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Abstract

Safety-critical control is characterized as ensuring constraint satisfaction for a given dynamical system. Recent developments in
zeroing control barrier functions (ZCBFs) have provided a framework for ensuring safety of a superlevel set of a single constraint
function. Euler-Lagrange systems represent many real-world systems including robots and vehicles, which must abide by safety-
regulations, especially for use in human-occupied environments. These safety regulations include state constraints (position and
velocity) and input constraints that must be respected at all times. ZCBFs are valuable for satisfying system constraints for
general nonlinear systems, however their construction to satisfy state and input constraints is not straightforward. Furthermore,
the existing barrier function methods do not address the multiple state constraints that are required for safety of Euler-
Lagrange systems. In this paper, we propose a methodology to construct multiple, non-conflicting control barrier functions
for Euler-Lagrange systems subject to input constraints to satisfy safety regulations, while concurrently taking into account
robustness margins and sampling-time effects. The proposed approach consists of a sampled-data controller and an algorithm
for barrier function construction to enforce safety (i.e satisfy position and velocity constraints). The proposed method is
validated in simulation on a 2-DOF planar manipulator.

1 Introduction

Recent technological advancements have increased the
presence of autonomous systems in human settings. The
push for self-driving cars, drone delivery systems, and
automated warehouses are a few examples of how au-
tonomous systems are being exploited to improve effi-
ciency and productivity. However, safety is key to prop-
erly incorporate these systems, particularly in human
settings. The control of these autonomous systems must
be able to guarantee safety of both the device and hu-
mans.

Here we are motivated by safety in terms of the regu-
lations provided by the International Standards Orga-
nization (ISO), which aim to ensure that machines re-
spect position, velocity, and input constraints, e.g., do
not leave a pre-defined region, exceed this speed, or ap-
ply excessive force, which must be respected at all times
[1]. Simultaneous satisfaction of these position, velocity,
and input constraints for Euler-Lagrange systems ren-
ders the system safe. Furthermore, these systems are al-
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most always controlled digitally in a sampled-data fash-
ion and are prone to model uncertainties or external dis-
turbances that must be accounted for. The problem ad-
dressed here is how to simultaneously satisfy input and
system constraints for Euler-Lagrange systems to ensure
safety.

Satisfaction of state and input constraints can be ac-
complished by model predictive control (MPC) or ref-
erence governors (RGs). A common setback of MPC is
the high computational cost required to repeatedly sim-
ulate the system dynamics into the future [2]. RGs can
also be applied to handle state and input constraints,
but can be conservative as they require the Lyapunov
function level sets to be completely contained in the con-
straint set [3,4]. This prevents the system from touching
the constraint boundary. We should note that level set
methods, i.e., keeping the system inside a level set of a
Lyapunov function, can be developed using, for exam-
ple, backstepping for an Euler-Lagrange system. How-
ever requiring the constraint sets to be defined by level
sets of a Lyapunov function can be highly restrictive.
Furthermore, conventional MPC and RG methods are
tailored towards stability and safety. However in many
real-world applications such as human-robot coopera-
tion, the aim is to safely let a human control the system
and not just to stabilize to some equilibrium point. Con-
ventional MPC and RGs do not allow arbitrary control
inputs to be applied and so may be inappropriate for
such settings. We aim to develop a methodology that al-
lows any control input to be implemented in the safe set
while guaranteeing safety conditions are met.
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Control barrier functions have attracted attention for
constraint satisfaction of nonlinear systems. Existing
barrier function methods have been applied to gen-
eral nonlinear continuous/hybrid systems [5] and used
in control to satisfy constraints while providing sta-
bility [6]. Those methods have been extended to less
restrictive barrier function definitions and have been
applied to bi-pedal walking, adaptive cruise control,
and robotics [7–10]. Similar approaches have also ad-
dressed high relative degree systems [11] and systems
evolving on manifolds [12]. Recently, the distinction
between reciprocal control barrier functions (RCBFs)
and zeroing control barrier functions (ZCBFs) has
been established [13], in which RCBFs are undefined
at the constraint boundary while ZCBFs are zero at
the boundary and well-defined outside of the constraint
set. Aside from practical implementations, ZCBFs are
advantageous in that they hold robustness properties in
the form of input-to-state stability [14] and are usually
implemented as a point-wise minimum-norm control
law that allows for any control input to be applied
subject to the barrier constraint. A review of existing
approaches can be found in [15].

Despite the novel developments in safety-critical meth-
ods using ZCBFs, there is no existing constructive proce-
dure to design ZCBFs to satisfy the safety requirements
for Euler-Lagrange systems. Recall that here we consider
safety to incorporate state (position and velocity) and
input constraints. One existing method to handle state
and input constraints includes sum-of-squares program-
ming [5,15,16], however that approach is only applicable
to polynomial systems, and not to the Euler-Lagrange
systems considered here. Another approach for address-
ing general state and input constraints requires a pre-
defined function (referred to as an evasive maneouver)
to then construct the ZCBF [15, 17]. However the de-
sign of the evasive maneouver is not straightforward in
general, particularly with dynamically coupled systems
such as Euler-Lagrange systems.

Furthermore, a significant setback in existing ZCBF
methods is the lack of a systematic design to simultane-
ously satisfy position and velocity constraints, which is
crucial for ensuring safety of the overall system. More
specifically, the system should have bounded velocities
and slow down as it approaches the boundary of the
position constraint set. The existing approaches that
address high relative degree [11, 12] are prone to singu-
larities in which the velocity is allowed to go unbounded
inside the position workspace. These singularities occur
when the gradient of the position constraint function
is zero inside of the safe set, which prevents bounding
the velocity even in standard norm-ball type position
constraints (see [18]). Recently, we developed methods
to “remove the singularity” in the high order barrier
construction [19], however that approach only addresses
the control input and not the velocity requirement.

To address the singularity issue, here we consider mul-
tiple position constraints (e.g., box constraints), which
collectively bounds the position without suffering from
singularities and generalizes existing methods to han-
dle multiple constraints simultaneously. The initial idea
was presented in [20] where box constraints in the form
of multiple ZCBFs were shown to naturally bound the
velocity of the system and for which no such singular-
ities occur. However addressing multiple ZCBFs while
simultaneously handling input constraints requires en-
suring that the multiple constraints are non-conflicting
and has received little attention in the literature. In [20],
multiple ZCBFs were handled with input constraints in
a sampled-data control law, however that method as-
sumed that the controller was feasible. Other existing
work has addressed multiple ZCBFs, but cannot handle
input constraints [16]. Recently, integral control barrier
functions have been proposed as a means to satisfy in-
put constraints [21], however for multiple ZCBFs, there
is no guarantee that such a feasible control exists (see
Remark 4 of [21]). Finally, recent methods using energy-
based barrier functions are in fact able to simultaneously
bound the position and velocity using a single barrier
function, but insofar those methods cannot handle mul-
tiple barrier function nor input constraints [22,23]. Thus
despite the advances in safety-critical control, existing
methods have yet to provide truly safe controllers for
Euler-Lagrange systems.

In this paper, we present a methodology to construct
ZCBFs for Euler-Lagrange systems. The proposed ap-
proach satisfies multiple workspace constraints (position
and velocity), while simultaneously handling input con-
straints to ensure safety of real-world systems. A correct-
by-design algorithm is presented for the ZCBF construc-
tion that ensures forward invariance of the safe set, which
can be computed off-line. The method considers robust-
ness margins and sampling time effects. Themain results
are proposed for handling constraints in the form of box
constraints, however we demonstrate how the approach
hand be extended to more general constraint types. The
proposed approach is validated in numerical simulation
on the 2-DOF planar manipulator. All of the code, in-
cluding the algorithm to construct the the ZCBFs, is
provided in [24]. A preliminary version of this work can
be found in [25]. The approach presented here is less
conservative than that of [25] and also relaxes the as-
sumptions of [25]. Furthermore, the approach presented
here also addresses robustness and sampling terms in the
ZCBF construction, which are not considered in [25].

Notation: Throughout this paper, the term ej ∈ Rr

denotes the jth column of the identity matrix Ir×r.
The Lie derivatives of a function h(x) for the system
ẋ = f(x) + g(x)u are denoted by Lfh = ∂h

∂x f(x) and

Lgh = ∂h
∂xg(x), respectively. The terms⪯ and⪰ are used

to denote element-wise vector inequalities. The matrix
inequality A < B for square matrices A and B means
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that the matrix B − A is positive-definite. The interior
and boundary of a set A are denoted Å and ∂A, respec-
tively. The notation α ◦ β for a function α represents
the composition α(β). We use the notation x ↘ a and
x ↗ a, for some a ∈ R, to denote the limit as x ap-
proaches a from above and below, respectively. A set Np

for p ∈ N is Np = {1, ..., p} .

2 Background

2.1 Control Barrier Functions

Here we introduce the existing work regarding ZCBFs
for nonlinear affine systems: ẋ = f(x) + g(x)u, where
x(t) ∈ Rn is the state, u ∈ Rm is the control input,
f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz
continuous. We denote I ⊆ R≥0, where 0 ∈ I, as the
maximal interval of existence of x(t). A set S ⊂ Rn is
forward invariant if x(0) ∈ S implies x(t) ∈ S for all
t ∈ I.

Let h(x) : Rn → R be a continuously differentiable func-
tion, and let the associated constraint set be defined by:

C = {x ∈ Rn : h(x) ≥ 0} (1)

The function h is considered the zeroing control barrier
function and formerly defined as:

Definition 1 ( [15]) Let C ⊂ E ⊂ Rn defined by (1) be
the superlevel set of a continuously differentiable function
h : E → R, then h is a zeroing control barrier function if
there exists an extended class-K∞ function α such that
for the control system ẋ = f(x) + g(x)u, the following
holds: sup

u∈U
[Lfh(x) + Lgh(x)u] ≥ −α(h(x)),∀x ∈ E

If h is a zeroing control barrier function, the condition
ḣ(x) ≥ −α(h(x)) is then enforced in the control by re-
writing it as: Lfh + Lghu ≥ −α(h(x)), which is linear
with respect to u, and ensures forward invariance of C
[15]. We further note that the ZCBF conditions can be
extended to sampled-data systems for which u is piece-
wise continuous. That is, for a ZCBF h where ḣ(x) ≥
−α(h(x)) holds for almost all t ∈ [0, T ] (see [20,26]).

2.2 System Dynamics

Consider the following dynamical system for the gener-
alized coordinates q,v ∈ Rn:

q̇ = v

v̇ = G(q)
(
f1(q,v) + f2(q,v) + f3(q) + u

) (2)

where G(q) ∈ Rn×m and f1(q,v),f2(q,v),f3(q) ∈ Rm

are globally Lipschitz continuous functions, and u ∈

U ⊂ Rm is the control input. For conventional Euler-
Lagrange systems,G is the inertia matrix, f1 is the Cori-
olis term, f2 is the damping term, and f3 is the gravity
torque. This more general form of the Euler-Lagrange
system allows for application to over-actuated systems,
task-space constraints, and nonlinear constraints.

Here we consider the following well-known properties for
Euler-Lagrange systems [27]:

Property 1 :G(q) is full row rank such that there exists
a G+(q) ∈ Rm×n for which GG+ = In×n.

Property 2 : There exists kc ∈ R>0 such that
∥f1(q,v)∥≤ kc∥v∥2, ∀(q,v) ∈ Rn × Rn.

Property 3 : There exist constants fj ∈ R≥0 such that
∥eTj f2(q,v)∥≤ fj∥v∥, ∀(q,v) ∈ Rn × Rn, ∀j ∈ Nm.

Remark 1 Note that Properties 1-3 and global Lipschitz
continuity of the dynamics can be relaxed and are only
taken for simplicity here. We consider safety of the sys-
tem for (q,v) ∈ H for a compact set H such that these
properties can be checked in a compact set containing H
instead of over the entire space Rn × Rn.

2.3 Problem Formulation

The goal of constraint satisfaction is to ensure the states
q,v stay within a set of constraint-admissible states.
Here we focus on workspace constraints reminiscent of
real-world systems which are defined by:

Q = {q ∈ Rn : qmin ⪯ q ⪯ qmax} (3)

for qmin, qmax ∈ Rn and qmax ≻ qmin. These types of
constraints are highly applicable in robotics and general
automated systems.

We further address the velocity constraints that the sys-
tem must satisfy as:

V = {v ∈ Rn : vmin ⪯ v ⪯ vmax} (4)

where vmin,vmax ∈ Rn, vmax ≻ 0, and for simplicity of
the presentation let vmin = −vmax.

In addition to state constraints, real-world systems have
limited actuation capabilities. Thus the aforementioned
state constraints must be realizable with the available
control inputs. Let U be the available control inputs:

U = {u ∈ Rm : umin ⪯ u ⪯ umax} (5)

where umin,umax ∈ Rm, umax ≻ 0, and for simplicity
of the presentation let umin = −umax.
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The problem addressed here is to design a control law
that renders the set of state constraints forward invari-
ant. We formally define a safe system as follows:

Definition 2 Consider the constraint sets (3), (4), and
(5). Suppose for a given u, (2) with initial condition
(q(0),v(0)) ∈ Rn × Rn admits an absolutely continuous
solution (q(t),v(t)) for all t ∈ I ⊂ R>0. The system
(2) is considered safe if for any (q(0),v(0)) ∈ Q × V,
I ⊆ R≥0 and (q(t),v(t)) ∈ Q× V for all t ≥ 0.

We note that this definition of safety is stronger than
forward invariance of the constraint set as we require
forward invariance for all t ≥ 0. The problem addressed
here is formally stated as follows:

Problem 1 Consider the system (2) with position, ve-
locity, and input constraints (3), (4), (5). Design a con-
trol law u ∈ U that renders (2) safe.

3 Proposed Solution

In this section, we present the candidate ZCBFs and
the proposed control laws to ensure safety. We first con-
struct the candidate ZCBFs with design parameters. We
proceed to construct bounds on the design parameters
such that system safety is ensured under the condition
that u ∈ U . The construction of the design parameters
yields an algorithm for constructing ZCBFs. Finally, we
design continuous-time and sampled-data control laws
to guarantee system safety.

3.1 ZCBF Construction

In this section, we construct the ZCBFs for system
safety. We note that the construction is motivated by
the approaches from [11, 12], which were later adapted
in [19, 20]. To define the ZCBFs, we re-write the con-
straint set Q into individual constraints with respect to
functions h̄i,

¯
hi : R → R, which are defined as:

h̄i(qi) = qmaxi − qi,
¯
hi = qi − qmini , i ∈ Nn (6)

where qmaxi
, qmini

∈ R are the ith elements of
qmax, qmin, respectively, from (3). We define the super-
level set of h̄i and

¯
hi as:

Qi = {qi ∈ R : h̄i(qi) ≥ 0,
¯
hi(qi) ≥ 0}, i ∈ Nn (7)

It follows that: Q1 × ...×Qn = Q.

In order to define a superset of Q over which the ZCBF
conditions hold, we introduce the following functions:

h̄δi (qi) = h̄i(qi) + δ,
¯
hδi (qi) = ¯

hi(qi) + δ, i ∈ Nn (8)

where δ ∈ R≥0 is a design parameter.We similarly define
a superlevel set for h̄δi and

¯
hδi as:

Qδ
i = {qi ∈ R : h̄δi (qi) ≥ 0,

¯
hδi (qi) ≥ 0}, i ∈ Nn (9)

Note that Qi ⊂ Qδ
i for δ > 0 and Qi = Qδ

i if δ = 0. Let
Qδ = Qδ

1×...×Qδ
n, and we note thatQ = Q0. Moreover,

consideration of Qδ for δ > 0 allows for consideration of
robustness to perturbations in the proposed formulation.
We refer to [14] for a discussion on robustness of ZCBFs.

We now introduce new functions to address the relative-
degree of the system: b̄i,

¯
bi : R × R → R, and we

treat these functions as the candidate ZCBFs for Euler-
Lagrange systems defined as follows:

b̄i(qi, vi) = −vi + γα(h̄i(qi)),

¯
bi(qi, vi) = vi + γα(

¯
hi(qi)), i ∈ Nn (10)

where α is a continuously differentiable, extended class-
K∞ function, and γ ∈ R>0 is a design parameter. We see

that when b̄i ≥ 0 and
¯
bi ≥ 0 it follows that ˙̄hi ≥ −γα(h̄i)

˙
¯
hi ≥ −γα(

¯
hi) as required from Definition 1 for forward

invariance of Qi.

We treat b̄i ≥ 0 and
¯
bi ≥ 0, ∀i ∈ Nn as new constraints to

be satisfied. To properly address the set of states where
b̄i ≥ 0 and

¯
bi ≥ 0, we define the following set:

Bi = {(qi, vi) ∈ R× R : b̄i(qi, vi) ≥ 0,
¯
bi(qi, vi) ≥ 0}

(11)
with B = B1 × ...× Bn.

We define the following functions to define supersets of
B:

b̄δi (qi, vi) = −vi + γα(h̄δi (qi)),

¯
bδi (qi, vi) = vi + γα(

¯
hδi (qi)), i ∈ Nn, (12)

with the following superlevel sets:

Bδ
i = {(qi, vi) ∈ R× R : b̄δi (qi, vi) ≥ 0,

¯
bδi (qi, vi) ≥ 0}

(13)
and Bδ = Bδ

1 × ...×Bδ
n. By construction, it follows that

Bδ ⊃ B for δ > 0 and B0 = B.

Next we define the intersection of Qi and Bi and the
respective superset as:

Hi := (Qi × R) ∩ Bi, i ∈ Nn (14)

Hδ
i := (Qδ

i × R) ∩ Bδ
i , i ∈ Nn (15)

with H = H1 × ... × Hn and Hδ = Hδ
1 × ... × Hδ

n such
that Hδ ⊃ H if δ > 0 and H0 = H. We denote H as the
safe set. Note that since Q is compact, so are Hi and Hδ

i
for i ∈ Nn.
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In order to ensure forward invariance of B (and thus Q),
we repeat the ZCBF conditions as per Definition 1 with
respect to the ZCBF candidates b̄i,

¯
bi:

˙̄bi(qi, vi) ≥ −νβ(b̄i(qi, vi)) + η̄,

˙
¯
bi(qi, vi) ≥ −νβ(

¯
bi(qi, vi)) + η̄ (16)

for all (qi, vi) ∈ Hδ, i ∈ Nn, where β is an extended
class-K∞ function, ν ∈ R>0 is an additional barrier func-
tion design parameter, and η̄ ∈ R≥0 is an added term
motivated by [20] to incorporate sampling-time effects
into the proposed ZCBF construction. We note that for
η̄ := 0, (16) follows the conventional requirements for
ZCBFs [15].

Substitution of (2) into (16) and concatenation over all
i ∈ Nn yields:

SG(q)(f1(q,v)v + f2(q,v) + f3(q) + u) + γΛ(q)Sv

⪰ −νp(q,v) + η̄12n

(17)

where S = [−In×n , In×n]
T , Λ(q) = diag{ ∂α

∂
¯
h1

(q)

, ... ∂α

∂
¯
hn

(q) , ∂α
∂
¯
h1
(q) , ... , ∂α

∂
¯
hn

(q)} and p(q,v) :=

[β ◦ b̄1(q1, v1), ..., β ◦ b̄n(qn, vn), β ◦
¯
b1(q1, v1), ..., β ◦

¯
bn(qn, vn)]

T .

To summarize, satisfaction of (17) for all (q,v) ∈ Hδ ⊃
H for some δ > 0 ensures (16) holds for all (qi, vi) ∈ Hδ

i ,
i ∈ Nn, which in turn ensures qi ∈ Qi for all i ∈ Nn.

We note that (17) is linear with respect to u, and define
the proposed quadratic program-based control law:

u∗(q,v, t) = argmin
u∈U

∥u− unom(q,v, t)∥22

s.t. (17)
(18)

where unom : Rn × Rn × R → Rn is some nominal con-
trol law which can represent, for example, a pre-defined
stabilizing controller or possibly a human input to the
system. Implementation of (18), assuming a solution ex-
ists, can be used to ensure forward invariance of H. We
emphasize that the construction of the barriers leads to
linearly dependent input constraints as can be seen in
(18) due to S and the input constraints. This is in con-
trast with the QP-based control formulations, typical of
ZCBF controllers, which require linear independence of
the constraints on u [28,29]. For continuous-time imple-
mentations, linear independence of the QP constraints is
important for ensuring local Lipschitz continuity of u∗.
Here, we allow for discontinuous, sampled-data control,
which is impartial to linear dependency in the control
constraints since the control is inherently non-Lipschitz.

Before we present the main theorem, we must state two
assumptions to be satisfied. First, we make the follow-

ing realistic assumption that the system has sufficient
control authority in the set Qδ:

Assumption 1 There is sufficient control authority
such that for given δ, η̄ ∈ R≥0, there exists some ε ∈ R>0

such that umaxj
> |eTj f3(q)|+(ε + η̄)∥eTj G(q)+∥∞ for

all q ∈ Qδ, j ∈ Nm.

This is a common assumption to ensure that in fact
the system can be held statically and has the capabil-
ity to move from any configuration over Qδ. From a
pragmatic perspective, we note that this assumption is
always satisfied in practice in order for the system to
perform a desired task. Furthermore, this assumption
is much less conservative than that of [25], which ef-
fectively requires each ui to satisfy (16) independently
while all other inputs are at their respective maximum
values (i.e., |uj |= umaxj

for all j ̸= i).

Second, we require the extended class-K∞ functions α
and β to satisfy the following properties:

Assumption 2 Given a δ ∈ R≥0, the extended class-
K∞ functions α and β satisfy the following conditions:

(1) There exists a d ∈ R>0 such that α(−e)+α(qmaxi −
qmini + e) ≥ d holds for all i ∈ Nn, e ∈ [0, δ].

(2) For any a, c ∈ R>0 and b ∈ R≥0 such that a−b = 2c,
then β satisfies: β(a) + β(−b) ≥ β(c).

Assumption 2 requires that the slope of α and β on the
negative real-axis is sufficiently small with respect to
that of the positive real-axis. This condition is required
to consider how the system behaves inHδ \H. For exam-
ple, if a disturbance exists that pushes the system into
Hδ \ H (where b̄i < 0 or

¯
bi < 0), the restoring “force”

that keeps the system ultimately bounded [20] must not
exceed the capabilities of the actuators.

Remark 2 Assumption 2 is not restricted to linear func-
tions used in “exponential barrier functions” [11], nor
polynomial functions used in sum-of-squares program-
ming techniques [5]. Assumption 2 only restricts the slope
of the two extended class-K∞ functions over the nega-
tive real-axis. As a result of this generality, both linear
functions and (odd) polynomial functions are subclasses
of functions that satisfy Assumption 2.

In the following theorem, we ensure a solution to (18)
always exists for all (q,v) ∈ Hδ by appropriately com-
puting γ and ν:

Theorem 1 Consider the system (2) with the state and
input constraints defined by (3), (4), and (5). Let the set
Hδ

i be defined by (15) for i ∈ Nn with the continuously
differentiable extended class-K∞ function α and extended
class-K∞ function β. Suppose Assumptions 1 and 2 hold
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for sufficiently small δ 2 , η̄ ∈ R≥0. Then there exist γ∗1 ,
γ∗2 , γ

∗
3 , ν

∗
1 , ν

∗
2 ∈ R>0 (with ν∗1 < ν∗2 ) such that the choice

of γ ∈ (0,min{γ∗1 , γ∗2 , γ∗3}], ν ∈ [ν∗1 , ν
∗
2 ] if δ > 0 otherwise

ν ≥ ν∗1 if δ = 0, ensures that u∗ defined by (18) exists
and is unique for all (q,v) ∈ Hδ. Furthermore, for any
(q,v) ∈ Hδ, v ∈ V.

The proof of Theorem 1 is constructive. In the following
section, we analyze the properties of b̄i and

¯
bi for Euler-

Lagrange systems to construct γ∗1 , γ
∗
2 , γ

∗
3 , ν

∗
1 , and ν

∗
2 , as

well as bounds on δ, η̄, and a valid control ũ ∈ U such
that there always exists a solution to (18).

3.2 Analysis

In this section, we present properties of Hδ in relation
to the candidate ZCBFs b̄i, and

¯
bi to design γ and ν.

3.2.1 Velocity Relations

First, we state the following Lemma to relate the system
velocity with Hδ:

Lemma 1 Consider the functions and sets h̄δi , ¯
hδi , b̄

δ
i ,

¯
bδi , Qδ

i , Bδ
i , and Hδ

i defined respectively by (8), (12), (9),
(13), (15) with extended class K∞ function α. Then for
δ ≥ 0, ∥v∥∞≤ v̄ for all (q,v) ∈ Hδ, where

v̄ = γa := γα(2δ + ∥qmin − qmax∥∞) (19)

PROOF. From (9), (12), and (13) it follows that
−γα(

¯
hδi (qi)) ≤ vi ≤ γα(h̄δi (qi)) for (qi, vi) ∈ Hδ, i ∈ Nn.

Thus v is bounded in Hδ. Furthermore, the maximum
value of α(h̄δi (qi)) and α(

¯
hδi (qi)) in Qδ

i for i ∈ Nn is
a = α(2δ + ∥qmin − qmax∥∞), which yields γa as the
maximum value of v and completes the proof.

Lemma 1 provides insight into how the ZCBF construc-
tion affects the system behaviour. First, by appropri-
ately tuning γ, the velocity bounds from (19) can be ad-
justed to satisfy the state constraint v ∈ V. Second, the
relation −γα(

¯
hi(qi)) ≤ vi ≤ γα(h̄i(qi)) shows that as q

approaches the boundary ∂Q, the velocity approaches
zero. This is an important property because it restricts
the system’s inertia relative to the constraint boundary.
This aligns with intuition in that if the velocity is too
high near the boundary, exceedingly large control effort
would be required to ensure forward invariance. While γ
dictates the system’s velocity, ν dictates the behaviour
of u as the system approaches the constraint boundary.

2 We note that Definition 1 requires E ⊃ C which, equiva-
lently stated, requires δ > 0. For the sake of generality we
show that the results of Theorem 1 hold for δ = 0, although
in Section 3.3 we also require δ > 0.

From (16), ν will dictate how soon the control acts to
keep the system in the constraint set.

From Lemma 1, we define the following upper bound on
γ such that the maximum velocity will be contained in
V to ensure safety:

γ∗1 :=
1

a
min
i∈Nn

vmaxi
(20)

where a ∈ R>0 is defined in (19).

Lemma 2 Consider the functions and sets h̄δi , ¯
hδi , b̄

δ
i ,

¯
bδi , Qδ

i , Bδ
i , Hδ

i , and V defined respectively by (8), (12),
(9), (13), (15), (4) with extended class K∞ function α. If
δ ∈ R≥0, then γ

∗
1 defined by (20) is strictly positive, and

if γ ∈ (0, γ∗1 ], then v ∈ V for all (q,v) ∈ Hδ.

PROOF. Strict positivity of γ∗1 follows since vmaxi >
0 and for δ ≥ 0, a > 0 due to qmax ≻ qmin. From
Lemma 1 it follows that ∥v∥∞≤ γa. To ensure v ∈ V,
i.e., vmin ⪯ v ⪯ vmax, we must ensure γ is sufficiently
small such that v̄ from (19) is smaller than the minimum
component of vmax. Note that we are only concerned
with vmax since vmin = −vmax. More precisely, for γ ∈
(0, γ∗1 ], ∥v∥∞≤ v̄ ≤ γ∗1a ≤ min

i∈Nn

vmaxi
, which implies

that max
i∈Nn

|vi|≤ min
i∈Nn

vmaxi
. Thus v ⪯ vmax. In similar

fashion, it follows that vmin ⪯ v. Since this holds for all
(q,v) ∈ Hδ, the proof is complete.

3.2.2 Satisfaction of Input Constraints

Next, we will construct a ũ ∈ U to show that there al-
ways exists a solution to (17). However to do so, we must
introduce some notation and additional terms. First we
present ρ : Qδ

i → R:

ρ(qi) :=
γ

2

(
α(h̄i(qi)) + α(

¯
hi(qi))

)
(21)

The function ρ(qi) defines the level set that divides Bi

(see Figure 1). More specifically, themanifold defined by:
{(qi, vi) ∈ Hδ : b̄i−ρ = 0} = {(qi, vi) ∈ Hδ :

¯
bi−ρ = 0}

is the level set for which b̄i =
¯
bi. Furthermore if b̄i ≤ ρ(qi)

then
¯
bi ≥ ρ(qi) and vice versa. We denote the lower

bound of ρ(qi) over Qδ as

¯
ρδ := min

i∈Nn

{
min
qi∈Qδ

i

ρ(qi)

}
(22)

Lemma 3 Suppose the conditions of Theorem 1 hold.
Consider ρ(qi) and

¯
ρδ defined by (21) and (22), respec-

tively, for a given γ > 0, δ ≥ 0 for qi ∈ Qδ
i , i ∈ Nn.
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Then ρ(qi) is strictly positive, and there exists a c ∈ R>0

such that
¯
ρδ ≥ c.

PROOF. First, we show ρ(qi) is always strictly positive
in Qi ⊆ Qδ

i . From h̄i ≥ 0,
¯
hi ≥ 0, and γ > 0, then

α(h̄i(qi)) only equals 0 at the boundary when qi = qmaxi
,

and α(
¯
hi(qi)) only equals 0 at the boundary when qi =

qmini . Evaluation at both boundaries yields ρ(qmaxi) =
ρ(qmini) =

γ
2α(ei), for ei = qmaxi−qmini . Since qmaxi >

qmini , ei > 0. Now in the interior of Qi (i.e. qmini <
qi < qmaxi), α(h̄i) and α(¯

hi) are strictly positive. Thus
there exists no such qi ∈ Qi such that ρ(qi) = 0. Since
ρ is a continuous function on the compact set Qi, and
is strictly positive, there exists some gi ∈ R>0 such that
ρ(qi) ≥ gi in Qi. We note that gi is independent of δ.

Next, for when δ > 0 and Qi ⊂ Qδ
i , we divide

Qδ
i into two sections: a) when qi ≥ qmaxi

and b)
when qi ≤ qmini

. For Qδ
i \ Qi where qi > qmaxi

,
let qi = qmaxi

+ e for e ∈ [0, δ] such that ρ(e) =
γ

2

(
α(−e) + α(qmaxi

− qmini
− e

)
. Then from Assump-

tion 2 it follows that ρ(qi) ≥ d. Finally, forQδ
i \Qi where

qi < qmini
, let qi = qmini

− e for e ∈ [0, δ]. Similarly, it

follows that ρ(e) =
γ

2

(
α(−e) + α(qmaxi

− qmini
− e

)
,

and again from Assumption 2, ρ(qi) ≥ d. Thus there ex-

ists some d̃i = min{d, gi}, d̃i ∈ R>0 such that ρ(qi) ≥ di
on Qδ

i . Let c be the minimum of d̃i for i ∈ Nn. By
definition of

¯
ρδ, it follows that

¯
ρδ ≥ c.

The following Lemma ensures that the sum of b̄i and
¯
bi

is always positive on Hδ.

Lemma 4 Suppose the conditions of Theorem 1 hold,
γ > 0, δ ≥ 0, and consider ρ(qi) from (21). Then
b̄i(qi, vi) +

¯
bi(qi, vi) = 2ρ(qi) > 0 for all (qi, vi) ∈ Hδ

i .
Furthermore if b̄i(qi, vi) < ρ(qi), then

¯
bi(qi, vi) > ρ(qi),

and if
¯
bi(qi, vi) < ρ(qi), then b̄i(qi, vi) > ρ(qi).

PROOF. Substitution of (10) into b̄i+
¯
bi yields b̄i+

¯
bi =

2ρ(qi). From Lemma 3, ρ is strictly positive. Thus it
follows that

¯
bi = 2ρ−b̄i > ρ if b̄i < ρ, and b̄i = 2ρ−

¯
bi > ρ

if
¯
bi < ρ.

Second, we introduce ζδi ∈ R:

ζδi := min{ min
(qi,vi)∈Hδ

i

b̄i, min
(qi,vi)∈Hδ

i
¯
bi} (23)

The term ζδi is the lower bound of b̄i and
¯
bi on Hδ. We

denote the lower bound of ζδi over i ∈ Nn as:

ζδ = min
i∈Nn

ζδi (24)

Lemma 5 Suppose the conditions of Theorem 1 hold,
and consider ζδi , ζ

δ defined by (23) and (24), respectively,
for γ > 0 and δ ≥ 0. Then ζδi always exists, is non-
positive, and as δ ↘ 0, ζδ ↗ 0.

PROOF. A solution for ζi always exists since b̄i and

¯
bi are continuous functions over the compact set Hδ

i .
Furthermore, with γ > 0, δ ≥ 0, there exists a coordi-
nate (qmaxi + δ, 0) ∈ Hδ

i for which b̄i = −γα(δ) ≤ 0.
Similarly the coordinate (qmini − δ, 0) ∈ Hδ ensures

¯
bi = −γα(δ) ≤ 0. Since by definition (23), ζδi is the min-
imum value of the minimum of

¯
bi and b̄i and we have

specified coordinates in Hδ
i for which b̄i and

¯
bi are non-

positive, it follows that ζδi must also be non-positive.

Next, from the proof of Lemma 1, it follows that −vi ≥
−γα(qmaxi

− qi + δ) and vi ≥ −γα(qi − qmini
+ δ).

Thus from (10), it follows that b̄i(qi, vi) ≥ f̄i(qi) :=
−γα(qmaxi

− qi + δ) + γα(qmaxi
− qi) and

¯
bi(qi, vi) ≥

¯
fi(qi) := −γα(qi − qmini

+ δ)+ γα(qi − qmini
). Thus we

can re-write (23) as:

ζδi := min{ min
qi∈Qδ

i

f̄i(qi), min
qi∈Qδ

i ¯
fi(qi)} (25)

By inspection of f̄i and
¯
fi, it follows that ζ

δ
i = 0 when

δ = 0. Furthermore, f̄i and
¯
fi are non-positive, continu-

ous, and strictly decreasing functions of δ since α is an
extended class-K∞ function and δ ≥ 0. Thus as δ ↘ 0,
f̄i ↗ 0 and

¯
fi ↗ 0. Since ζδi is the minimum of f̄i and

¯
fi

over Qδ
i , it follows that as δ ↘ 0, ζδi ↗ 0. Finally, since

this property holds for all i ∈ Nn, it also holds for ζδ,
which completes the proof.

Remark 3 The computation of ζδi can be done off-
line as it is purely a function of the choice of α. We
explicitly define ζδi for the following commonly used
choices for α: for α(h) = h, ζδi = −γδ, for α(h) =

tan−1(h), ζδi = −γ2α
(

δ
2

)
, and for α(h) = h3, ζδi =

γ
(
α (qmaxi

− qmini
+ δ)− α (qmaxi

− qmini
+ 2δ)

)
.

Finally, we divide Hδ
i into eight regions which are out-

lined in Table 1, and depicted in Figure 1. We note that
Figure 1 shows the desired property that the velocity vi
approaches zero as the position qi approaches the bound-
ary of Qi and the velocities are bounded for all qi ∈ Qi.
We are now ready to present a candidate ũ : Hδ → Rn

to satisfy (17) and ũ ∈ U :

ũ(q,v) := G+(q)
(
µ(q,v) + χ(q,v) +ψ(q,v)

)
−f1(q,v)− f2(q,v)− f3(q) (26)
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Fig. 1. Depiction of Hi (outlined by dashed lines) and Hδ
i

(outlined by solid black lines). The subsets of Hδ
i are: I

(grey), II (blue), III (light blue), IV (orange), V (green),
VI (yellow), VII (red dash-dotted line), and VIII (yellow
dash-dotted line). ZCBF parameters used in this example:
qmax = −qmin = 1.0, α(h) = tan−1(h), γ = 1, δ = 0.2.

Table 1
Decomposition of Hδ

i

I =
{
(qi, vi) ∈ Hδ

i : b̄i(qi, vi) ∈ [0, ρ(qi)) ∧ vi ≥ 0
}

II =
{
(qi, vi) ∈ Hδ

i : b̄i(qi, vi) ∈ [0, ρ(qi)) ∧ vi ≤ 0
}

III =
{
(qi, vi) ∈ Hδ

i :
¯
bi(qi, vi) ∈ [0, ρ(qi)) ∧ vi ≥ 0

}
IV =

{
(qi, vi) ∈ Hδ

i :
¯
bi(qi, vi) ∈ [0, ρ(qi)) ∧ vi ≤ 0

}
V =

{
(qi, vi) ∈ Hδ

i : b̄i(qi, vi) < 0
}

VI =
{
(qi, vi) ∈ Hδ

i :
¯
bi(qi, vi) < 0

}
VII =

{
(qi, vi) ∈ Hδ

i :
¯
bi(qi, vi) = ρ(qi) ∧ vi ≥ 0

}
VIII =

{
(qi, vi) ∈ Hδ

i :
¯
bi(qi, vi) = ρ(qi) ∧ vi ≤ 0

}

where

µi(qi, vi) :=


−γ ∂α

∂h̄i
(qi)vi, if (qi, vi) ∈ I ∪V ∪VII

0, if (qi, vi) ∈ II ∪ III

−γ ∂α
∂
¯
hi

(qi)vi, if (qi, vi) ∈ IV ∪VI ∪VIII

(27)

χi(qi, vi) :=


0, if (qi, vi) ∈ I ∪ II ∪ III ∪ IV ∪VII ∪VIII

νβ(b̄i(qi, vi)), if (qi, vi) ∈ V

−νβ(
¯
bi(qi, vi)), if (qi, vi) ∈ VI

(28)

ψi(qi, vi) :=


−η̄, if (qi, vi) ∈ I ∪ II ∪V

η̄, if (qi, vi) ∈ III ∪ IV ∪VI

0, if (qi, vi) ∈ VII ∪VIII

, (29)

χ(q,v) = [χ1(q1, v1) , ..., χn(qn, vn)]
T , µ := [µ1(q1, v1)

, ..., µn(qn, vn)]
T , and ψ := [ψ1(q1, v1) , ..., ψn(qn, vn)]

T .
We note that ũ is well-defined over all of Hδ. Further-
more, ũ is discontinuous over Hδ. We address discon-
tinuities in a sampled-data fashion as will be discussed
later.

Our first task is to ensure that ũ ∈ U for all (q,v) ∈ Hδ.
We do this by bounding γ using:

γ∗2 = min
q∈Qδ

j∈Nm

−dj(q) +
√
d2j − 4cj(q)

2
(30)

where

dj(q) =
fj

∥eTj G+(q)∥∞y(q) + kca
(31)

cj(q) =
|eTj f3(q)|+(ε+ η̄)∥eTj G(q)+∥∞−umaxj

∥eTj G(q)+∥∞y(q)a+ kca2
, (32)

y(q) = maxi∈Nn

{
∂α

∂h̄i
(qi),

∂α

∂
¯
hi

(qi)

}
, and fj ∈ R is from

Property 3. The idea behind γ∗2 is that as γ decreases,
the system velocity will decrease and ensure the system
inertia is not too large to exceed the limitations of the
system’s actuators.

Similarly, we define the upper bound ν∗2 to ensure
∥χ∥∞≤ ε to respect actuator constraints in Hδ \ H:

ν∗2 :=
ε

|β(ζδ)|
(33)

In the event that δ = 0, then clearly ν∗2 = ∞, which
implies that the choice of ν is not upper bounded.

Satisfaction of ũ ∈ U is formally stated in the following
Lemma:

Lemma 6 Suppose the conditions of Theorem 1 hold.
Consider ũ : Hδ → Rn defined by (26), γ∗2 defined by
(30) and ν∗2 defined by (33) with ε from Assumption 1.
Then γ∗2 always exists and is strictly positive, and ν∗2 is
always strictly positive and bounded if δ > 0, otherwise
ν∗2 = +∞ if δ = 0. Furthermore, if γ ∈ (0, γ∗2 ], ν ∈ (0, ν∗2 ]
for δ > 0 otherwise ν > 0 if δ = 0, then ũ ∈ U for all
(q,v) ∈ Hδ.

PROOF. We start with ensuring existence of strictly
positive γ∗2 and ν∗2 . Existence and positivity of ν∗2 follows
trivially from (33) and Assumption 1 for δ > 0. If δ = 0,

8



then ν∗2 = +∞ follows trivially from (33). Since we chose
ε from Assumption 1, it follows that cj(q) < 0 in (30),
and so γ∗2 is real and positive.

Now we ensure the satisfaction of the actuator con-
straints ũ ∈ U . Since umax = −umin, we write the ac-
tuator constraint condition as |uj |−umaxj

≤ 0 for all
j ∈ Nm. Substitution of ũ into |uj |−umaxj

≤ 0 yields:

|eTj
(
G+

(
µ(q,v) + χ(q,v) +ψ(q,v)

)
− f1(q,v)

−f2(q,v)− f3(q)
)
|−umaxj

≤ 0

First we consider the case δ > 0 such that ν∗2 < ∞.
By choice of ν ∈ (0, ν∗2 ], ν|β(ζδ)|≤ ε. It straightforward
to see that the lower bound on b̄i is reached in V when
b̄i < 0, and similarly

¯
bi reaches its lower bound in VI

when
¯
bi < 0, for i ∈ Nn. From (23) and (24) it follows

that |β(b̄i)|≤ |β(ζδ)|, |β(
¯
bi)|≤ |β(ζδ)| in V and VI, re-

spectively. From (28), in I-IV, VII, and VIII, χi = 0.
In V, |χi|≤ ν|β(b̄i)|≤ |β(ζδ)|≤ ε. In VI, |χi|≤ ν|β(

¯
bi)|≤

|β(ζδ)|≤ ε. Thus ∥χ∥∞≤ ε on Hδ. It is also straightfor-
ward to see that ∥ψ∥∞≤ η̄.

From Properties 2, 3, and Lemma 1, it follows that for
all (q,v) ∈ Hδ, ∥f1(q,v)∥∞≤ kc∥v∥2∞≤ kcv̄

2 = kcγ
2a2

and ∥eTj f2(q,v)∥≤ fj∥v∥∞≤ fjγa, for j ∈ Nm. By def-

inition of y(q), it follows that ∥µ∥∞≤ γ2y(q)a. Substi-
tution of ∥f1(q,v)∥∞≤ kcγ

2a2, ∥χ∥∞≤ ε, ∥ψ∥∞≤ η̄,
∥µ∥∞≤ γ2y(q)a, ∥eTj f2(q,v)∥≤ fjγa, and application
of the triangle inequality yields the following sufficient
condition for guaranteeing that ũ ∈ U :

γ2
(
∥eTj G(q)+∥∞y(q)a+ kca

2
)
+ γfja+ |eTj f3(q)|

+(ε+ η̄)∥eTj G(q)+∥∞−umaxj ≤ 0

Application of the standard quadratic formula to solve
for γ (at equality) for all j ∈ Nm yields (30). Thus if
γ = γ∗2 , then ũ ∈ U . Furthermore, it is trivial to see that
any γ ∈ (0, γ∗2 ] also ensures ũ ∈ U . In the event that
δ = 0, then the sets V and VI are in fact empty. Thus
χ = 0 on Hδ, which satisfies ∥χ∥∞≤ ε and the previous
analysis ensures that if γ ∈ (0, γ∗2 ], ν > 0, then ũ ∈ U .

3.2.3 Non-Conflicting ZCBFs

Next, we design γ∗3 , δ
∗, ν∗1 , and η∗ to ensure non-

conflicting ZCBF conditions. The candidate ZCBFs
require the 2n conditions from (16) to be satisfied at all
times on Hδ. We substitute (26) into (16), which yields:

µi + χi + ψi + γ
∂α

∂h̄i
vi − νβ(b̄i) + η̄ ≤ 0 (34)

µi + χi + ψi + γ
∂α

∂
¯
hi
vi + νβ(

¯
bi)− η̄ ≥ 0 (35)

for i ∈ Nn. Thus satisfaction of (34) and (35) over all
i ∈ Nn ensures (16) holds. We must now ensure there
are no conflicting conditions such that ũ can satisfy (34)
and (35) simultaneously for all i ∈ Nn.

We now define the following upper bound γ∗3 to prevent
conflict in (17):

γ∗3 :=

√
ε

La
(36)

where a is defined in (19) and L ∈ R>0 is the Lipschitz
constant of α for all h̄i(qi),

¯
hi(qi) for all q ∈ Qδ.

Next we design the lower bound ν∗1 to ensure there always
exists a control inHδ\H to satisfy the ZCBF conditions:

ν∗1 :=
γ2La

β(
¯
ρδ)

(37)

In the following Lemma we show that for a sufficiently
small δ and choice of γ ∈ (0, γ∗3 ], the previous designs of
ν∗1 , ν

∗
2 are well-defined such that ν∗1 < ν∗2 :

Lemma 7 Suppose the conditions of Theorem 1 hold
and consider γ∗3 , ν

∗
1 , ν

∗
2 defined, respectively, by (36),

(37), (33), for δ ≥ 0. Then γ∗3 always exists and is
strictly positive. Furthermore, for γ ∈ (0, γ∗3 ], there ex-
ists a δ∗ ∈ R>0 that satisfies the following conditions:

|β(ζδ)|< β(
¯
ρδ),∀δ ∈ [0, δ∗] (38)

and for δ ∈ [0, δ∗], ν∗1 > 0, ν∗2 > 0, and ν∗1 < ν∗2 .

PROOF. First, we ensure γ∗3 is strictly positive. Since
α is continuously differentiable there always exists a Lip-
schitz constant L > 0 and with a > 0 it is straightfor-

ward to see that
ε

La
, and thus γ∗3 , is strictly positive.

Existence of (38) follows from Lemmas 5 and 3 and the
fact that β is an extended class-K∞ function such that
as δ ↘ 0, |β(ζδ)|↘ 0. Furthermore, since

¯
ρδ ≥ c from

Lemma 3, there exists a sufficiently small δ′ ∈ R>0 such
that |β(ζδ)|< β(c) ≤ β(

¯
ρδ). Let δ∗ = δ′. Since

¯
ρδ is

lower bounded by c and ζδ will continue to approach 0,
it follows that the choice of δ∗ satisfies (38).

Next, we show ν∗1 is well-defined such that ν∗1 < ν∗2 .
Since ρ(qi) (and thus

¯
ρδ) is strictly positive from Lemma

3, ν∗1 is strictly positive. For γ ∈ (0, γ∗3 ], it follows that

ν∗1 =
γ2La

β(
¯
ρδ)

≤ ε

β(
¯
ρδ)

. Now for δ ∈ [0, δ∗], it follows that

|β(ζδ)|< β(
¯
ρδ) such that ν∗1 ≤ ε

β(
¯
ρδ)

<
ε

|β(ζδ)|
:= ν∗2 .
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The final component to the proper design of γ and ν
is the design of η̄. Recall that η̄ is an added robustness
margin to handle sampling time effects 3 . In this respect,
η̄ must be sufficiently small (i.e., the sampling frequency
must be sufficiently fast) such that no conflict occurs
when attempting to simultaneously satisfy (34) and (35).
We define the upper bound on η̄ as:

η∗ :=
νβ(

¯
ρδ)− γ2La

2
(39)

Lemma 8 Suppose the conditions of Theorem 1 hold
and consider γ∗3 , ν

∗
1 , ν

∗
2 defined, respectively, by (36),

(37), (33), for γ > 0, δ ≥ 0. If δ ∈ [0, δ∗], γ ∈ (0, γ∗3 ],
ν ∈ [ν∗1 , ν

∗
2 ] for δ > 0 otherwise ν ≥ ν∗1 if δ = 0, then

η∗ is non-negative. Furthermore, if ν > ν∗1 then η∗ is
strictly positive.

PROOF. By Lemma 7, it follows that ν∗1 < ν∗2 . For ν ≥

ν∗1 , then ν ≥ γ2La

β(
¯
ρδ)

and it follows that νβ(
¯
ρδ)− γ2La ≥

0. Thus η∗ from (39) must be non-negative. Similarly if

ν > ν∗1 then ν >
γ2La

β(
¯
ρδ)

and so νβ(
¯
ρδ)− γ2La > 0, and

so η∗ is strictly positive.

The following Lemma shows that the choice of γ ∈
(0, γ∗3 ], ν ∈ [ν∗1 , ν

∗
2 ], and η̄ ∈ [0, η∗] prevents conflict be-

tween the ZCBF conditions:

Lemma 9 Suppose the conditions of Theorem 1 hold
and consider γ∗3 , ν

∗
1 , ν

∗
2 , δ

∗, and η∗ defined, respectively,
by (36), (37), (33), (38), (39). For δ ∈ [0, δ∗] γ ∈ (0, γ∗3 ],
ν ∈ [ν∗1 , ν

∗
2 ] for δ > 0 otherwise ν ≥ ν∗1 if δ = 0, and

η̄ ∈ [0, η∗], then the following conditions are always sat-
isfied:

−γ
(
∂α

∂h̄i
(qi)−

∂α

∂
¯
hi

(qi)

)
vi − 2η̄ + νβ(

¯
ρδ) > 0,

∀(qi, vi) ∈ Hδ
i (40)

γ
∂α

∂
¯
hi

(qi)vi − 2η̄ + νβ(
¯
ρδ) ≥ 0, ∀(qi, vi) ∈ II (41)

γ
∂α

∂h̄i
(qi)vi + 2η̄ − νβ(

¯
ρδ) ≤ 0 ∀(qi, vi) ∈ III (42)

3 This robustness margin can also address disturbances on
the system dynamics, see [30].

PROOF. To show satisfaction (40), we note the follow-
ing bounds for (qi, vi) ∈ Hδ

i :

−γ
(
∂α

∂h̄i
(qi)−

∂α

∂
¯
hi

(qi)

)
vi ≥ −γ | ∂α

∂h̄i
(qi)−

∂α

∂
¯
hi

(qi)| |vi|

> −γmin{ ∂α
∂h̄i

(qi),
∂α

∂
¯
hi

(qi)}v̄

≥ −γ2La

where | ∂α
∂h̄i

(qi)−
∂α

∂
¯
hi

(qi)|< min{ ∂α
∂h̄i

(qi),
∂α

∂
¯
hi

(qi)} holds

because α is strictly increasing. Also, the bound: |vi|≤
v̄ = γa follows from Lemma 1. From Lemmas 7 and 8,
the choices for ν ∈ [ν∗1 , ν

∗
2 ] for δ > 0 otherwise ν ≥ ν∗1

if δ = 0, η ∈ [0, η∗] are well-defined. Satisfaction of (40)
follows by substution of (39) with the above bound.

Next we show satisfaction of (41). Using the aforemen-

tioned bounds (for vi ≤ 0 in II) yields: γ
∂α

∂
¯
hi

(qi)vi ≥

−γ2La. Thus substitution of (39) along with the previ-
ous bound ensures (41) is satisfied.

Satisfaction of (42) is similar to the above cases. For vi ≥

0 in III, it follows that γ
∂α

∂h̄i
(qi)vi ≤ γ2La. Thus (42) is

satisfied with this bound and appropriate substitution
of (39).

Note that the requirements of Lemma 9 are the main
components to avoid conflict such that (40) and (41) al-
ways hold simultaneously. The formal guarantees of non-
conflicting conditions are found in the following proof of
Theorem 1.

We are now ready to present the proof of Theorem 1:

PROOF. [Proof of Theorem 1] We must show that
there exists a u ∈ U such that (17) holds for all (q,v) in
Hδ. The proof is composed of four parts. First, we en-
sure the existence of γ∗1 , γ

∗
2 , γ

∗
3 , ν

∗
1 , ν

∗
2 , and define the

upper bounds on δ and η̄. Second, we show that a candi-
date ũ ∈ U is well-defined in Hδ. Third, we ensure that
v ∈ V. Fourth, we show that ũ satisfies (17) on Hδ.

1) Let γ∗1 , γ
∗
2 , γ

∗
3 be defined by (20), (30), and (36),

respectively. For δ, η̄ ≥ 0 satisfying Assumption 1, it
follows that γ∗1 exists and is strictly positive from (20).
Lemmas 6 and 7 ensure γ∗2 and γ∗3 always exists and are
strictly positive. Lemma 6 also ensures ν∗2 exists and is
strictly positive for δ > 0, and otherwise ν∗2 = +∞ if
δ = 0. For γ ∈ (0,min{γ∗1 , γ∗2 , γ∗3}], Lemma 7 ensures
that δ∗ is well-defined and strictly positive. We restrict δ
such that δ ∈ [0, δ∗]. Now Lemma 7 ensures ν∗1 is strictly
positive and ν∗1 < ν∗2 . Finally, Lemma 8 ensures that for
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ν ∈ [ν∗1 , ν
∗
2 ] if δ > 0 otherwise ν ≥ ν∗1 if δ = 0, η∗ is

non-negative. We restrict η̄ such that η̄ ∈ [0, η∗].

2) Let ũ from (26) be the candidate control law. From
Lemma 6, it follows that ũ ∈ U for all (q,v) ∈ Hδ.

3) By Lemma 2, it follows that for any (q,v) ∈ Hδ,
v ∈ V.

4) Here we ensure that ũ satisfies (17). Substitution of
(26) into (17) yields (34) and (35) for i ∈ Nn. Now we
investigate (34) and (35) over Hδ by decomposing Hδ

into the eight regions from Table 1 and substituting µi,
χi, and ψi appropriately:

I:

[
µi = −γ ∂α

∂h̄i
(qi), χi = 0, ψi = −η̄

]
. The left-hand-

side of (34) yields: −νβ(b̄i) which is non-positive in I.
The left-hand-side of (35) yields:

−γ
(
∂α

∂h̄i
(qi)−

∂α

∂
¯
hi

(qi)

)
vi − 2η̄ + νβ(

¯
bi(qi, vi))

For b̄i < ρ , it follows that
¯
bi > ρ ≥ ρ̄δ from Lemma 4

and (22). Thus νβ(
¯
bi) > νβ(ρ) ≥ νβ(

¯
ρδ) since β is an

extended class-K∞ function. Substitution of νβ(
¯
bi) >

νβ(
¯
ρδ) into the above inequality is strictly greater than

the left-hand-side of (40), which by Lemma 9 ensures
(35) holds. Thus (34) and (35) hold in I.

II: [µi = 0, χi = 0, ψi = −η̄]. The left-hand-side of (34)

yields: γ
∂α

∂h̄i
(qi)vi−νβ(b̄i), for which γ

∂α

∂h̄i
(qi)vi is non-

positive, since α is strictly increasing and vi ≤ 0, such
that (34) holds. The left-hand-side of (35) is strictly
greater than the left-hand-side of (41) since

¯
bi > ρ ≥

¯
ρδ

in II from Lemma 4 and so νβ(
¯
bi) > νβ(

¯
ρδ). Thus by

Lemma 9, (35) holds.

III: [µi = 0, χi = 0, ψi = η̄]. The left-hand-side of (34)
is strictly less than the left-hand-side of (42) since b̄i > ρ
in III by Lemma 4 and so−νβ(

¯
bi) < −νβ(ρ) ≤ −νβ(

¯
ρδ).

Thus by Lemma 9, (34) holds. The left-hand-side of (35)

yields: γ
∂α

∂
¯
hi

(qi)vi+νβ(
¯
bi), for which γ

∂α

∂
¯
hi

(qi)vi is non-

negative, since α is strictly increasing and vi ≥ 0, and

¯
bi ≥ 0 by definition of III such that (35) holds.

IV:

[
µi = −γ ∂α

∂
¯
hi

(qi), χi = 0, ψi = η̄

]
. The left-hand-

side (34) yields:

−γ
(
∂α

∂
¯
hi

(qi)−
∂α

∂h̄i
(qi)

)
vi + 2η̄ − νβ(b̄i)

Since b̄i > ρ(qi) in IV from Lemma 4, it follows that
−νβ(b̄i) ≤ −νβ(

¯
ρδ) such that substitution in the above

inequality and Lemma 9 ensures the above inequality
is non-positive and so (34) holds. The left-hand-side of
(35) yields νβ(

¯
bi), which is non-negative in IV, and so

(35) holds.

V:

[
µi = −γ ∂α

∂h̄i
(qi), χi = νβ(b̄i), ψi = −η̄

]
. The left-

hand-side of (34) equals 0 and thus (34) is satisfied. The
left-hand-side of (35) yields:

−γ
(
∂α

∂h̄i
(qi)−

∂α

∂
¯
hi

)
vi − 2η̄ + νβ(b̄i) + νβ(

¯
bi)

≥ −γ
(
∂α

∂h̄i
(qi)−

∂α

∂
¯
hi

)
vi − 2η̄ + νβ(ρ(qi))

We note that the above inequality holds due to Assump-
tion 2 since b̄i +

¯
bi = 2ρ(qi) (via Lemma 4), b̄i < 0 in V,

and thus β(b̄i) + β(
¯
bi) ≥ β(ρ(qi)). Since ρ ≥

¯
ρδ, (35) is

satisfied from Lemma 9.

VI:

[
µi = −γ ∂α

∂
¯
hi

(qi), χi = −νβ(
¯
bi), ψi = η̄

]
. The left-

hand-side of (34) yields:

−γ
(
∂α

∂
¯
hi

(qi)−
∂α

∂h̄i

)
vi + 2η̄ − νβ(b̄i)− νβ(

¯
bi)

≤ −γ
(
∂α

∂
¯
hi

(qi)−
∂α

∂h̄i

)
vi + 2η̄ − νβ(ρ(qi))

Again, the above inequality holds due to Lemma 4 and
Assumption 2 such that −β(b̄i) − β(

¯
bi) ≤ −β(ρ(qi)).

Thus (34) holds from Lemma 9. The left-hand-side of
(35) equals 0 and so (35) is satisfied.

VII:

[
µi = −γ ∂α

∂h̄i
(qi), χi = 0, ψi = 0

]
. The left-hand-

side of (34) yields η̄− νβ(b̄i) = η̄− νβ(ρ) ≤ η̄− νβ(
¯
ρδ).

From (39) and since η̄ ∈ [0, η∗], it follows that η̄ ≤ 2η̄ +
γ2La ≤ νβ(

¯
ρδ). Thus η̄ − νβ(

¯
ρδ) ≤ 0 and (34) holds.

The left-hand-side of (35) with the substitution of −η̄ ≥
−2η̄ and

¯
bi = ρ ≥

¯
ρδ is greater than or equal to the left-

hand-side of (40), and thus Lemma 9 ensures (35) holds.

VIII:

[
µi = −γ ∂α

∂
¯
hi

(qi), χi = 0, ψi = 0

]
. The left-

hand-side of (34) with the substitution of η̄ ≤ 2η̄ and
b̄i = ρ ≥

¯
ρδ (see Lemma 4) is less than or equal to the

negative of the left-hand-side of (40), such that (34)
holds via Lemma 9.

The left-hand-side of (35) yields −η̄ + νβ(b̄i) = −η̄ +
νβ(ρ) ≥ −η̄ + β(

¯
ρδ). Again, from (39) and since η̄ ∈

[0, η∗], it follows that η̄ ≤ 2η̄ + γ2La ≤ νβ(
¯
ρδ). Thus

−η̄ + νβ(
¯
ρδ) ≥ 0 and (35) holds.
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Finally, since (34) and (35) hold for all i ∈ Nn, ũ ∈ U is
a valid control law to enforce (17) over Hδ. This implies
that there always exists at least one point-wise solution
to u∗ from (18), namely ũ. Due to the linearity in the
constraints and positive-definiteness of the cost function
in (18), the solution to u∗ is uniquely defined [31]. Thus
for any (q,v) ∈ Hδ, there always exists a unique, point-
wise solution to (18), and v ∈ V.

Remark 4 Theorem 1 ensures each bi satisfies the con-
ditions of Definition 1 on the set Hδ and explicitly uses δ
in the derivation of γ and ν. The use of δ shows how ro-
bustness can be incorporated into the control design while
respecting input constraints. In the set Hδ \ H, the sys-
tem (2) with (18) is asymptotically stable to the safe set
H [14]. In other words, for a sufficiently small, bounded
perturbation (e.g frommodel uncertainty) the system will
be contained in Hδ.

The proof of Theorem 1 is constructive and provides in-
sight into designing γ, ν to ensure there always exists
a solution to (18). As discussed in Remark 4, the pro-
posed design considers both constraints on the available
control input and robustness with respect to bounded
perturbations and sampling time effects. The full ZCBF
design is outlined in Algorithm 1.

Algorithm 1 Control Barrier Function Design

1: procedure ZCBF Design(α, β, δ0 ≥ 0, η̄0 ≥ 0)
2: Determine ε satisfying Assumption 1 for δ0, η̄0
3: Compute γ∗1 , γ

∗
2 , γ

∗
3 from (30), (36), and (20).

4: Choose γ ∈ (0,min{γ∗1 , γ∗2 , γ∗3}].
5: Compute ζδ,

¯
ρδ, v̄ from (24), (22), (19).

6: if δ0 > 0 then
7: if (38) holds for all δ ∈ [0, δ0] then
8: Let δ∗ = δ0
9: else

10: Find δ∗ ∈ (0, δ0) satisfying (38)
11: end if
12: Choose δ ∈ (0, δ∗]
13: else if δ0 = 0 then
14: Find δ∗ > 0 satisfying (38)
15: Set δ = δ0 = 0
16: end if
17: Compute ν∗1 , ν

∗
2 from (37), (33) respectively.

18: if δ > 0 then
19: Choose ν ∈ [ν∗1 , ν

∗
2 ]

20: else if δ = 0 then
21: Choose ν ≥ ν∗1
22: end if
23: Compute η∗ from (39)
24: if η̄0 = 0 then
25: Set η̄ = 0
26: else
27: Choose η̄ ∈ (0,min{η̄0, η∗}]
28: end if
29: end procedure

Remark 5 Algorithm 1 presents a guaranteed method of
designing ZCBFs for Euler-Lagrange systems with input
constraints. The most computationally expensive com-
ponent involves the computation of γ∗2 which requires
searching over all q ∈ Qδ. We note however that the
proposed approach requires significantly less computation
compared to searching over the entire setHδ. An alterna-
tive, albeit more conservative, approach is to bound the
termsG(q)+ and f3(q) by their respective bounds onHδ,
as done in [25].

The following corollary ensures the use of Algorithm 1
always ensures a solution to (18) exists:

Corollary 1 Consider the system (2) with the state and
input constraints defined by (3), (4), and (5). Given a
continuously differentiable extended class-K∞ function
α, extended class-K∞ function β, δ0 ∈ R≥0, and η̄0 ∈
R≥0 that satisfy Assumptions 1 and 2, Algorithm 1 will
always output a γ, ν ∈ R>0, δ, η̄ ∈ R≥0. Additionally if
δ0 > 0, then δ from Algorithm 1 is strictly positive, and
if η̄0 > 0, then η̄ from Algorithm 1 is strictly positive.
Furthermore, for this choice of α, β, γ, ν, δ, and η̄, let
Hδ be defined by (15). Then there always exists a solution
to (18) for any (q,v) ∈ Hδ.

PROOF. The proof follows directly from the construc-
tion of the ZCBF parameters from Theorem 1.

3.3 Control Implementation

Theorem 1 ensures the proposed control (18) is well-
posed in that there always exists a unique solution to u∗

overHδ. In this section, we present a sampled-data form
of u∗ and ensure forward invariance of H of the system
(2).

To introduce the sampled-data formulation, we denote
qk = q(t = tk) and vk = v(t = tk) as the sampled states
at time tk ∈ R>0 for k ∈ N and sampling period T ∈
R>0. To ensure satisfaction of (16) between sampling
times 4 , we formally define η(T ) as [20]:

η(T ) :=
(c1 + c2 + c3c4)c5

c1 + c2c4

(
e(c1+c2c4)T − 1

)
(43)

where c1 ∈ R>0 is the Lipschitz constant associated
with the Lipschitz continuous function: G(q)(f1(q,v)+
f2(q,v) + f3(q)), c2 ∈ R>0 is the Lipschitz constant
for the extended class-K∞ function β, c3 ∈ R>0 is the
Lipschitz constant for the Lipschitz continuous function
G(q), c4 := maxi∈Nm umaxi , and c5 := km∞(kcv̄

2 +

4 Less conservative bounds can be substituted for η(T ) in
this framework so long as the new η(T ) is of class-K.
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kf v̄ + kg + c4) with km∞ = maxq∈Qδ∥G(q)∥∞, kf =
maxi∈Nm fi, and kg = maxq∈Qδ∥f3(q)∥∞.

In regards to the analysis in Section 3.2, η(T ) is substi-
tuted for η̄. In this context, the sampling time T is con-
sidered a design parameter and the chosen η̄ ∈ (0, η∗] de-
fines the maximum allowable sampling frequency for the
control law. The use of η(T ), as explained in [20], is to
keep the solution (q(t),v(t)) “close enough” to (qk,vk)
for t ∈ [tk, tk+1]. This then prevents unsafe behaviour
between sampling times. We note that η(T ) is a class-K
function, which fits with intuition in that as T increases,
a larger robustness margin η is required to keep the sys-
tem safe.

The proposed sampled-data control law is:

u∗
k(qk,vk, kT ) = argmin

u∈U
∥u− unom(qk,vk, kT )∥22

s.t. SG(qk)(f1(qk,vk) + f2(qk,vk)

+ f3(qk) + u) + γΛ(qk)Svk ⪰
− νp(qk,vk) + η(T )12n

(44)

Here u∗
k is the ZCBF-based control law which satisfies a

sampled-order hold condition between sampling times.

In the following theorem, we ensure safety of the system
(2) under (44):

Theorem 2 Consider the system (2) with the state and
input constraint sets defined by (3), (4), and (5). Let the
sets Qδ

i , Bδ
i , andHδ

i be defined by (9), (13), and (15), re-
spectively, for i ∈ Nn with the continuously differentiable
extended class-K∞ function α and extended class-K∞
function β. Consider γ∗1 , γ

∗
2 , γ

∗
3 , ν

∗
1 , ν

∗
2 , δ

∗, η∗ defined,
respectively, by (20), (30), (36), (37), (33), (38), (39).
Let η(T ) be defined by (43) for a given sampling time
T ∈ R>0. Suppose Assumptions 1 and 2 hold for a suffi-
ciently small δ, η̄ ∈ R>0, and let unom : Hδ × R → Rm

be a given nominal control law. Let δ ∈ (0, δ∗], γ ∈
(0,min{γ∗1 , γ∗2 , γ∗3}], ν ∈ (ν∗1 , ν

∗
2 ], and further suppose T

is small enough such that η(T ) ∈ (0, η̄] and η̄ ≤ η∗. Then
u∗
k defined by (44) exists and is uniquely defined in Hδ.

Furthermore, if β ◦ b̄i, β ◦
¯
bi are locally Lipschitz contin-

uous onHδ
i for all i ∈ Nn and (q(0),v(0)) ∈ H, then (2)

under (44) is safe.

PROOF. We note that by Lemma 8, for δ ∈ (0, δ∗],
the choice of ν is well-defined (i.e (ν∗1 , ν

∗
2 ] ̸= ∅) and η∗ is

strictly positive. Thus (0, η∗] is non-empty and so η(T )
is well-defined. By Theorem 1, u∗

k always exists and is
uniquely defined on Hδ.

Since the system dynamic terms f1, f2, f3, and G in
(2) are globally Lipschitz continuous and time-invariant,
and uk is a bounded, piece-wise constant function of

time, Proposition C.3.7 of [32] ensures that an absolutely
continuous solution (q(t),v(t)) exists for a time δt1 ∈
R>0 such that (q(t),v(t)) is uniquely defined on [0, δt1].
Since the controller u∗ enforces the ZCBF conditions of
(34), The conditions of Theorem 2 of [20] are satisfied
such thatH is forward invariant for all t ∈ [0, δt1). Since
H is a compact set we can extend the forward invariance
interval to [0,∞) as follows. If at δt1, the state remains
in H, we can repeat the analysis for subsequent times
δti > δti−1, i > 1 such that (q(t),v(t)) ∈ H for all
t ∈ [0, δti). To extend δti → ∞, suppose instead that
at some t̄ < ∞, the state escapes H. To escape H, the
state must traverse Hδ \H. However, the control is well-
defined on Hδ for which the ZCBF conditions (34) are
always enforced such that the state could never have left
H. This leads to a contradiction wherein no such t̄ exists,
which leads to forward invariance of H for all t ≥ 0.
Since H ⊂ Q× V from Theorem 1, (q(t),v(t)) remains
in Q× V for all t ≥ 0 which completes the proof.

A continuous-time version of Theorem 2 is presented in
the following Corollary:

Corollary 2 (Continuous-Time) Consider the sys-
tem (2) with the state and input constraint sets defined
by (3), (4), and (5). Let the sets Qδ

i , Bδ
i , and Hδ

i be
defined by (9), (13), and (15), respectively, for i ∈ Nn

with the continuously differentiable extended class-K∞
function α and extended class-K∞ function β. Consider
γ∗1 , γ

∗
2 , γ

∗
3 , ν

∗
1 , ν

∗
2 , δ

∗ defined, respectively, by (20), (30),
(36), (37), (33), (38). Suppose Assumptions 1 and 2
hold for a sufficiently small δ ∈ R>0 and η̄ := 0, and
let unom : Hδ × R → Rm be a given nominal control
law. If δ ∈ (0, δ∗], γ ∈ (0,min{γ∗1 , γ∗2 , γ∗3}], ν ∈ [ν∗1 , ν

∗
2 ],

then the control u∗ defined by (18) exists and is uniquely
defined on Hδ. Furthermore if β ◦ b̄i, β ◦

¯
bi are locally

Lipschitz continuous on Hδ
i for all i ∈ Nn, u

∗ is locally
Lipschitz continuous on Hδ, and (q(0),v(0)) ∈ H, then
(2) under (18) is safe.

PROOF. By Theorem 1, u∗
k always exists and is

uniquely defined on Hδ. Due to the Lipschitz proper-
ties of the closed-loop system (2) under u∗ on Hδ, for
(q(0),v(0)) ∈ H Theorem 3.1 of [33] ensures there ex-
ists a time δt1 ∈ R>0 such that (q(t),v(t)) is uniquely
defined on [0, δt1]. Since the controller u∗ enforces the
ZCBF conditions of (34), Brezis Theorem (Theorem 4
of [34]) ensures that (q(t),v(t)) ∈ B for all t ∈ [0, δt1].
Repeated application of Brezis Theorem ensures then
that q(t) ∈ Q on [0, δt1] and so (q(t),v(t)) ∈ H for all
t ∈ [0, δt1]. Since H is a compact set we can extend the
forward invariance interval to [0,∞) as in Theorem 2
and the proof is complete.

Remark 6 (Extension to general constraints)
The generality in the proposed methodology allows for
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other systems that can be formulated as (2) and other
nonlinear constraints, which are typical in robot ap-
plications (e.g. task-space constraints). To extend to
multiple nonlinear constraints, consider a system de-
fined by (2) for the generalized coordinates q̃, ṽ and
a twice-continuously differentiable constraint function
c(q̃) : Rn → Rn with full rank gradient ∇c ∈ Rn×n and
locally Lipschitz Hessian. Now let q = c(q̃), v = ∇cT ṽ
such that v̇ = d

dt [∇c
T ]ṽ + ∇cT v̇. We can now address

nonlinear constraints of the form (3), (4), and (5) for
the transformed system. It is straightforward to see that
with the full rank assumption that allows for an invertible
∇c and the bounded Hessian of c, the dynamics of the
transformed system can be written as (2) and still satisfy
Properties 1-3. An example of our method for multiple
nonlinear constraints will be provided in the next section.
In the context of task-space constraint satisfaction for
robotics, this transformation requires singular configu-
rations to not be elements of the safe set Hδ. However
unlike many existing methods, our approach enforces
the condition that singular configurations can never be
reached instead of simply assuming this to be true.

4 Numerical Examples

Here we demonstrate the proposed technique in simula-
tion on a 2-DOF planar manipulator. The simulations
were performed in Python and the code used for these re-
sults along with Algorithm 1 is available at [24]. We note
that the results presented here are accompanied with the
corresponding simulation file to recreate the results.

4.1 Scenario 1

The manipulator consists of two identical links with a
length of 1 m and mass of 1 kg, which are parallel to
the ground such that g = 0. The system is equipped
with motors capable of umax1

= −umin2
= 18 Nm, and

umax2
= −umin2

= 10 Nm of torque. The system damp-
ing is F = 0.001I2×2 kg/s. Let the position/velocity
safety constraints be defined by qmax1

= −qmin1
= π/2

rad, qmax2
= 5π/6 rad, qmin2

= π/2 rad, and vmax1,2
=

−vmin1,2 = 1.5 rad/s. We choose the following extended

class-K functions for the ZCBFs: α1(h) = tan(h)−1,
α2(b) = b3. The nominal control is the computed torque
control law: unom = M(q2)(r̈ − ė− e) + Cv [35] where
e = q − r and r = [3.4708 sin(1.3t), 2.6236 sin(1.3t) +
2.0944]T is the reference that attempts to move the sys-
tem outside of Q × V and U . This nominal control is
used to represent a pre-defined control law or equiva-
lently a human that is incorrectly operating the system.
The reader is directed to [24] for all simulation parame-
ters used.

First, we compare the proposed technique presented
with the preliminary, more conservative method

(a) q1(t) vs. t (b) q2(t) vs. t

(c) v1(t) vs. t (d) v2(t) vs. t

(e) u1(t) vs. t (f) u2(t) vs. t

Fig. 2. (Scenario 1) Plots of q, v, and u for the control
u = unom (orange curve), u = u∗ from (18) for the ZCBF
parameters from [25] (green curve), and u = u∗ from (18)
for the ZCBF parameters from Algorithm 1 (blue curve).
The black-dashed lines depict the boundaries of Q in (a),
(b), V in (c), (d), and U in (e), (f), respectively.

from [25] in continuous time. Figure 2 shows three sys-
tem trajectories. The first, depicted in orange, is the
system (2) subject to the nominal control law, unom,
alone. As shown, the nominal control results in viola-
tion of all system and input constraints. The second
trajectory, depicted in green, shows the result of the
system (2) subject to the proposed control (18) (in con-
tinuous time) using the ZCBF parameters constructed
from [25] (“ZCBF control exp1.yaml” from [24]). The
resulting trajectories show satisfaction of all state and
input constraints, while attempting to track the nom-
inal control law. This implementation ensures safety,
however significant conservativeness is seen by the dis-
tances between the trajectories and state/input con-
straints. The third trajectory, depicted in blue, shows
the system (2) subject to the proposed control (18) us-
ing the ZCBF parameters constructed from Algorithm
1 (“ZCBF control exp2.yaml” from [24]). The output of
Algorithm 1 for the simulations in Figure 2 is: γ = 1.17,
δ = 0.1, ν = 2473.70, η̄ = 0.0 for the input parameters:
α(h) = tan−1(h), β(h) = h3, δ0 = 0.1. As shown, the
controller ensures safety of the overall system, but is
also less conservative than the approach from [25]. One
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(a) q1(t) vs. t (b) q2(t) vs. t

(c) v1(t) vs. t (d) v2(t) vs. t

(e) u1(t) vs. t (f) u2(t) vs. t

Fig. 3. (Scenario 1) Plots of q, v, and u for the control
u = unom (orange curve) and u = u∗

k from (44) for the
ZCBF parameters from Algorithm 1 (blue curve). The black-
-dashed lines depict the boundaries of Q in (a), (b), V in (c),
(d), and U in (e), (f), respectively.

difference between the ZCBF parameter construction
between [25] and Algorithm 1 lies in computation. The
method in [25] only requires the associated bounds from
Properties 1-3 and a bound on f3 and scales well with
the number of degrees of freedom. Algorithm 1 on the
other hand is dependent on searching over some dy-
namic terms of (2) over Qδ. This results in larger com-
putational effort, but yields less conservative behaviour
as seen in Figure 2. By less conservative behaviour, we
mean that the state trajectories more closely approach
the state constraints for a more aggressive system re-
sponse.

Next, we note that the results shown in Figure 2 were de-
veloped using the continuous time control law (18). How-
ever, this is dependent on the assumption of local Lip-
schitz continuity of u∗, which is not guaranteed in gen-
eral. Indeed, under certain parameter configurations (see
“ZCBF control exp2 fail.yaml”) the system leaves the
safe set as a result of discontinuities in the control. When
discontinuities occur, η̄ > 0 is required to account for
jumps in the control law to ensure forward invariance of
the safe set. However, the sampled-data control law (44)
is able to ensure forward invariance of the safe set for T =

0.001 s (see “ZCBF control exp2 discrete.yaml”). The
results of the system trajectory subject to the sampled-
data controller and ZCBF parameters from Algorithm
1 are shown in Figure 3. The output of Algorithm 1
for the simulations in Figure 3 is: γ = 0.52, δ = 0.01,
ν = 4.57 × 106, η̄ = 6.26 for the input parameters:
α(h) = tan−1(h), β(h) = h3, δ0 = 0.01, η̄0 = 7.0.

Figure 3 shows the proposed, sampled-data control u∗
k

enforcing state constraints, while always respecting in-
put constraints. The effect of incorporating η̄ > 0 into
the control design does impose some conservativeness in
the system behaviour. This can be seen by comparing
the blue curves between Figures 2 and 3. The state tra-
jectories resulting from the sampled-data control do not
approach the state constraints as closely as that of the
continuous-time controller.

4.2 Scenario 2: Nonlinear Constraints

We next provide an example of how the proposed
methodology can be applied to nonlinear constraints.
All model parameters are the same as from Scenario 1
except now the position is bounded by the intersection of
ellipsoids and planes, which are presented as follows. We
re-define the original joint angles of the 2-DOF manip-
ulator as q̃ ∈ R2. Let c(q̃) = [c1(q̃), c2(q̃)]

T for c1(q̃) =
−1+(q̃−qr1)TP (q̃−qr), c2(q̃) = qTr2 q̃ with qr1 = [5, 0]T ,

qr2 = [0.1, 1.0]T , and P = diag([−1, 0, 0,−1]). Now
we define the (transformed) system state as q = c(q̃)
and define the constraints via (3) with qmin = [8, 1.7]T

and qmax = [12, 2.5]T . A picture of the constraint set

Q in the joint space, i.e. Q̃ = {q̃ ∈ R2 : c(q̃) ∈ Q}
can be seen in Figure 4a. We leave it to the reader to
derive the system dynamics using the proposed trans-
formation, but note that ∇c is full rank for all q̃ ∈ Q̃.
The same velocity and input bounds are used as in
Scenario 1. The reference signal for this scenario is:
r = [0.5 sin(0.5t) + 0.8, 0.5 sin(1.0t) + 2]T , which yields
a figure-eight trajectory (see Figure 4a), and all other
parameters associated with Scenario 2 can be found
under “ZCBF control exp5 nonlinear.yaml” in [24].

Algorithm 1 was used to derive the following correct-
by-design ZCBF parameters: γ = 1.13, δ = 0.01, ν =
12.7 × 106, η̄ = 7.32 for the input parameters: α(h) =
tan−1(h), β(h) = h3, δ0 = 0.01, η̄0 = 8.0. Figure 4 shows
a comparison between the nominal tracking controller
and the proposed sampled-data controller. As shown in
the plots, the proposed control enforces themultiple non-
linear position constraints, while respecting bounds on
the (transformed) velocity, and the input constraints si-
multaneously. The plots show that the proposed control
attempts to implement the nominal controller as much
as possible, but deviates as necessary to satisfy all the
safety constraints.

Finally, we note some caveats associated with Algorithm
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(a) q̃2 vs. q̃1 (b) q̃2 vs. q̃1

(c) v1(t) vs. t (d) v2(t) vs. t

(e) u1(t) vs. t (f) u2(t) vs. t

Fig. 4. (Scenario 2) Plots of q̃, v, and u for the control
u = unom (orange curve) and u = u∗

k from (44) for the
ZCBF parameters from Algorithm 1 (blue curve). The green
and grey curves in (a) and (b) correspond to the ellipsoid

and planar constraint level sets outlining Q̃, where the solid
and dashed curves are associated with qmax and qmin, re-
spectively. The The black-dashed lines depict the boundaries
of V in (c), (d), and U in (e), (f), respectively.

1. As stated, given any appropriately defined α, β, δ0 ≥
0, η̄0 ≥ 0, the algorithm will always output a γ, ν, and η̄
such that there exists au ∈ U to enforce safety. However,
the choices of α, β, δ0, and η̄0 are subject to respecting
Assumptions 1 and 2. Of particular note is Assumption
1 which requires a specified ε to be known. In general,
the choice of ZCBF parameters to ensure ε > 0 is not
straightforward. This may result in an iterative proce-
dure to find the appropriate α, β, δ0, η̄0 combination.
Furthermore, the use of T as a design parameter may not
be representative of real-world systems. Usually a sam-
pling time is given. In such a case, iterations over Algo-
rithm 1 will be required to ensure that the appropriate
choice of α, β, δ0, and η̄0 yield an η∗ ≥ η̄ ≥ η(T ). We do
note however that the explicit computation of η(T ) al-
lows for straightforward computation of η−1(η̄) to spec-
ify the sampling time required for the given parameters:
α, β, δ0, and η̄0, and facilitates the ZCBF design.

5 Conclusion

In this paper, we designed multiple, non-conflicting
ZCBFs to ensure safety of Euler-Lagrange systems. The
design takes into account actuator limitations, robust-
ness margins, and sampling time effects. The proposed
design yielded an algorithm to compute safe-by-design
ZCBF parameters. A sampled-data controller was pre-
sented to enforce safety of the Euler-Lagrange system.
The proposed approach was demonstrated in simula-
tion on a 2 DOF planar manipulator. Future work will
consider simultaneous safety and stability as well as the
use of data-based methods to further improve system
performance.
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