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Abstract— Coordination of multiple platoons involves the
design of vehicles’ trajectories ensuring splitting and merging of
different platoons in a safe and energy-optimal manner. In this
work, we consider the split-merge-maintain problem between
any pair of platoons in which a number of vehicles temporally
split from the rest, allowing the vehicles of another platoon to
merge, and move with the preceding and following vehicles as a
single, large platoon. Here, the splitting, merging and distance-
maintaining tasks are expressed in Signal Temporal Logic (STL)
and a control barrier function (CBF) is introduced to encode
the STL constraints. The control inputs of the vehicles are,
then, found as a solution to a computationally efficient, convex,
quadratic program. The effectiveness of the proposed method
is verified in simulation.

I. INTRODUCTION

Nowadays, multi-vehicle coordination has received in-
creased attention as it is considered a promising solution
towards reducing traffic congestion and fuel emission in
urban environments and highways. Among different driving
scenarios, existing work has focused on vehicle platooning,
in which vehicles moving in the same lane are expected to
maintain a desired distance from their preceding vehicle, and
move at a constant velocity while communicating with a
limited number of neighboring vehicles. In the majority of
the works, consensus protocols are designed for longitudinal
control under limited inter-vehicle communication as in [1]–
[3] and stability is established often under communication
delays and/or varying communication topologies. In [4]–[7]
the splitting and/or merging problem of single vehicles was
studied and distributed or centralized control schemes were
proposed for the design of safe trajectories ensuring these
tasks. A detailed review on merging control strategies for
connected and automated vehicles (CAVs) can be found in
[8].

Contrary to single-platoon approaches, coordination of
multiple platoons has received considerably less attention in
literature [9]–[15]. Formation control of multiple platoons
has been studied in [10], [11] for single and double integrator
dynamics with the problem being formulated as a group
consensus control problem. In [12] a four layer hierar-
chical approach is considered and longitudinal and lateral
controllers are proposed ensuring consensus of vehicles in
the same string and among different strings of vehicles. In
these methods actuation limitations are not considered and
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the requirement of vehicles’ positive velocity along their
corresponding lane is ignored. Merging and splitting control
of platoons has been considered in [13], where a two-layer
hierarchical is proposed. In the first layer vehicles are orga-
nized in a virtual formation according to a scheduling policy
enabling the splitting and merging of the platoons. Then,
in the second layer a longitudinal controller is designed to
follow the virtual reference of the formation and a potential
function based lateral controller is proposed for ensuring
safe lane changing. [14] studies the multi-platoon merging
problem at curvilinear roads, accounting for input saturation
and acceleration limitations while [15] introduces a two-stage
distributed model predictive control scheme for merging of
two adjacent platoons. In the first stage a space-making
DMPC controller is introduced to temporally increase the
distance among two given vehicles and then, a second DMPC
controller is introduced to ensure smooth lane changing and
fitting to the target platoon.

In all the aforementioned approaches, lane-changing, split-
ting and merging tasks are considered to be spatial tasks
while the time required for their execution is either con-
sidered as a soft constraint or totally ignored. Recently, a
formal language called Signal Temporal Logic (STL) was
introduced in [16] to express complex, time-constrained tasks
as the ones discussed above. Contrary to other logics, STL
is evaluated over continuous signals and is equipped with
a robustness metric, defined as for example in [17], [18]
expressing the degree of satisfaction or violation of a task.
In the majority of existing work, planning under STL tasks
is formulated as an MILP problem where the dynamics and
predicate functions are linear as for example in [19]–[22].
[23]–[26] consider the design of feedback controllers for
nonlinear input affine systems in which the STL constraints
are encoded using control barrier functions (CBFs). Finally,
a first step towards combining the benefits of longer horizon
problems with control barrier functions was made in [27].

In this work we consider the split-merge-maintain problem
for systems of platoons that are subject to input constraints.
In the considered scenario a pair of platoons, initially moving
at different lanes is asked to eventually merge in one of the
lanes and move as a single, large platoon. To achieve this,
the first platoon needs to open space to allow the second
platoon to merge and eventually minimize the distance with
the vehicles of the “hosting” platoon resuming the platooning
mode. These complex tasks are expressed in Signal Temporal
Logic and encoded using control barrier functions. The
desired velocity of the vehicles is, then, found as a solution
to a CBF-QP problem that ensures minimum violation of



the STL formula, when the satisfaction of the latter is not
possible due to actuation limitations or tight time-constraints.

The remainder of this paper is organized as follows:
Section II includes the problem preliminaries, Section III
introduces the problem formulation, Section IV demonstrates
the efficacy of the proposed controller in simulation and
Section V summarizes the main results of this work and
discusses some ideas for future research.

II. PRELIMINARIES

True and false are denoted by ⊤,⊥ respectively. Scalars
and vectors are denoted by non-bold and bold letters respec-
tively. The partial derivative of a function b(x, t) evaluated at
(x′, t′) with respect to t and x is abbreviated by ∂b(x′,t′)

∂t =
∂b(x,t)

∂t

∣∣
x=x′

t=t′
and ∂b(x′,t′)

∂x = ∂b(x,t)
∂x

∣∣
x=x′

t=t′
respectively. The

latter is considered to be a row vector. An extended class K
function α : R → R≥0 is a locally Lipschitz continuous and
strictly increasing function with α(0) = 0. A⊗B denotes the
Kronecker product of the matrices A ∈ Rn, B ∈ Rm. Given
a set Q ⊂ R, the set 2Q denotes its power set. The Cartesian
product of the sets U1, . . . , Un is denoted by U =

∏n
i=1 Ui.

A. Signal Temporal Logic

Signal Temporal Logic (STL) determines whether a pred-
icate µ is true or false based on the value of a continuously
differentiable function h : Rn → R as follows:

µ =

{
⊤, h(x) ≥ 0

⊥, h(x) < 0.
(1)

The basic STL formulas are given by the grammar:

ϕ := ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | G[a,b]ϕ | F[a,b]ϕ | ϕ1 U[a,b] ϕ2,

where ϕ1, ϕ2 are STL formulas and G[a,b], F[a,b], U[a,b]

is the always, eventually and until operator defined over
the interval [a, b] with 0 ≤ a ≤ b. Let x |= ϕ denote the
satisfaction of the formula ϕ by a signal x : R≥0 → Rn.
The formula ϕ is satisfiable if ∃ x : R≥0 → Rn such that
x |= ϕ. The STL semantics for a signal x : R≥0 → Rn

are recursively defined according to [16, Sec. 2.2].
STL is equipped with a robustness metric determining
how robustly an STL formula ϕ is satisfied at time t.
Given a continuous signal x : R≥0 → Rn, the STL
robust semantics [17] are recursively defined as follows:
ρµ(x, t) = h(x(t)), ρ¬ϕ(x, t) = −ρϕ(x, t), ρϕ1∧ϕ2(x, t) =
min(ρϕ1(x, t), ρϕ2(x, t)), ρϕ1 U[a,b] ϕ2(x, t) =
maxt1∈[t+a,t+b] min(ρϕ2(x, t1),mint2∈[t,t1] ρ

ϕ1(x, t2)),
ρF[a,b]ϕ(x, t) = maxt1∈[t+a,t+b] ρ

ϕ(x, t1), ρG[a,b]ϕ(x, t) =
mint1∈[t+a,t+b] ρ

ϕ(x, t1). Finally, x |= ϕ holds, if
ρϕ(x, 0) > 0.

B. Control Barrier Functions for STL satisfaction

In this section we summarize the basic steps towards de-
signing a control barrier function (CBF) for STL satisfaction
as described in [24], [25]. Consider the STL fragment:

ψ = ⊤ | µ | ¬µ, (2a)
φ̄ = G[a,b]ψ | F[a,b]ψ | ψ1 U[a,b] ψ2, (2b)

ϕ′ =

nϕ∧
l=1

φ̄l, (2c)

where ψ1, ψ2 are STL formulas of the form (2a), φ̄l, l =
1, . . . , nϕ are STL formulas of the form (2b), nϕ ≥ 1 and
0 ≤ a ≤ b < ∞. By definition of the STL semantics, it is
sufficient to ensure the satisfaction of a formula ϕ, defined
as a conjunction of eventually and always formulas φi as
follows:

ϕ =
∧
i∈I

φi, (3)

where I = IF ∪ IG , IF = {i ∈ I : φi = F[ai,bi]ψi}
and IG = {i ∈ I : φi = G[ai,bi]ψi}. For each subformula
φi, i ∈ I, let bi : Rn × R≥0 → R be a function defined as:

bi(x, t) = −γi(t) + hi(x),

where hi : Rn → R is the predicate function corresponding
to φi, assumed to be continuously differentiable and γi :
R≥0 → R is a function describing a desired temporal
behavior of the system that ensures satisfaction of φi with a
minimum robustness r. As in [25], the performance functions
γi(t) are defined as piecewise linear functions as follows:

γi(t) =

{
γi,∞−γi,0

t∗i
t+ γi,0, if t < t∗i

γi,∞, if t ≥ t∗i
, (4)

where γi,0, γi,∞, t∗i are parameters depending on the robust-
ness value r and chosen as in [25] to satisfy bi(x(0), 0) ≥ 0
and bi(x(t), t) ≥ 0 or equivalently hi(x(t)) ≥ r, for every
t ≥ t∗i . Based on the functions bi(x, t), the CBF function
b : Rn × R≥0 → R corresponding to ϕ is defined as:

b(x, t) = −1

η
ln

(∑
i∈I

oi(t) exp (−ηbi(x, t))
)
, (5)

where η > 0 is a parameter to be tuned, oi : R≥0 →
{0, 1} is an integer valued function with oi(t) = 1, for
t ∈ T i and oi(t) = 0, otherwise, where T i = [0, bi), if
i ∈ IF ∪ {i′ ∈ IG : ai′ = 0}, or T i = [0, ai) ∪ (ai, bi) if
i ∈ {i′ ∈ IG : ai′ ̸= 0}. Observe that due to the deactivation
policy the proposed barrier function is differentiable only
at Rn × (R≥0\Σ), where Σ ⊆ {ai, bi : i ∈ I}. For
this particular choice of b(x, t) it can be shown [24] that
b(x, t) ≤ mini∈A(t) bi(x, t), where A(t) = {i ∈ I : oi(t) =
1}. Therefore, if there exists x : R≥0 → Rn such that
b(x(t), t) ≥ 0 for every t ≥ 0, then bi(x(t), t) ≥ 0, for
every i ∈ A(t) and the set C(t) is rendered forward invariant,
where C(t) = {x ∈ Rn : b(x, t) ≥ 0}.

C. Graph Theory

An undirected graph G is defined as a pair G = (N , E),
where N = {1, . . . , n} ⊂ N is a finite set of nodes and
E ⊆ {(w,w′) ∈ N × N : w ̸= w′}. The adjacency matrix
A of G is the n × n symmetric matrix whose elements
āww′ , w, w′ ∈ N are defined as follows: āww′ = 1, if
(w,w′) ∈ E and āww′ = 0, otherwise. The degree d̄w of a
node w is the cardinality of Nw, i.e., d̄w =

∑
w′∈Nw

āww′ ,
where Nw = {w′ ∈ N : (w,w′) ∈ E} denotes the nodes



ww − 1

δ′′

w̄ n−m+ q

(a) Splitting Task

ww − 1 w̄ n−m+ q

δ′ δ′

(b) Merging Task

ww − 1 w̄ n−m+ q

δ δ
(c) Maintain Distance

Fig. 1: Split-Merge-Maintain Task for a pair of platoons.

that can communicate with w. Then, the degree matrix ∆
of G is defined as the diagonal matrix n × n, containing
the degrees of the nodes of G on the diagonal, i.e., ∆ =
diag(d̄1, . . . , d̄n). Based on these matrices, we can define
the Laplacian matrix L of G as L = ∆ − A. A path
is a sequence of edges connecting two distinct vertices.
A graph is connected, if there exists a path between any
pair of vertices. A component of G [28] is a subset of G,
associated with a minimal partitioning of the vertex set, such
that each partition is connected. A connected graph has a
single connected component.

III. PROBLEM FORMULATION

Consider n vehicles that are initially divided in m platoon
systems. The leading vehicle of each platoon is called the
leader of the platoon and the remaining vehicles are called
followers. Leaders are able to communicate with their neigh-
boring followers and/or other leaders. On the other hand,
followers are only able to communicate with neighboring
vehicles of the same platoon. Consider the communication
graph G = (N , E), where N is the set of agents and E
is the set of edges, where ē = (w,w′) ∈ E iff vehicles
w,w′ communicate. The graph G is assumed to be static
and undirected. Note that we do not pose any assumption on
the connectivity of the whole graph although we assume that
the graph has m connected components, i.e., each platoon is
assumed to be connected. Let xw =

[
x1w x2w

]T
denote the

position of the w-th vehicle, where w ∈ N = {1, . . . , n}.
The position of each vehicle evolves according to the fol-
lowing equation:

ẋw = −
∑

w′∈Nw

(xw − xw′ − xdes
ww′) + uw, (6)

where uw ∈ Uw ⊆ R2 is the control input of the w-
th vehicle, Nw includes the vehicles with which w can
communicate and xdes

ww′ = xdes
w −xdes

w′ is the desired relative
position between agent w and agent w′, which is defined
as the difference between the absolute desired positions
xdes
w ,xdes

w′ ∈ R2 and is constant. Here, only xdes
ww′ needs

to be known by the vehicles, hence extra communication
or unnecessary reference frame changes are avoided. Each
vehicle is assumed to have limited actuation capabilities,
i.e., Uw ⊂ R2 is a bounded, convex set with 0 ∈ Uw for
every w ∈ N . Here, for simplicity we will consider box
constraints. Thus, Uw, w ∈ N is defined as follows:

Uw =

2∏
k=1

[−ukw,max, u
k
w,max], (7)

where uw =
[
u1w u2w

]T
and 0 < ukw,max < ∞ for every

w ∈ N and k ∈ {1, 2}. Stacking the dynamics of the
individual vehicles defined in (6), we may write the dynamics
of the multi-vehicle system as follows:

ẋ = −(L ⊗ I2)x+ d+ u, (8)

where x =
[
xT
1 . . . xT

n

]T ∈ R2n, u =
[
uT
1 . . .uT

n

]T ∈
U ⊆ R2n is the state and input of the centralized system
respectively, U =

∏
w∈N Uw, L ∈ Rn×n is the Laplacian

matrix of the graph G, and d ∈ R2n is a vector with elements
d̃w, w ∈ N defined as d̃w =

∑
w′∈Nw

xdes
ww′ . To simplify

notation, let x =
[
xT
F xT

L

]T
, where xF ∈ R2(n−m) and

xL ∈ R2m denote the states of the followers and leaders of
the platoons, respectively.

In this work we will consider the problem of splitting and
merging of platoons while ensuring that vehicles move close
together as a platoon at all other times. This task is formally
described by the STL formula ϕ, defined as:

ϕ =
∧
l∈L

∧
j∈J

φl
j , (9)

where L ⊂ 2Q is the index set of the split-merge-maintain
tasks between any pair of platoons (q, q′) with q, q′ ∈ Q =
{1, . . . ,m} and J = {1, 2, 3} is the set of the indices of
the STL formulas describing the split, merge or platoon-
maintaining task between the l-th pair of platoons (q, q′).

Here, the formulas φl
j , l ∈ L, j ∈ J are defined as follows:

φl
1 = G[al,cl] (x

1
w − x1w−1 ≥ δ′′), (10a)

φl
2 = G[bl,el]

(
(x1w̄ − x1w−1 ≥ δ′) ∧ (x1n−m+q − x1w ≤ −δ′)

∧ (∥x2n−m+q − yq′∥2 ≤ ϵ)
)
, (10b)

φl
3 = G[dl,fl]

(
(x1w̄ − x1w−1 ≤ δ) ∧ (x1n−m+q − x1w ≥ −δ)

)
,

(10c)

where 0 ≤ al ≤ bl ≤ cl ≤ dl ≤ el ≤ fl, ϵ ≤ χ
2 , χ > 0 is the

width of each lane, δ′′ > 0 and δ ≥ δ′ > 0. Here, w,w − 1
are two consecutive vehicles of the q′-th platoon, w̄ is the
last follower of the q-th platoon and yq′ ∈ R denotes the x2

coordinate of the center line of the lane at which the q′-th
platoon moves. Intuitively, φl

1 requires vehicles w,w − 1 to
increase their inter-distance along the horizontal axis, and
hence temporarily split the q′-th platoon into two smaller
platoons until time instant cl. In (10b) the last follower of
the q-th platoon should move to the lane of the q′-th platoon
overtaking the (w − 1)-th vehicle while the leader should
follow the w-th vehicle. Additionally, the leader of the q-
th platoon should always stay close to the center line of



the new lane between time instants bl and el. Finally, in
(10c) the vehicles should move towards minimizing their
relative distance, and thus recovering the platooning mode.
Specifically, in the time interval [dl, fl] the vehicles w̄, w
should not be more than δ meters ahead of the vehicle w−1
and n−m+q respectively. An illustration of the split-merge-
maintain task is shown in Figure 1.

Observe that the STL formulas, defined by (10a)-(10c),
belong to the STL fragment considered in [24] with the
predicate functions of the corresponding always formulas
being concave on x. Hence, the STL constraints can be
encoded using a control barrier function b(x, t) defined as
in Section II-B.

Based on the above we may define the QP problem
considered in this work as follows:

min
(u,ϵ)∈U×R≥0

∥u− unom∥22 + ϵ2, (11)

subject to:

∂b(x, t)

∂x
(−(L ⊗ I2)x+ d+ u) +

∂b(x, t)

∂t
≥ −α(b(x, t))− ϵ,

(11a)
C(−(L ⊗ I2)x+ d+ u) > 0 (11b)

where C ∈ Rn×2n is a matrix with elements csp = 1 if p =
2(s−1)+1, and csp = 0 otherwise, and unom : R2n×R≥0 →
U is a nominal controller that is assumed to be continuous
in x and piewecise continuous in t. Here, the nominal
controller unom(x, t) is an offline designed controller that
may introduce a desired action plan for the vehicles ensuring
the split-merge-maintain task [13] but possibly not with the
desired robustness r or not necessarily within the desired
time intervals. Assuming that at time t′ x(t′) ∈ C(t′) holds,
(11a) ensures that limt→t′+ x(t) ∈ limt→t′+ C(t), if ϵ∗ = 0,
or otherwise that the designed, optimal controller u∗(x, t′)
will violate the specification minimally. Constraint (11b),
relevant to platooning applications, is a novel constraint
introduced in this work to ensure that the vehicles move
forward along the horizontal axis and hence, avoid sudden
stopping in the middle of the road reducing the possibility
of accidents and/or traffic delays. By definition of the matrix
C, (11b) is equivalent to ẋ1

w > 0 for every w ∈ N or to the
following constraint:

u1
w >

∑
w′∈Nw

(x1
w − x1

w′ − x1,des
ww′ ), w ∈ N , (12)

where x1,des
ww′ ∈ R is the desired relative position between

vehicles w,w′ along the horizontal axis. Based on the above
we can now state the main result of this work as follows:

Theorem 1. Consider the system (8) and the STL formula
ϕ defined by (9) and (10a)-(10c). Assume that x(0) ∈ C(0)
and C(t) ̸= ∅, for every t ≥ 0. For a given, linear, extended
class K function α : R → R≥0 and an open, bounded set
D ⊂ R2n such that C(t) ⊂ D is true for every t ≥ 0, the
following hold:

(i) Assume that (11) is feasible at every (x, t) ∈ D ×
(R≥0\Σ) and let (u∗(x, t), ϵ∗(t)) ∈ U×R≥0 denote its

0 10 20 30 40 50

0

0.5

1

1.5

Fig. 2: Evolution of b(x(t), t) over time.

optimal solution at (x, t) ∈ D× (R≥0\Σ). If ϵ∗(t) = 0
for every t ∈ R≥0\Σ, then ρϕ(x, 0) ≥ r > 0.

(ii) If unom : R2n × R≥0 → U is a nominal control input
that is continuous in x and piecewise continuous in t
and satisfies unom(x, t) ∈ K(x, t), for every (x, t) ∈
D × R≥0\Σ, where K(x, t) ⊆ U is defined as:

K(x, t) =
{
u ∈ U : ḃ(x, t) ≥ −α(b(x, t)),

C(−(L ⊗ I2)x+ d+ u) > 0
}
,

with ḃ(x, t) = ∂b(x,t)
∂x (−(L⊗ I2)x+ d+ u) + ∂b(x,t)

∂t ,
then, the system (8) with u = unom(x, t) ensures that
ρϕ(x, 0) ≥ r > 0.

(iii) Let ϵwc = supD×(R≥0\Σ) ϵ
∗(t), where ϵ∗(t) is the

optimal solution of (11) for t ∈ R≥0\Σ. The set:

Cwc(t) = {x ∈ R2n : b(x, t) ≥ α−1(−ϵwc)}

is forward invariant if Cwc(t) ⊂ D for every t ≥ 0.

Proof. The proof of (i) and (ii) follows similar arguments to
[23, Th. 1] and (iii) follows the same reasoning as [23, Th.
2]. ■

IV. NUMERICAL EXAMPLE

In this example we consider 5 vehicles and 2 platoons.
The first platoon consists of vehicles {1, 4} and the second
of {2, 3, 5}, where vehicles 4 and 5 are the platoon leaders of
platoon 1 and 2, respectively. Here, G consists of 2 connected
components with each connected component corresponding
to a platoon of vehicles. Specifically, the Laplacian of the
graph L and the vector d ∈ R10 are given as follows:

L =


1 0 0 −1 0
0 2 −1 0 −1
0 −1 1 0 0
−1 0 0 1 0
0 −1 0 0 1

 ,

dT =
[
−1.5 0 −0.2 0 −1 0 1.5 0 1.2 0

]
.

Additionally, the bounds of the intervals of satisfaction of
the formulas introduced in (10a)-(10c) are chosen to be



(a, b, c, d, e, f) = (10, 23, 23, 30, 50, 50). The width of the
road is chosen to be χ = 1 and

[
yq yq′

]
=

[
χ 0

]
. Here,

we choose δ′′ = 6, δ = 3.5, ϵ =
√
0.1 and δ′ = 2.5. The

maximum allowable input on both directions is ukw,max = 10,
for every w ∈ N , k ∈ {1, 2}. In order to ensure that vehicle
1 will always follow vehicle 4 (the leader), especially during
the lane changing task, in addition to the STL task defined
in (9) we consider the following task:

φ4 = G[0,50](x
1
4 − x11 ≥ 1),

and thus enforce the satisfaction of the formula ϕ′ =
ϕ ∧ φ4. We design a barrier function for ϕ′ with r =
0.009 and set α = 0.5 and η = 40. The parame-
ters of the performance functions are chosen as follows:
γ0 =

[
−5 −5 −20 −6.5 −20 −10 −20

]
, γ∞ =[

0.01 0.011 0.01 0.01 0.01 0.01 0.01
]

and t∗ =[
10 23 23 23 30 30 0

]
, where the v-th element

of γ0,γ∞, t
∗ corresponds to the predicate function hjκ(x)

where j is the index of φj (we omit the superscript
l for simplicity) and κ is the order of the predicate
in the conjunction, e.g., h22(x) = −δ′ − x1n−m+q +
x1w. The initial condition of the system is chosen to be
xT =

[
−2.5 1 −2 0 −3 0 −1 1 0 0

]
. Here,

we consider ukw,nom(x, t) = 0 for every w ∈ {1, 2, 3},
k ∈ {1, 2} and (x, t) ∈ R10×R≥0. For vehicles w ∈ {4, 5},
we set u2w,nom(x, t) = 0 and u1w,nom(x, t) = 0.1, for
every (x, t) ∈ R10×R≥0. Intuitively, the nominal controller
enforces a constant, desired speed on the longitudinal axis
for the leaders, while the followers are expected to move
under the formation protocol, i.e., towards maintaining a
desired relative position with respect to their neighbors.
Observe that the considered nominal controller does not
ensure the satisfaction of the split-merge-maintain task, but
rather enforces vehicles to move across their current lanes.
Despite this choice of nominal control, as shown in Figure
2, the proposed controller guarantees the satisfaction of the
STL formula ϕ′. Note that the satisfaction or violation of
the formula is determined by the sign of the barrier function
b(x, t) at every time t. If b(x, t) ≥ 0 for every time t, then
the formula is satisfied. In Figure 2 the evolution of the
barrier function with respect to time is shown for the closed
loop trajectory. The sudden spikes at times 10 and 23 sec are
a result of the deactivation policy, discussed in Section II-B.
Observe further that inft∈[0,50] b(x(t), t) ≥ 0.0559. By the
first statement of Theorem 1, this implies that ρϕ

′
(x, 0) ≥

0.009, i.e., the split-merge-maintain task is satisfied with a
minimum robustness 0.009. The satisfaction of the task can
be also verified by Figure 3. As shown there, the leader of
the lower platoon accelerates from 0 to 10sec from which
time and until 23sec maintains the desired distance of 6m
with its first follower. After the lane changing, from 27 sec
onward the vehicles start moving at a constant distance from
each other. Observe that the distance between vehicles 4,5
(the leaders) and 1,2 eventually becomes constant and equal
to 2.673 and 2.686 meters respectively with both values
belonging to the desired interval (δ′, δ) = (2.5, 3.5) m.
Snapshots of the vehicles’ actions, especially during the lane
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Fig. 3: Vehicles’ distance along the x-axis as a function of
time.

changing task, are shown in Figure 4. It worth noticing that
despite the fact that collision avoidance is not enforced as a
hard constraint in this scenario, it is ensured throughout the
duration of the task. All computations were performed on an
Intel Core i7-8665U with 16GB RAM using MATLAB. The
QP problem was solved with quadprog at a frequency of
100Hz.

V. CONCLUSIONS-FUTURE WORK

In this work, we consider the multi-platoon coordination
problem and express a usual split-merge-maintain scenario in
Signal Temporal Logic. The STL constraints are encoded in
continuous-time using existing time-varying control barrier
functions (CBFs) and a QP problem is designed that ensures
the least-violation of the STL formula and forward move-
ment of the vehicles. Future work will improve the proposed
approach by ensuring STL satisfaction and an acceptable
vehicle behavior e.g., with respect to human comfort. The
problem would also benefit from a decentralized, non-
cooperative approach that can be ensured by decomposing
the global STL formula to local ones as for example in [29].
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