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Abstract— Underwater robotic exploration missions typically
involve traveling long distances without any human contact.
The robots that go on such missions risk getting damaged by
the unknown environment, accruing great costs and missed
opportunities. Thus it is important for the robot to be able
to accommodate unknown changes to its dynamics as much as
possible and attempt to finish the given mission, or at the very
least move itself to a retrievable position.

In this paper, we show how we can detect physical changes to
the robot reliably (79% on real robot data) and then incorporate
these changes through adapting the model to the data followed
by automated control redesign. We adopt a piecewise-affine
(PWA) modelling of the dynamics that is well suited for low
data regime learning of the dynamics and provides a structure
for computationally efficient control synthesis. We demonstrate
the effectiveness of the proposed method on a combination of
real robot data and simulated scenarios.

I. INTRODUCTION

A vast majority of the Earth is covered with water,
mostly unexplored, and some covered with ice. In order to
understand our planet better and care for it, we must learn
the behavior of its waters. The ice cover further complicates
the exploration problem, since surface vehicles are rendered
ineffective. Remote underwater operation in these areas is
also not possible due to the lack of bandwidth and range
of underwater communication methods. Such environments
are where Autonomous Underwater Vehicles(AUVs) can be
utilized to great effect.

During long-range under-ice missions, a vehicle might
go through physical changes, such as bio-fouling, which
is when organisms grow on the AUV and similar natural
effects [1], and parts being damaged. Such changes are
hard to foresee and account for, and fall into the unknown-
unknowns category of knowledge about the mission. This
difficulty mostly comes from the fact that these effects are
dependent on the chemical and physical properties of the
waters the vehicle will travel through, which are unknown
before the mission. The cost of cancelling an under-ice
long-range mission prematurely due to a damaged part can
include losing the vehicle, the data collected so far, and
possibly years of work time and preparation. Such a high
cost of failure necessitates a method in which the vehicle will
attempt to detect the presence of and handle physical changes
and continue the mission, or at the very least return to a
position where it can be retrieved. On the other hand, limited
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Fig. 1: The AUV LoLo [3] that is used in this paper. Top:
The real vehicle. Bottom: Simulation in Stonefish

computational power and scarce data availability prohibits
expensive global model learning approaches. Therefore it is
desirable to be able to adjust the dynamics model locally in
the region of the robot’s state-input space where new data is
collected and adapt the control policy accordingly.

We identify the following problems to reach reliable
autonomous adaptation to dynamics changes:

Problem 1: The vehicle must be able to detect physical
changes. The vehicle may or may not undergo physical
changes during a long mission. The exact nature of these
changes is unknown before the mission starts, thus the
vehicle must detect changes from its nominal behavior. This
problem is categorized as an open-set recognition problem
[2] where the classifier is tasked with recognizing which class
a given input is, in addition to recognizing out of distribution
(OOD) samples.

Problem 2: The vehicle should attempt to accommodate
physical changes. Given that a physical change has been
detected, the vehicle must autonomously be able to attempt
to handle these changes by incorporating them into its motion
plan. If the changes are too extreme to complete the mission,
the vehicle should attempt to reach a state where it can be
retrieved.



In order to solve the above problems, we propose an
extension over CBF-BTs [4] that checks if the nominal
model used is still valid, and if it is not, switches to a data-
driven controller that is synthesised during the mission. The
detection needed for Problem 1 is done through Scalable
Variational Gaussian Processes (SVGPs) [5] trained on aug-
mented simulation data. The data from the simulated vehicle
is augmented using the relatively small amount of nominal-
condition data from the real vehicle. To evaluate the SVGP
method, we compare it to a nearest-neighbor based method.

To handle Problem 2, we propose switching to a
piecewise-affine (PWA) modelling of the dynamics for con-
trol design as long as the nominal model is invalid. This
enables us to tune the model locally when non-conforming
(abnormal) data is detected in part of the state-input space.
We use a sampling based approach to adapt the control policy
to the change in the dynamics, and possibly still complete the
mission. It also allows for infeasibility checks, i.e. when the
cost becomes infinite, allowing for the application of more
drastic emergency measures when the mission is impossible
to complete.

The contribution of this paper is twofold; we first in-
corporate vehicle control inputs into OOD detection for
vehicle dynamics change identification and we then develop a
sampling-based control for PWA systems to efficiently adapt
to the altered vehicle dynamics. The implementation of our
proposed method can be found online1.

II. RELATED WORK

Open set recognition (OSR): The open set recognition
problem has been studied using a wide range of methods
[6]–[8] where both traditional machine learning methods
and deep neural network based methods are modified to
recognize OOD samples. Particularly, our work in this paper
is most similar to [9] where a nearest-non-outlier method is
employed to classify a given sample. However, the aforemen-
tioned methods consider the samples without their semantics
and most of them are based on the image classification do-
main. In contrast, we incorporate the known intentions of the
vehicle, in the form of control inputs, during classification.
In the robotics domain, an adjacent problem called novelty
detection has been studied [10], [11]. However, these works
consider the detection of new structures in the data that is
extrinsic to the perceiving vehicle, usually in the context of
infrastructure monitoring.

Sampling based control synthesis: Early works in sam-
pling based control synthesis such as [12]–[14] present an
alternative to hierarchical motion-planning and control for
problems where the system dynamics is highly constrained,
e.g. non-holonomic constraints, sensing limitations or restric-
tive input bounds. In such problems the constraints should
be considered already during motion planning; in the case
of RRT algorithm the constraints are imposed typically as
boundary value problems in the steer and near functions.

1https://github.com/KKalem/Data-Driven-Damage-Detection-and-
Control-Adaptation-for-an-Autonomous-Underwater-Vehicle

Recent works such as [15], [16] have provided methods
to relax the reliance on solving boundary value problems
in earlier works as well as improving the scalability. Our
work is closest to [12], [17] in the sense that we also
utilize reachable set computation to guide the sampling, we
however adopt a Zonotope based reachable set computation,
to enable fast adaptation of near and steer functions with
changing dynamics while explicitly incorporating dynamic
uncertainty in the planned timed trajectory. The Zonotope
based reachable set computation and control approach was
initially proposed in [18] albeit for symbolic control rather
than sampling based control.

III. BACKGROUND AND PRELIMINARIES

In this section, we give a brief working overview of the
methods used in Section V.

Scalable Variational Gaussian Processes (SVGPs): A
Gaussian Process (GP) is a distribution over functions within
a continuous domain, such as time or space [19]. For the
purposes of this paper, we can view GPs as a black-box
regression model that given a list of training points X and
a testing point x′, produces a Normal distribution N(µ, σ2)
as its prediction. Given N training points, the GP will have
time complexity O(N3), which disallows its use with large
training sets.

SVGPs are an extension on the GP formulation that
introduces a set of inducing points. The number of inducing
points is a hyper-parameter and is usually orders of magni-
tude smaller than the training set itself. The usage of these
inducing points reduces the training time considerably, and
allows SVGPs to be used with large datasets, such as velocity
data from an AUV. See [5] for a more detailed description
of SVGPs.

Behavior Trees: A BT is a switching control structure
where a so-called tick is sent from the root to the leaves
at some frequency. The control flow is determined by the
inner nodes and the return values of their children. The
inner nodes are one of {Sequence, Fallback}, arrows and
question marks in Figure 5 respectively. The leaf nodes
are one of {Action,Condition}, rectangles and rounded-
rectangles in Figure 5 respectively. Each node can return one
of {Success, Failure,Running}, shown as green, red and
blue respectively in Figure 5. Success indicates that the node
has completed its action successfully or that the condition
holds and vice-versa for Failure. Running indicates that the
node will take more than one tick’s time to complete. The
Sequence node ticks its children in order (left to right in
Figure 5)as long as they keep returning Success, if all of
them return Success, then the Sequence return Success, if
one returns Failure then Sequence also returns Failure. The
Fallback node does the same, for the opposite cases. Both
inner nodes will return Running if a child returns Running.
At every tick, the return state of every node is reset, keeping
the BT reactive to changes. For a more detailed view of BTs,
see [20].

The CBF-BTs [4] is a method that combines Control
Barrier Functions(CBFs) and BTs into a model that can



handle concurrent and sequential goals. This structure allows
for graceful degradation of performance. However, the CBFs
require a nominal model of the vehicle to be valid.

k-Dimensional Trees(KD-trees): KD-trees are a space-
partitioning structure [21], that allows for fast (average
O(logn) time for n points in the tree) nearest-neighbor look-
ups. In this paper, we use KD-trees to implement a nearest-
non-outlier OOD detector as a baseline method.

Zonotopes: A Zonotope is a convex, centrally symmetric
set; Zonotope representation of sets has been used as an
efficient tool in reachability analysis and control particularly
because of their compact representation and the fact that
the reachable set from a zonotope in the state space of
a linear system, remains a Zonotope [22], [23]. We use
Z(µ,G) ⊂ Rn, where µ ∈ Rn and G ∈ Rm×n, to represent
the following Zonotope set:

Z(µ,G) = {x ∈ X | x = µ+Gω, ω ∈ [−1, 1]n}, (1)

where [−1, 1]n ⊂ Rn is the Cartesian product of n closed
[−1, 1] intervals. We refer to µ as the center of the zonotope
and G as the set of generators. Z.µ and Z.G are used to
refer to the corresponding parameters of the zonotope Z.

The following zonotope operations are used in this paper:

A× Z, where (A× Z).µ = AZ.µ,

(A× Z).G = AZ.G;

Z ⊕ Z ′, where (Z ⊕ Z ′).µ = Z.µ+ Z ′.µ,

(Z ⊕ Z ′).G = [Z.G|Z ′.G],

where Z ⊕ Z ′ is the Minkowski sum of the two sets and
[Z.G|Z ′.G] denotes the concatenation of the two matrices
along their columns.

IV. PROBLEM FORMULATION

In this section we formalize the dynamics change detection
problem (Problem 1) and the adaptation to changes problem
(Problem 2).

A. Dynamics Change Detection

Let x+ = fn(x, u) be the discrete-time nominal dynamic
model of a vehicle, x(t) = [p(t), v(t)]T be the instantaneous
state where p(t) is the position and v(t) is the velocity at time
t. We define a maneuver mi as a control input ui ∈ U applied
for some fixed duration T , starting with initial velocity
v(t0) = 0. Let vmi

(t) be the velocity when maneuver
mi is being applied. We aim to find N maneuvers such
that argmax[m1...mN ] min(i,j), i̸=j Σ

T
t=0(vmi(t) − vmj (t)).

In other words, we identify maneuvers such that the velocity
of the vehicle is as different from any other maneuvers
velocity as possible. If the vehicle dynamics change, the
velocities of the maneuvers might also change, thus the goal
is to detect the change in velocities of these maneuvers.

Let I = {i|i ∈ N+, i ≤ N} be the set of identifiers
for N maneuvers, with i = 0 indicating that a maneuver is
OOD and V be the set of possible velocities. Let C(i, v(t)) :
I × V −→ I ∪ {0} be a function that returns a predicted
maneuver identifier î given an intended maneuver identifier

i and velocity v(t). Let VID be the set of velocities for all
maneuvers under nominal conditions and VOOD = V \ VID
be the set of velocities under abnormal conditions. The aim
of dynamics change detection is then defined as constructing
a classifier C that can maximize the probability of correctly
classifying ID and OOD samples, P (̂i = i|i ∈ I, v(t) ∈
VID) and P (̂i = 0|v(t) ∈ VOOD).

B. Data-driven control design

We assume to be given a data set D in which every data
point d ∈ D is a tuple < xd, ud, x

+
d > collected from the

actual underlying dynamics of the vehicle x+ = f(x, u, w)
where w ∈ W corresponds to a bounded exogenous dis-
turbance. Using D, we wish to construct a model of the
dynamics x+ = f̂(x, u, ŵ) with ŵ ∈ Ŵ that is conservative,
i.e.

∀x, u, w ∃ŵ ∈ Ŵ s.t. f(x, u, w) = f̂(x, u, ŵ). (2)

We aim to design a controller for the data-driven model
f̂ that can replicate the desired maneuvers from the nominal
model fn. We note that if D is collected entirely from the
unaltered vehicle dynamics, we expect the undisturbed data-
driven model f̂(x, u,0) to resemble fn(x, u).

V. APPROACH

The main parts of our proposed approach are as follows:
1) Augment simulation data with real data.
2) Using the augmented simulation data, train a classifier

to detect changes to dynamics.
3) Use a BT to switch between the nominal-controller

subtree and the data-driven subtree.
4) Verify if the mission is feasible given the changed

dynamics.

A. Simulation and Data Augmentation

We simulate the LoLo AUV [3] in the Stonefish simulator
[24] (Figure 1). This allows us to collect dynamics data for
both nominal and abnormal conditions, without risking the
real vehicle. In order help bridge the simulation gap, we
augment the simulated data with data collected from the real
vehicle.

In order to transfer the biases and noise models of the
real vehicle to the simulated one, we make use of Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) [25], Principal Component Analysis (PCA) [26] and
Gaussian Mixture Models (GMM) [27]. See Figure 2 for the
system diagram.

Following the definitions in Section IV-A, we identify
N = 9 maneuvers for LoLo, corresponding to two extreme
positions and one neutral position for the rudders and the
elevator. For all 9 maneuvers, we keep the the two thrusters
at maximum RPM, since this maximizes the effect of the
rudders and the elevator, further separating the velocities of
each maneuver. See Figure 3 for a plot of these velocities.

For each maneuver, DBSCAN is used to identify any
outliers and clusters in the real data. The distance parameter
of DBSCAN is set to be the median acceleration. This
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Fig. 2: The process for simulation data augmentation. The algorithm runs throughout the mission.

Fig. 3: The dataset of real vehicle velocities (red) and aug-
mented simulated vehicle velocities (green). The maneuvers
are not shown separately.

effectively filters out any outliers. The clustered data is then
used in PCA, to identify its scale and bias, and in GMM,
to identify its noise distribution. The number of clusters in
a maneuver is used as the number of components hyper-
parameter in GMM. The scale, bias and noise distribution of
each maneuver is then applied to the corresponding simulated
data to generate the augmented simulation velocities. The
augmented simulation data now has the same biases and
noise models as the real vehicle.

B. Maneuver Classification

We train and test two different classification methods
based on SVGPs [5] and KD-trees. [21]. The KD-Tree
method serves as a baseline to compare the proposed SVGP
based method against.

For each maneuver, one SVGP is trained on the augmented
simulated velocities. Since we only have access to positive
samples at training time, and negative samples are considered
to be unknown unknowns, we further augment the dataset
with uniformly random negative samples.

Remark 1: It is possible to include known negative sam-
ples during training as well, but due to the unknown unknown

nature of physical faults, doing so risks wrongfully biasing
the classifier i.e. shifting the distribution of negative sample
classification.

To make predictions, the SVGP that corresponds to the in-
tended maneuver is queried for a prediction with the current
velocity. If the confidence of the prediction is above a certain
limit, a hyper-parameter, it is accepted as in distribution (ID)
for the maneuver, otherwise it is labeled as OOD.

Similarly, a KD-Tree is constructed on the same training
data as SVGPs. For predictions, the KD-Tree is queried for
all neighbors within some distance, a hyper-parameter, and
then a distance-weighted vote is carried out for the maneuver
selection. If there were no neighbors within the queried ball,
then the sample is labeled OOD.

C. Data-driven piecewise-affine modelling
In this section we present our approach to construction of

the model of the vehicle dynamics f̂ that is ultimately used
for control synthesis. We recall that we have selected PWA
structure for f̂ because of its modularity so that when OOD
data is detected we can adapt the learned model only in the
parts of PWA corresponding to that data. We assume to have
a given partitioning of the state-input space X ×U into a set
of I ∈ N modes Mi : Xi × Ui such that ∪Ni=1Mi = X × U .
Automated partitioning of the state-input space into modes
for PWA identification is possible through mixed-integer
linear programming [28] or clustering [29] among other
approaches but is outside the scope of this paper. The initial
partitioning into modes can also be suggested by an expert
based on the nominal model. In section VI (Fig. 7) we show
how such a partitioning is designed for the AUV based on
the collected data, i.e. three modes are assigned to each
maneuver.

The dynamics in each mode is affine, i.e. in the form
x+ = Ax + Bu + c + ŵ where c is a constant vector. To
identify the parameters A, B, and c in the mode Mi we
use the standard least-square linear regression of the points
pertaining to that mode, i.e. Di = {d ∈ D|(xd, ud) ∈
Xi × Ui}. We now need to compute Ŵ in to satisfy the
approximation requirement (2). The model uncertainty is
a result of the linearization error in mode i Wlin as well
as the uncertainty W of the actual underlying model f .
The linearization error can be computed as maximum error
observed between the linear model and the data points:



Wlin = maxd∈Di
|x+

d − (Axd +Bud + c)|. W is not known
however; since we have a GP representation of the data
points we can evaluate the highest standard deviation σ for
the whole data set as an approximation of the underlying
uncertainty. We can then write the model error bound as
Ŵ = Wlin + sσ where s is a design variable to choose
the probabilistic confidence in the conservativeness of the
bound, e.g. with s = 3 the given bounds are conservative
with a 99.73% probability [30].

D. Piecewise affine RRT

In this section we present an adaptation of the RRT
algorithm for the identified PWA dynamics model f̂ with
bounded disturbance Ŵ . We initially explain the require-
ments on the identified model for feasibility of the control
and then present a method to adapt the standard steer and
near functions for affine dynamics.

The k-step extension of the dynamics x+ = Ax + Bu +
c+ w can be written as follows:

xk+ = Akx+ [B,AB, ..., Ak−1B][u(k−1)+, ..., u]

+ [1, A, ..., Ak−1][c, ..., c]

+ [1, A, ..., Ak−1][ŵ(k−1)+, ..., ŵ].

(3)

For simplicity we denote (3) hereafter as xk+ = Ax+Bu+
c+ ŵ with A = Ak, B = [B,AB, ..., Ak−1B], ... .

Remark 2: If the (A,B) pair is controllable, (3) is guar-
anteed to be fully actuated for any k > n, as B is full row
rank by definition and therefore the k-step dynamics (3) is
fully actuated.

This imposes the first required assumption for the correct-
ness of PWA-RRT algorithm:

Assumption 1: In every mode Mi the (A,B) pair is
controllable.

From Remark. 2 we know that the B is full-row rank
and as a result u = B#v where B# is it’s Moore-Penrose
pseudo-inverse, yields the least-squares solution to the prob-
lem of steering the state by vector v. We use this property
to define the near, nearest, and steer functions for the k-
step affine dynamics (3) in Algorithm 1. The AffineSteer
function returns the input value usteer required to steer the
system from x0 to x1 under the given fully actuated affine
dynamics; usteer may not necessarily be inside the input set
U . The AffineNear+ returns a subset Xnear of the discrete
set of states Xd ⊂ X that can reach the state x with inputs
that are contained in the input set U ; we can similarly define
the function AffineNear− to denote the states that can be
reached from the state x. The AffineNearest+ returns the state
x′ ∈ Xd that can reach the state x with the least normalized
effort. The normalized effort of input u is computed by
expressing u as the least squares combination of the input
space zonotope generators U.G using it’s Moore-Penrose
pseudo-inverse.

Using the adapted required functions for affine dynamics,
we present the PWA-RRT⋆ in Algorithm 2. We have imple-
mented the tree construction and tree rewiring as independent
functions that can be called separately to enable an agile tree

Algorithm 1: Affine adaptation of RRT functions

1 Function AffineSteer(A, B, c, x0, x1):
2 xaut ← Ax0 + c
3 usteer ← B#(x1 − xaut)
4 return usteer

5

6 Function AffineNear+(A, B, c, U , Xd, x):
7 Xnear ← ∅
8 for x′ ∈ Xd do
9 xaut ← Ax′ + c

10 usteer ← B#(x− xaut)
11 if usteer ∈ U then
12 Xnear ← Xnear ∪ {x′}

13 return Xnear

14

15 Function AffineNearest+(A, B, c, U , Xd, x):
16 xnearest ← argminx′∈XdU.G#B#(x−Ax′+c)
17 return xnearest

adaptation to changes in the dynamics or the cost function
where it suffices to only rewire an existing tree. Each node
in the tree is a 3-tuple of <state, parent state, input> (Line
2). In the construction of the tree, starting from the initial
state xs as the tree root (Line 3), we expand the tree by
randomly sampling from state and input spaces (Lines 5-6),
selecting nearest nodes based on the affine distance metric
defined (Lines 7-8) and extending them using random inputs
(Lines 9-11). For the rewiring of the tree, at each iteration
a node from the constructed tree is randomly selected (Line
16) and its reachable neighboring nodes are found (Line 17-
18). The cost function accumulates the costs from a node to
it’s parent until it reaches the root node. A candidate child
is rewired to the node if it reduces its cost (Line 19-25).

In case of a dynamics change within an affine mode Mi

of the dynamics, the parents of the nodes pertaining to that
mode will be invalidated and as a result the cost of those
nodes becomes infinite. Those nodes can be assigned new
parents by only calling the rewiring function in Algorithm 2
without having to re-construct the tree. In case that the tree
becomes disjoint, the mission will be considered infeasible.

So far, we have considered the PWA model without
disturbance in the PWA-RRT algorithm. to ensure that the
controller is able to keep the state uncertainty bounded over
time, we must be able to design a feedback controller that
counteracts the model disturbance Ŵi. The reachable set of
the k-step dynamics (3) from a state in an affine mode i can
be written as the following Minkowski sum of Zonotopes:

R(x) ∈ {Ax+ ci} ⊕BUi ⊕ Ŵ, (4)

where Ax + ci is the autonomous evolution of the state,
BUi is the input reachable set and Ŵ is the disturbance
reachable set. Disturbance ŵ ∈ Ŵ can only be measure
in the subsequent time step, as a result, a stabilizing input



Algorithm 2: PWA-RRT⋆

1 Function ConstructTree(PWA model: f̂ , initial
state: xs, X , U , iterations: nit):

2 root←< xs, None,None >
3 Nodes← {root}
4 for 0 ≤ it ≤ nit do
5 xrand ← rand(X )
6 urand ← rand(X )
7 < A,B, c,X,U >←

getMode(f̂ , xrand, urand)
8 xnear ←

AffineNearest+(A,B, c, U,Nodes.x, xrand)
9 < A,B, c,X,U >←

getMode(f̂ , xrand, unear)
10 xnew ← Axnear +Bu+ c
11 add < xnew, xnear, urand > to Nodes

12 return Nodes

13

14 Function RewireTree(PWA model: f̂ , Nodes,
iterations: nit):

15 for 0 ≤ it ≤ nit do
16 node← rand(Nodes)

17 < A,B, c,X,U >←Mode(f̂ , node.x, .)
18 Xcandidates ←

AffineNear−(A,B, c, U,Nodes.x, node.x)
19 for x ∈ Xcandidates do
20 unew ← AffineSteer(A,B, c, node.x, x)
21 currentCost ← cost(x, xparent, u)
22 rewiredCost ← cost(x, node.x, unew)
23 if rewiredCost < currentcost then
24 remove < x, xparent, u > from Nodes
25 add < x, node.x, unew > to Nodes

should be able to cancel Aŵ, resulting in the second required
assumption for the correctness of PWA-RRT algorithm:

Assumption 2: In every mode there exists 0 ≤ α < 1
such that AŴ ⊂ αBUi. Intuitively this means that a
portion α of the input space should be able to counteract
the disturbance. This part will be allocated as the feedback
stabilizing controller (B#e where e is the difference between
the actual state and PWA prediction) and will not be used in
the feedforward PWA-RRT algorithm.

In Fig. 4 we have shown how addition of this feedback
term can ensure that the actual trajectory from the underlying
nonlinear system will remain within the error bound Ŵ of
the PWA model as time goes on.

E. Behavior Tree

A BT is used to coordinate the switching behavior needed.
The CBF-BT is encapsulated with a pre-condition of the
vehicle nominal model being unchanged, which prevents it
from running if the dynamics of the vehicle has changed. As
a fallback to such an event, the data-driven controller (shown

Fig. 4: The solid blue line is a trajectory planned based on
the PWA model (projected on x-y plane). The dashed orange
line is the trajectory followed by the actual non-holonomic
system when the inputs from the PWA model were applied in
an open-loop fashion. The dotted pink link is when a 4-step
feedback controller is utilized on the actual system to keep
the state within the error bound of the PWA model. The red
lines appearing every 4 time steps indicate this error bound.

Re-plan

Execute?

→

?

→Model valid Plan valid

Learn model Invalidate plan

CBF-BT

→
Vehicle

unchanged

? Data-driven modelling
and planinng subtree

Emergency

Fig. 5: The BT module used to switch between the nominal-
controller subtree (CBF-BT shown as a single node for
brevity) and the data-driven subtree. Red, green and blue
colors indicate a return of failure, success and running
respectively at the current tick. In this example, the vehicle
dynamics has changed, the learned model is still valid but
the plan is not, thus the tree is re-planning.

inside dotted lines in Figure 5) is placed as an alternative to
the nominal controller. This subtree first checks if the current
learned model is still valid, and re-learns a model if it is
not, followed by using said model to produce a motion plan.
Finally, if both the model is valid and there is a plan, the
plan is executed. For the case that the vehicle has diverged
from its nominal model and attempted to adapt to this change
and failed, a drastic emergency action is placed as the final
alternative. Usually for AUVs, such an emergency action is
dropping of a weight that makes the vehicle buoyant, rising
to the surface for recovery.

VI. RESULTS

Physical Change Detection: We compare the nearest-
neighbor based method with the proposed SVGP based
method. Both methods were trained on the same training
dataset that contains all 9 maneuvers executed 10 times
each, with the vehicle in nominal conditions. Each maneuver
was executed for T = 3 minutes, followed by a wait for
0 velocity, at neutral buoyancy. The simulation data was



then augmented with the real vehicles data as explained in
subsection V-A to produce the training set. In addition to the
training set, we generated 5 different validation sets:

• Each maneuver done once, vehicle in nominal condition
(validation).

• Both the elevator and the rudders are limited to half of
their nominal limits (damaged).

• The vehicle is over-weight, corresponding to a dam-
aged buoyancy system or accumulated bio-mass (over-
weight).

• The rudders are stuck in one direction (rudders stuck).
• One thruster at low RPM.

These validation sets correspond to some of the foreseeable
types of changes the vehicle might undergo during a mission
and have balanced classes. Since each method has one hyper-
parameter that defines its “strictness”, confidence score for
SVGPs and distance for KDTree, we performed a linear
search to tune them using the validation sets. As can be
seen in Figure 6, the SVGP method outperforms the KDTree
method significantly. Note that since there are 9 maneuvers
and 1 extra class for OOD, the random chance probability
of correct classification is 0.1, which both methods surpass
for all sets at particular hyper-parameters. We observe that
the SVGP method, while better than the KDTree, also has
different accuracy results for different kinds of changes. For
example, it is better at identifying when both the elevator
and rudders are damaged compared to when a single thruster
is at low RPM. Such differences in accuracy are explained
by how drastic the change in behavior is with the different
damage types. Moving slower due to a partially working
thruster is only a slight change from the norm compared
to not being able to turn to one side, thus the classifier
needs to be a lot more strict to differentiate these more
subtle changes. Given there is overlap between the different
maneuvers, especially at low velocities due to the dynamics
of the vehicle, such accuracy differences are inevitable. At
the same time, the higher threshold leads to more false-
negatives in the validation data, the model identifies noisy
velocities as OOD.

Using the results of the validation sets, we pick 0.9 (chosen
as the point where nominal validation accuracy and abnormal
validation accuracies overlap) as the hyper-parameter of the
proposed SVGP method and test real vehicles data with
known and balanced maneuver labels. In the end, we achieve
79% accuracy on the real data, showing that our proposed
method is indeed effective on the real vehicle. In comparison,
the KDTree method with hyper-parameter 0.007 (chosen as
the point where all validation accuracies are above the chance
threshold at the same time) achieves 6% accuracy.

Control Adaptation:
As can be seen in left side of Figure 8, when the AUVs

rudders are damaged such that the turning radius when
turning left is larger than the nominal behavior, the proposed
method can instead plan right-turns to reach the desired
target. When when the left-turn has enough space, left-turns
are still utilized in this case. As an extreme example, on the
right side of Figure 8, left-turns are disabled entirely. Our
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Fig. 6: The accuracy of the two classifiers on different
datasets and thresholds. Solid blue: training, dashed orange:
validation, dash-dot red: elevator and rudders damaged, dot-
ted green: over-weight, dash-dot-dot purple: rudders stuck,
dash-dash-dot brown: one thruster at low RPM. Random
guess is shown for 9+1 classes as a grey dashed line.
Note that the x-axis is flipped for the right figure to keep
the graphs semantically parallel (moving “right” makes the
method more strict).

Fig. 7: Turning rate (Radians per second) as a function of
linear velocity (meters per second) for fixed rudder angles.
An example of partitioning suggested by the expert based
on the nonlinearity observed in the data and the subsequent
PWA modelling using linear regression.

proposed method plans a trajectory that only uses right-turns
in this case, and still finishes the given mission.

VII. CONCLUSIONS

In this paper we have identified a need for a data-driven
method to detect and accommodate physical changes in a
robotic system. We have proposed an SVGP based classifier
that can detect such changes in the system, and have shown
that it also works with high accuracy on real robot data.

Future work includes the identification of the reason for
the change in dynamics to further aid in accommodation
and the relaxation of our assumptions in this work. The
key assumptions that can be difficult to fulfill in certain
underwater applications are accurate state estimation, con-
trollability of local linearizations, and known bounds for the
model error. We believe that set-based state representations



Fig. 8: The simulated AUV mission is to visit the blue
regions in a specified order (all units are in meters). The
green dashed trajectory is planned using maneuvers based on
the nominal dynamics. The red solid line shows the adapted
plan when the left turning maneuver dynamics is altered due
to a failure in the rudder resulting in higher turning radius
(left) and left-turns being disabled entirely (right).

can offer relaxations to the first two assumption while models
with unknown error bounds may necessitate probabilistic
approaches.

Our current change detection approach works on individ-
ual time instants, we will further investigate looking at the
dynamics over a period of time which might improve the
accuracy possibly at the cost of reactivity.
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