ρUi (t) we can
use tanh(κ (.)) as the smooth approximation of the sign(·)
functions in (6), where a larger κ > 0 captures the sign
function behavior better. Moreover, nonsmooth max and min
operators in (5), can be replaced by their smooth over- and

under-approximations as follows:

max{c1, . . . , cn} ≤
1

ν
ln (eν c1 + . . .+ eν cn) , (7a)

− 1

ν
ln
(
e−ν c1 + . . .+ e−ν cn

)
≤ min{c1, . . . , cn}, (7b)

where a larger ν > 0 gives a closer approximation. Note
that using a very small ν in (7) might lead to a very
conservative inner-approximation of the original (feasible)
CCF, thus jeopardizing its feasibility, while a very large ν
might lead to instability in numerical calculations.

B. Funnel-Based Controller Design

Now we design a low-complexity model-free robust funnel
controller using a Prescribed Performance Control (PPC)
method similar to [11] to ensure that the output signals
xi(t), i = {1, . . . , n} will always remain within the online
planned (in general asymmetric) CCF (4). The EL system
(1) can be re-written in state-space form as follows:{
ẋ = v,

v̇ = M−1(x) (−C(x, v)v − g(x)−D(x)v + u+ d(t)) .
(8)

The controller design is two-fold: (I) velocity-level control
design, and (II) acceleration-level control design.

Step I-a. Given the initial condition x(0) and hard
constraints (2) at t = 0, determine boundary functions
ρs
i
(t), ρ̄si (t) of the soft constraints in (3) (i.e., user defined

performance constraints) according to the control application
(e.g., see Remark 1) such that conditions in Assumption 3
are met.

Step I-b. Define the normalized (w.r.t. the asymmetric fun-
nel given by (4)) system outputs as x̂(t, x) = col(x̂i(t, xi)) ∈
Rn, where:

x̂i(t, xi) :=
xi − 1

2 (ρUi (t) + ρLi (t))
1
2 (ρUi (t)− ρLi (t))

, i = {1, . . . , n}, (9)

in which x̂i ∈ (−1, 1) when xi ∈ (ρLi (t), ρUi (t)). Moreover,
define control related signals ξx := diag(ξxi(t, x̂i)) ∈ Rn×n
and εx = col(εxi

(x̂i)) ∈ Rn, where:

ξxi
(t, x̂i) :=

4

(ρUi (t)− ρLi (t))(1− x̂2i )
, (10a)

εxi(x̂i) = T (x̂i) := ln

(
1 + x̂i
1− x̂i

)
. (10b)

Finally, design the desired reference velocity vector as:

vd(t, x̂) := −kx ξx εx, (11)

with kx > 0, where vd(t, x̂) = col(vdi(t, x̂i)) ∈ Rn.
Step II-a. Define the velocity errors vector ev :=

col(evi) = v − vd ∈ Rn. Now the objective is to design
the acceleration level controller u in (8) to compensate
the velocity errors by enforcing a (optionally symmetric)
exponentially narrowing funnel on evi(t) indicated by:

− γvi (t) < evi(t) < γvi (t), ∀t ≥ 0, i = {1, . . . , n}, (12)

where γvi (·) : R → R>0, i = {1, . . . , n} are continuously
differentiable positive performance functions for the velocity



errors, which decay to a small neighborhood of zero. A pos-
sible choice for γvi (t) is (ρv0i−ρ

v
∞i

) exp(−lvi t)+ρv∞i
, where

lvi , ρ
v
∞i

are user-defined positive constants and ρv0i > |evi(0)|
that ensures evi(0) ∈ (−γvi (0), γvi (0)), i = {1, . . . , n}.

Step II-b. Similarly to the first step, define the normalized
(w.r.t. the symmetric funnel given by (12)) velocity errors as
êv(t, ev) = col(êvi(t, evi)) ∈ Rn, where:

êvi(t, evi) :=
evi
γvi (t)

, i = {1, . . . , n}, (13)

in which êvi ∈ (−1, 1) when evi ∈ (−γvi (t), γvi (t)). In addi-
tion, define control related signals ξv := diag(ξvi(t, êvi)) ∈
Rn×n and εv = col(εvi(êvi)) ∈ Rn, where:

ξvi(t, êvi) :=
2

γvi (t) (1− ê2vi)
, (14a)

εvi(êvi) = T (êvi) := ln

(
1 + êvi
1− êvi

)
. (14b)

Finally, design the control input u for (8) as:

u(t, êv) := −kv ξv εv, (15)

with kv > 0, where u(t, êv) = col(ui(t, êvi)) ∈ Rn.
Theorem 1: Consider the Euler-Lagrange system (1) with

hard and soft output constraints (2) and (3) under Assump-
tions 1, 2 and 3. Given ρLi (t), ρUi (t), i = {1, . . . , n} obtained
from the constraint consistent online funnel planning scheme
in (5) and (6), the feedback control law (15) guarantees sat-
isfaction of ρLi (t) < xi(t) < ρUi (t),∀t ≥ 0, i = {1, . . . , n},
as well as boundedness of all closed-loop signals.

Proof: The proof comprises of similar steps as in [11],
nevertheless, in contrast with [11], which considers a class
of symmetric time-varying funnel constraint, in this paper
the proposed CCF in (4) is a generic (asymmetric) funnel
constraint. The detailed proof can be found in [16].

IV. SIMULATION RESULTS

Consider a mobile robot operating on a 2-D plane with
kinematics and dynamics expressed by (see Fig.2):{
ṗc = S(θ)ψ

M̄ψ̇i + D̄ψ = ū+ d̄(t)
, S(θ)=

[
cos θ sin θ 0

0 0 1

]>
, (16)

where pc = [xc, yc, θ]
>is the position and orientation of

the body frame {C} relative to reference frame {O}, ψ =
[vT , θ̇]

>, vT , θ̇ are the transnational speed along the direction
of θ and the angular speed about the vertical axis passing
through C, respectively. Moreover, M̄ = diag(m, I), m, I
are mass and moment of inertia of the robot about the vertical
axis, respectively, D̄ ∈ R2×2 is a constant damping matrix,
and d̄(t) is the vector of bounded external disturbances. To
avoid the nonholonomic constraints, one can transform (16)
w.r.t. the hand position p = [xc, yc]

> + L[cos θ, sin θ]>(see
Fig.2) and obtain an equivalent EL form as in (1) that
meets Property 1 (with x = p being the output of (1)).
The relations between M(x), C(x, v), D(x), u, d(t) in (1)
and M̄, D̄, ū, d̄(t) in (16), as well as the numerical values of
the robot’s dynamical parameters can be found in [17].

Now consider the scenario described in Remark 1, and let
xd(t) = [−1.5+5.8 cos(0.24t+1.5), 5.8 sin(0.24t+1.5)]>be
the trajectory of a moving object (reference trajectory). Let
ρh
1

= −6.58, ρ̄h1 = 6.58 and ρh
2

= −4.63, ρ̄h2 = 4.63
represent the box shaped hard constraints (2) on robot’s
hand position p = x = [x1, x2]>. Moreover, let x(0) =
[−3.19, 1.70]>, θ(0) = −0.33, and ψ(0) = [0.2,−0.1]>.
In addition, assume γi(t), i = {1, 2} as the user-defined
trajectory tracking performance function (given in Remark
1) with l1 = l2 = 0.7 , ρ∞1

= ρ∞2
= 0.2 and ρ01 , ρ02 are

selected such that ρ0i > |xi(0)− xdi(0)|, i = {1, 2}. Under
this assumption the soft constraints (3) on xi(t) (accounting
for the trajectory tracking performance) are given by ρs

i
(t) =

xdi(t) − γi(t) and ρ̄si (t) = xdi(t) + γi(t), i = {1, 2}. The
external disturbances are considered as d̄(t) = [0.75 sin(2t+
π
3 ) + 1.5 cos(3t + 3π

7 ), 0.25 cos(3t + π
6 ) + 0.75 sin(5t −

π
3 )]>(note that the transformed disturbance vector d(t) is
bounded in (1) for bounded d̄(t), see [17]). The model-free
control law (15) designed for EL system (1), is applied to
(16) through the inverse transformation between ū and u (see
[17]). The parameters of γvi (t), i = {1, 2}, in (12), employed
in (15) are considered as: ρv∞1

= ρv∞2
= 0.1, lv1 = lv2 = 0.3

and ρv0i , i = {1, 2} are selected such that ρv0i > |evi(0)|.
Moreover, kx = 0.2, kv = 3 are considered for (11) and (15),
respectively. Finally, in the simulation we employed smooth
CCF planning proposed in Remark 2, where ε = 0.01,
kc = 3, κ = 4 and ν = 10. Under the proposed control
scheme, Fig.3 shows snapshots of the mobile robot’s hand
position trajectory (in solid blue) when tracking the moving
object (depicted by ∗) whose trajectory and initial position
are depicted by the dashed black line and #, respectively.
The red lines depict the hard (box-shaped) constraints on
the robot’s hand position, and it can be seen that the robot
respects the hard constraints and tracks the object whenever
it is possible. Fig.4 (left) depicts the evolution of the mobile
robot’s hand position in X0 and Y0 directions with time,
i.e., x1(t) and x2(t), respectively. In Fig.4 (left), the online
planned constraint consistent funnels for each x1(t) and
x2(t) are illustrated by the green regions, that satisfy the
hard (safety) and soft constraints (tracking performance)
together. Finally, Fig.4 (right) shows the evolution of the
nonnegative modification signals ϕLi (t), ϕUi (t), i = {1, 2}
that contribute in generating the CCFs for x1(t) and x2(t).
Followed by the discussion in Section III-A, a smaller kc
in (6) leads to a slower soft constraints recovery as well as
more conservatism when the planned funnel violates the soft
constraints. Figs. 3 (right) and 5 show the simulation results
with kc = 0.3. As the figures suggest, in this case the mobile
robot tends to violate the soft constraints more and have a
slower rate for recovery of the soft constraints (notice that
ϕUi (t), ϕLi (t), i = {1, 2} show larger increases in this case).

V. CONCLUSIONS

In this paper, we proposed a funnel control scheme under
hard and soft time-varying output constraints for uncertain
Euler Lagrange nonlinear systems, where hard and soft
constraints resemble safety and performance specifications
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Fig. 2: Mobile robot.
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Fig. 3: Mobile robot’s trajectory (blue lines) tracking a moving object
(dashed lines) under hard constraints (red lines) with kc = 3 (left) and
kc = 0.3 (right).

Fig. 4: x1(t) and x2(t) evolution within CCFs under hard and soft
constraints with kc = 3 (left). Evolution of the modification signals (right).

Fig. 5: x1(t) and x2(t) evolution within CCFs under hard and soft
constraints with kc = 0.3 (left). Evolution of the modification signals
(right).

on the output, respectively. Given a set of hard and soft
constraints, we proposed an online funnel planning scheme
to design a constraint consistent funnel (CCF) that violates
the soft constraints whenever they become conflicting with
the hard constraints. The prescribed performance control
approach was used to design a robust low complexity control
law to maintain the outputs within the planned CCF. Future
work will be devoted to generalizing the proposed scheme by
considering time and output dependent hard/soft constraints
and improving the funnel planning scheme to have exact
(instead of exponential) soft constraint recovery.
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