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Abstract

Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques
for the construction of a discrete abstraction for a continuous-time system require time-space discretization of the concrete
system, which constitutes property satisfaction for the continuous-time system non-trivial. In this work, we aim at relaxing
this requirement by introducing a control interface. Firstly, we connect the continuous-time uncertain concrete system with its
discrete deterministic state-space abstraction with a control interface. Then, a novel stability notion called η-approximately
controlled globally practically stable, and a new simulation relation called robust approximate simulation relation are proposed.
It is shown that the uncertain concrete system, under the condition that there exists an admissible control interface such
that the augmented system (composed of the concrete system and its abstraction) can be made η-approximately controlled
globally practically stable, robustly approximately simulates its discrete abstraction. The effectiveness of the proposed results
is illustrated by two simulation examples.
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1 Introduction

In recent years, discrete abstractions have become one
of the standard approaches for control synthesis in the
context of complex dynamical systems and specifica-
tions [32]. It allows one to leverage computational tools
developed for discrete-event systems [7,19,27] and games
on automata [5, 21] to assist control synthesis for spec-
ifications difficult to enforce with conventional control
design methods, such as linear temporal logic [6] specifi-
cations. Moreover, if the behaviors of the original system
(referred to as the concrete system) and the abstract sys-
tem (obtained by, e.g., discretizing the state-space) can
be formally related by an inclusion or equivalence rela-
tion, the synthesized controller is known to be correct
by design [13].

For a long time, (bi)simulation relations were a cen-
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tral notion to deal with complexity reduction [24, 25].
It was later pointed out in [2] that this kind of equiv-
alence relation is often too strong. To this end, a new
notion called approximate (bi)simulation, which only
asks for the closeness of observed behaviors, was in-
troduced in [10]. Based on the notion of incrementally
(input-to-state) stable [4], approximately bisimilar sym-
bolic models were built and extended to various systems
[12,26,37]. However, incrementally (input-to-state) sta-
ble is a strong property for dynamical control systems,
which makes its applicability restrictive. In [35], the au-
thors relax this requirement by only assuming Lipschitz
continuous and incremental forward completeness, and
an approximate alternating simulation relation is estab-
lished by over-approximating the behavior of the con-
crete system. However, as recently pointed out in [28],
this approach may result in a refinement complexity is-
sue. To this end, a new simulation relation, called feed-
back refinement relation is proposed in [28]. In addition,
for monotone systems, the notion of directed alternat-
ing simulation relation is proposed for the construction
of symbolic models [17].

Although continuous-time systems are extensively stud-
ied and various abstraction techniques are proposed in
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the existing literature, most techniques for the construc-
tion of symbolic models require time-space discretization
of the continuous-time system, which constitute prop-
erty satisfaction non-trivial since closeness of the ob-
served behaviors between the concrete system and its
abstraction is not guaranteed within neighboring dis-
crete time instants. In addition, there is no systematic
approach to choose the time-space discretization param-
eter. Recently, different approaches have been proposed
in the literature to deal with this [20,23,30]. In [23], a dis-
turbance simulation relation is introduced for incremen-
tally input-to-state stable nonlinear systems. In [20,30],
symbolic control approaches are proposed for a class of
sample-data nonlinear systems, where property satisfac-
tion of the continuous-time systems is guaranteed by
equipping the finite abstractions with certain robustness
margins [20] or assume-guarantee contracts [30]. While
almost all the results are providing behavioral relation-
ships between a time discretized version of the original
system and its symbolic model, in this paper, we provide
for the first time a behavioral relationship between the
original continuous-time system and its symbolic model.

This paper investigates the construction of symbolic
models for continuous-time uncertain nonlinear systems,
and it improves upon most of the existing results by
not requiring time-space discretization of the concrete
system. The main contributions are as follows. i) We
propose a novel stability notion, called η-approximately
controlled globally practically stable. This is a property
defined on the augmented system (composed of the con-
crete system and the abstract system) via an admissible
control interface. We show that the abstract system can
be constructed without time-space discretization. This
is crucial for safety-critical applications, in which it is
necessary that the trajectories of the concrete system
and the abstract system are close enough at all time
instants. ii) We define a notion of robust approximate
simulation relation. It is shown that for an uncertain
concrete system, the abstract system can be constructed
such that the concrete system robustly approximately
simulates the abstraction. iii) For the class of incre-
mentally quadratic nonlinear systems, the systematic
construction of the admissible control interfaces and
robust approximate symbolic models under bounded
input set is provided.

The introduction of the control interface is inspired by
the hierarchical control framework [9,11,31,33], in which
an interface is built between a high dimensional con-
crete system and a simplified low dimensional abstrac-
tion of it. Both the concrete system and the abstract
system are continuous in [9, 11, 31, 33]. In contrast, in
this paper, we propose to build a control interface be-
tween the continuous-time concrete system and its dis-
crete state-space abstraction. Moreover, in this paper
we consider bounded input set (the input set considered
in [9, 11, 31, 33] is unbounded), which brings additional
difficulty to constructing the interface. Therefore, the

results in this paper are essentially novel and improved
with respect to the existing work.

A preliminary version of this work was accepted by the
58th IEEE Conference on Decision and Control (CDC
2019) [34]. Here, we expand this preliminary version in
three main directions. First, the framework is gener-
alized to include time-varying uncertain nonlinear sys-
tems. A new stability notion, called η-approximately
controlled globally practically stable, is proposed. Sec-
ond, a new simulation relation, called robust approxi-
mate simulation relation is proposed to deal with uncer-
tainty. Third, an elaborate motion planning example is
added in the simulation section.

The remainder of this paper is organized as follows. In
Section 2, notation and preliminaries on system proper-
ties are provided. The new stability notion and the con-
struction of symbolic morels are presented in Section 3.
In Section 4, an application to incrementally quadratic
nonlinear systems is provided. Two illustrative examples
are given in Section 5 and Section 6 concludes the paper.

2 Preliminaries

2.1 Notation

Let R := (−∞,∞), R≥0 := [0,∞), R>0 := (0,∞),
Z>0 := {1, 2, . . .} and Z≥0 := {0, 1, 2, . . .}. Denote Rn
as the n-dimensional real vector space, Rn×m as the
n × m real matrix space. In is the identity matrix of
order n and 1n is the column vector of order n with
all entries equal to one. 0n×m is the n × m matrix
with all elements equal to 0. When there is no am-
biguity, we use 0 to represent a matrix with proper
dimensions and all its elements equal to 0. [a, b] and
[a, b[ denote closed and right half-open intervals with
end points a and b. For x1 ∈ Rn1 , . . . , xm ∈ Rnm , the
notation (x1, x2, . . . , xm) ∈ Rn1+n2+···+nm stands for
[xT1 , x

T
2 , . . . , x

T
m]T . Let |λ| be the absolute value of a real

number λ, and ‖x‖ and ‖A‖ be the Euclidean norm of
vector x and matrix A, respectively. Given a function
f : R≥0 → Rn, the supremum of f is denoted by ‖f‖∞,
which is given by ‖f‖∞ := sup{‖f(t)‖, t ≥ 0} and
‖f‖[0,τ) := sup{‖f(t)‖, t ∈ [0, τ)}. A function f is called
bounded if ‖f‖∞ < ∞. Given a set S, the interior of S
is denoted by int(S), the boundary of S is denoted by
Fr(S) and the power set of S is denoted by 2S . Given two
sets S1, S2, the notation S1 \S2 := {x|x ∈ S1 ∧ x /∈ S2}
stands for the set difference, where ∧ represents the
logic operator AND.

A continuous function γ : R≥0 → R≥0 is said to belong
to class K if it is strictly increasing and γ(0) = 0; γ is
said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as
r → ∞. A continuous function β : R≥0 × R≥0 → R≥0
is said to belong to class KL if for each fixed s, the map
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β(r, s) belongs to class K∞ with respect to r and, for
each fixed r, the map β(r, s) is decreasing with respect to
s and β(r, s)→ 0 as s→∞. For a set A ⊆ Rn and any
x ∈ Rn, we denote by, d(x,A), the point-to-set distance,
defined as d(x,A) = infy∈A{‖x− y‖}.

2.2 System properties

Consider a continuous-time uncertain nonlinear system
of the form

Σ :

{
ẋ1(t) = f(t, x1(t), u(t), w(t))

y1(t) = h(x1(t)),
(1)

where x1(t) ∈ Rn, y1(t) ∈ Rl, u(t) ∈ U ⊆ Rm, w(t) ∈
W ⊆ Rnw are the state, output, control input, and ex-
ternal disturbance at time t, respectively. The input and
disturbance are constrained to sets U and W , respec-
tively. We assume that f : [0,∞)×Rn×U×Rnw → Rn is
piecewise continuous in t, continuous in x1, u and w, and
the vector field f is such that for any input in U , any dis-
turbance inW , and any initial condition x1(0) ∈ Rn, this
differential equation has a unique solution. Throughout
the paper, we will refer to Σ as the concrete system, that
is the system that we actually want to control.

Let U be the set of all functions that take their values
in U and are defined on R≥0. Similarly, one can define
W as the set of all functions that take their values in W
and are defined on R≥0. Given an input signal u ∈ U , we
use the notation dom(u) to represent the domain of u.

A curve ξ : [0, τ [→ Rn is said to be a trajectory of Σ
if there exists an input signal u ∈ U and a disturbance
signal w ∈ W satisfying ξ̇(t) = f(t, ξ(t), u(t), w(t)) for
almost all t ∈ [0, τ [. A curve ζ : [0, τ [→ Rl is said to be an
output trajectory of Σ if ζ(t) = h(ξ(t)) for almost all t ∈
[0, τ [, where ξ is a trajectory of Σ. We use ξ(ξ0, u, w, t) to
denote the trajectory point reached at time t under the
input signal u ∈ U and the disturbance signal w ∈ W
from initial state ξ0.

The deterministic system is defined as

Σd :

{
ẋ1(t) = fd(t, x1(t), u(t))

y1(t) = h(x1(t)),
(2)

where the function fd : [0,∞)×Rn×U → Rn represents
the deterministic dynamics of the concrete system (1),
i.e., fd(t, x(t), u(t)) = f(t, x(t), u(t), w(t)) if w(t) = 0.
We use ξd(ξ0, u, t) to denote the trajectory point of (2)
reached at time t under the input signal u ∈ U from
initial state ξ0.

Definition 2.1 [3] A (deterministic) system is called
forward complete (FC) if for every initial condition x0 ∈
Rn and every input signal u ∈ U , the corresponding so-
lution is defined for all t ≥ 0.

By a minor modification of the statement of Definition
2.1, one can define FC for uncertain systems.

Definition 2.2 The uncertain system (1) is called FC
if for every initial condition x1(0) ∈ Rn, every input
signal u ∈ U , and every disturbance signal w ∈ W, the
corresponding solution is defined for all t ≥ 0.

The following definition of ε-closeness characterizes the
closeness between two (output) trajectories.

Definition 2.3 ( [15], Definition 4.13) Given ε > 0,
two output trajectories ζ1 : [0,∞) → Rl and ζ2 :
[0,∞)→ Rl are ε-close if

‖ζ1(t)− ζ2(t)‖ ≤ ε, ∀t ∈ [0,∞).

Lemma 2.1 ( [16]) Let V : [0,∞)×Rn → R be a con-
tinuously differentiable function such that

α(‖x‖) ≤ V (t, x) ≤ ᾱ(‖x‖)
∂V

∂t
+
∂V

∂x
g(t, x, u) ≤ −γV (t, x), ∀‖x‖ ≥ µ > 0,

(3)

∀(t, x, u) ∈ [0,∞) × Rn × Rm, where α and ᾱ are class
K∞ functions, and µ > 0 and γ > 0 are constants.
Then, the solution x(t) to the differential equation ẋ(t) =
g(t, x(t), u(t)) satisfies

‖x(t)‖ ≤ β(‖x(0)‖, t) + α−1(ᾱ(µ)),

where
β(r, t) = α−1(e−γtᾱ(r))

is a class KL function.

Proof: First, let us assume ‖x(0)‖ > µ. There are two
possibilities. 1. ‖x(t)‖ > µ, ∀t ≥ 0. Then, one has that
(3) holds ∀t ≥ 0. One can thus derive that ∀t ≥ 0,
V (t, x) ≤ e−γtV (0, x(0)) ≤ e−γtᾱ(‖x(0)‖) and

‖x(t)‖ ≤ α−1(V (t, x(t))) ≤ α−1(e−γtᾱ(‖x(0)‖)). (4)

2. There exists a time instant τ > 0 such that ‖x(τ)‖ =
µ. Let t1 = minτ>0{‖x(τ)‖ = µ}. Then one has that
‖x(t)‖ ≥ µ,∀t ∈ [0, t1], and thus (4) holds ∀t ∈ [0, t1].
For t ∈ (t1,∞), one has either that ‖x(t)‖ < µ, ∀t ∈
(t1,∞) or that there exists a time instant τ ∈ (t1,∞)
such that ‖x(τ)‖ = µ. Let t2 = minτ>t1{‖x(τ)‖ =
µ}. Then one has that ‖x(t)‖ ≤ µ,∀t ∈ (t1, t2]. For
t ∈ (t2,∞), there are also two possibilities. If ‖x(t)‖ >
µ,∀t ∈ (t2,∞), then one has that (3) holds ∀t ∈ (t2,∞),
and thus

‖x(t)‖ ≤ α−1(e−γ(t−t2)ᾱ(‖x(t2)‖)) ≤ α−1(ᾱ(µ)). (5)

Otherwise, there exists a time instant τ > t2 such that
‖x(τ)‖ = µ. Let t3 = minτ>t2{‖x(τ)‖ = µ}. Then one
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has that (5) holds ∀t ∈ (t2, t3]. Repeating the above
analysis, one can conclude that

‖x(t)‖ ≤ α−1(e−γtᾱ(‖x(0)‖)) + α−1(ᾱ(µ)),∀t ≥ 0.

For other case, i.e., ‖x(0)‖ ≤ µ, the proof can be con-
ducted in a similar manner. Therefore, the conclusion
follows. �

3 Main results

3.1 η-approximately controlled globally
practically stable

In this paper, the abstraction technique developed in [12]
is applied, in which the state-space Rn is approximated
by the lattice

[Rn]η =
{
q ∈ Rn|qi = ki

2η√
n
, ki ∈ Z, i = 1, . . . , n

}
,

(6)
where η ∈ R≥0 is a state-space discretization parameter.
Define the associated quantizer Qη : Rn → [Rn]η as
Qη(x) = q if and only if |xi − qi| ≤ η/

√
n, ∀i = 1, . . . n.

Then, one has ‖x−Qη(x)‖ ≤ η,∀x ∈ Rn.

The abstract system is obtained by applying the state
abstraction (6) to the deterministic system (2), and is
given by

Σ′ :


x2(t) = Qη(x̂2(t)),

˙̂x2(t) = fd(t, x̂2(t), v(t)),

y2(t) = h(x2(t)),

(7)

where x2(t) ∈ [Rn]η, y2(t) ∈ Rl and v(t) ∈ U ′ repre-
sent respectively the state, output, and control input of
the abstract system. The systems Σ and Σ′ have the
same output space (i.e., Rl), but different state and in-
put spaces. We note that the input set U ′ of the abstract
system Σ′ is a design parameter that will be specified
later.

Remark 3.1 The abstract system Σ′ is obtained in two
steps. First, the concrete (uncertain) system Σ is ab-

stracted by its deterministic counterpart Σd, i.e., ˙̂x2(t) =
fd(t, x̂2(t), v(t)). Then, we apply the state abstraction (6)
to the deterministic system Σd, i.e., x2(t) = Qη(x̂2(t)).
Note that the state variable x2(t) is neither continuous
nor differentiable due to the state-space discretization.

Remark 3.2 The abstraction construction in this work
is different from [20, 35]. In [20, 35], the abstraction
construction involves both state- and time-space dis-
cretization. In this work, only state-space discretization
is considered. In addition, the abstract models in [20,35]
are over-approximations of the concrete system in the

sense that, under a given control signal, the transitions
in the abstract models capture all possible behaviors of
the concrete system. However, in this work, no over-
approximation is needed when constructing the abstract
system.

Let U ′ be the set of all functions that take their values
in U ′ and are defined on R≥0. A (hybrid) curve ξ′ :
[0, τ [→ [Rn]η is said to be a trajectory of Σ′ if there
exists v ∈ U ′ satisfying ξ′(t) = Qη(ξ(t)),∀t ∈ [0, τ [,

where ξ̇(t) = fd(t, ξ(t), v(t)) and ξ(0) = ξ′(0). A curve
ζ ′ : [0, τ [→ Rl is said to be an output trajectory of Σ′

if ζ ′(t) = h(ξ′(t)), for almost all t ∈ [0, τ [, where ξ′ is a
trajectory of Σ′. With a little abuse of notation, we use
ξ′(ξ′0, v, t) to denote the trajectory point of Σ′ reached
at time t under the input signal v ∈ U ′ from an initial
state ξ′0 ∈ [Rn]η.

The control input u(t) of the concrete system (1) will
be synthesized hierarchically via the abstract system (7)
with a control interface uv : Rm × Rn × [Rn]η → Rm,
which is given by

u(t) = uv(v(t), x1(t), x2(t)). (8)

Define

X̂0 := {(x1, x2)|x1 ∈ Rn, x2 ∈ [Rn]η, ‖x1 − x2‖ ≤ η}.
(9)

To guarantee that the synthesized controller u(t) is ap-
plicable to the concrete system (1), it is necessary that
u(t) = uv(v(t), x1(t), x2(t)) ∈ U,∀t ∈ dom(u). There-
fore, we propose the following definition.

Definition 3.1 The control interface uv : Rm × Rn ×
[Rn]η → Rm is called admissible if there exists an input
set U ′ 6= ∅ such that

u(t) = uv(v(t), ξ(ξ0, uv, w, t), ξ
′(ξ′0, v, t)) ∈ U

∀t ∈ dom(u),∀(ξ0, ξ′0) ∈ X̂0,∀v ∈ U ′,∀w ∈ W. In this
case, the input set U ′ is called admissible to uv.

Next, we introduce the following stability notion, which
will be used for the construction of symbolic models.

Definition 3.2 Given the concrete system Σ in (1) and
the abstract system Σ′ in (7). The system pair (Σ,Σ′)
is called η-approximately controlled globally practically
stable (η-CGPS) if it is FC and there exist an admissible
control interface uv, a KL function β, and K∞ functions
γ1, γ2 such that ∀t ∈ R≥0, ∀(x0, x′0) ∈ X̂0,∀v ∈ U ′,∀w ∈
W, the following condition is satisfied:

‖ξ(x0, uv,w, t)− ξ′(x′0, v, t)‖
≤ β(‖x0 − x′0‖, t) + γ1(η) + γ2(‖w‖∞).
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Moreover, uv is called an interface for (Σ,Σ′), associated
to the η-CGPS property.

Remark 3.3 According to Definitions 3.1-3.2, a general
idea on determining the admissible control interface and
the associated input set U ′ can be provided as follows:
firstly, ignore the input constraint for the concrete system
(1) by assuming that U = Rm (in this way, any control
interface that maps to Rm is admissible), and find one or
several control interfaces uv such that (Σ,Σ′) is η-CGPS.
Secondly, taking the real input set U into account, refine
the control interfaces obtained in the previous step in a
way that the admissible ones and the associated input sets
are kept.

Remark 3.4 We note that the notion of η-CGPS de-
fined in Definition 3.2 is essentially different from the no-
tion of incrementally input-to-state stable (δ-ISS) given
in [4], Definition 4.1 or incrementally forward complete-
ness (δ-FC) given in [35], Definition 2.4. Both δ-ISS
and δ-FC are properties defined on the concrete system
Σ while η-CGPS is a property defined on the system pair
(Σ,Σ′). Moreover, for the concrete system that is not δ-
ISS, the η-CGPS property can still hold for the corre-
sponding system pair. Another difference between δ-FC
in [35] and η-CGPS is that the β function belongs to class
K∞ in the Definition of δ-FC while class KL in Defini-
tion 3.2.

In the following, the Lyapunov function characteriza-
tion of the stability notion η-CGPS is proposed, which
is motivated by [11].

Definition 3.3 Given the concrete system Σ in (1), the
abstract system Σ′ in (7), a continuously differentiable
function V : [0,∞) × Rn × Rn → R≥0, and a control
interface uv. Function V is called a η-CGPS Lyapunov
function for (Σ,Σ′) and uv is the associated control in-
terface if there existK∞ functions α, ᾱ, σ1, σ2, and a con-
stant µ > 0 such that:

i) ∀t ∈ R≥0,∀x, x′ ∈ Rn,

α(‖x− x′‖) ≤ V (t, x, x′) ≤ ᾱ(‖x− x′‖); (10)

ii) ∀t ∈ R≥0,∀x, x′ ∈ Rn,∀v ∈ U ′, and ∀w ∈W ,

∂V

∂x
{f(t, x, uv(v, x,Qη(x′)), w)}+

∂V

∂x′
fd(t, x

′, v) +
∂V

∂t
≤ −µV (t, x, x′) + σ1(η) + σ2(‖w‖).

(11)

Then, we can derive the following theorem.

Theorem 3.1 Given the concrete system Σ in (1) and
the abstract system Σ′ in (7). If i) Σ is FC, ii) there ex-
ists a η-CGPS Lyapunov function for (Σ,Σ′) and with
uv being the associated control interface, and iii) uv is

admissible, then, (Σ,Σ′) is η-CGPS and uv is the inter-
face for (Σ,Σ′), associated to the η-CGPS property.

Proof: Let V be the η-CGPS Lyapunov function for
(Σ,Σ′) and uv the associated control interface. Then,
one has (11) holds and thus

∂V

∂x1
{f(t, x1, uv(v, x1, Qη(x̂2)), w)}+

∂V

∂x̂2
fd(t, x̂2, v) +

∂V

∂t
≤− µV (t, x1, x̂2) + σ1(η) + σ2(‖w‖).

Define ν := supt≥0{σ1(η) + σ2(‖w(t)‖)} = σ1(η) +
σ2(‖w‖∞). Then, one has that

∂V

∂x1
{f(t, x1, uv(v, x1, Qη(x̂2)), w)}+

∂V

∂x̂2
fd(t, x̂2, v) +

∂V

∂t

≤− µ

2
V (t, x1, x̂2)− µ

2
V (t, x1, x̂2) + σ1(η) + σ2(‖w‖)

≤− µ

2
V (t, x1, x̂2)

for all ‖x1 − x̂2‖ ≥ α−1 (2ν/µ) . According to Lemma
2.1, one can further have

‖x1(t)−x̂2(t)‖ ≤ α−1(e−
µ
2 tᾱ(‖x1(0)− x̂2(0)‖))

+ α−1(ᾱ(α−1 (2ν/µ))).
(12)

Moreover, one has from (7) that ‖x2(t) − x̂2(t)‖ =
‖Qη(x̂2(t))− x̂2(t)‖ ≤ η,∀t. Thus,

‖x1(t)− x2(t)‖
≤‖x1(t)− x̂2(t)‖+ ‖x̂2(t)− x2(t)‖
≤α−1(e−

µ
2 tᾱ(‖x1(0)− x2(0)‖)) + α−1(ᾱ(α−1 (2ν/µ))) + η

≤α−1(e−
µ
2 tᾱ(‖x1(0)− x2(0)‖)) + α−1(ᾱ(α−1 (4σ1(η))))

+ η + α−1(ᾱ(α−1 (4σ2(‖w‖∞))/µ))).

Combining the fact that uv is admissible, one can con-
clude that (Σ,Σ′) is η-CGPS and uv is the interface for
(Σ,Σ′), associated to the η-CGPS property. �

3.2 Construction of symbolic models

In this subsection, the construction of symbolic models
for the concrete system (1) is considered. Firstly, the
notion of robust approximate (bi)simulation relation is
proposed.

Definition 3.4 Given the concrete system Σ in (1) and
the abstract system Σ′ in (7). Let ε > 0 be a given
precision and ε̃ ≥ 0. We say that Σ robustly approxi-
mately simulates Σ′ with parameters (ε, ε̃), denoted by

Σ′ �(ε,ε̃)
S Σ, if:

i) ∀x′0 ∈ [Rn]η,∃x0 ∈ Rn such that (x0, x
′
0) ∈ X̂0,
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ii) ∀(x0, x′0) ∈ X̂0, ∀v ∈ U ′,∃u ∈ U such that ∀t ≥ 0,

‖h(ξ(x0, u, w, t))−h(ξ′(x′0, v, t))‖ ≤ ε,∀w : ‖w‖∞ < ε̃,

where X̂0 is defined in (9).

The systems Σ and Σ′ are then said to be robust ap-
proximately bisimilar with parameters (ε, ε̃), denoted by

Σ ∼=(ε,ε̃)
S Σ′, if Σ �(ε,ε̃)

S Σ′ and Σ′ �(ε,ε̃)
S Σ.

Remark 3.5 Item ii) of Definition 3.4 guarantees that
for every output trajectory ζ ′ in the abstract system Σ′,
there exists an output trajectory ζ in the concrete system
Σ such that ζ ′ and ζ are ε-close (despite the worst distur-
bance signals). Therefore, for a given specification, e.g.,
a safety and reachability specification S, if one can find
an output trajectory in Σ′ such that S′ (S′ is obtained by
enlarging all the unsafe sets by ε and shrinking all the
target sets by ε) is satisfied, then one can always find an
output trajectory in Σ such that S is satisfied under all
possible disturbances.

Before proceeding, we need the following additional as-
sumption.

Assumption 3.1 The output function h : Rn → Rl is
globally Lipschitz continuous with Lipschitz constant ρ
on the set Xε. That is,

‖h(x1)− h(x2)‖ ≤ ρ‖x1 − x2‖,∀(x1, x2) ∈ Xε,

where Xε := {(x1, x2) : ‖x1 − x2‖ ≤ α−1(ᾱ(ε)) +
α−1

(
(σ1(ε)+maxw∈W{σ2(‖w‖∞)})/µ

)
+ε},α, ᾱ, σ1, σ2, µ

are defined in Definition 3.3,W is the set of disturbance
signals, and ε is the desired precision.

Assumption 3.1 is not conservative since it only requires
Lipschitz continuity within a neighborhood of x1, the
radius of which is determined by the desired precision ε.
Note that the Lipschitz constant ρ is independent of ε.
Then, we can get the following result.

Theorem 3.2 Given the concrete system Σ in (1) and
the abstract system Σ′ in (7). Let ε > 0 be the desired
precision. Suppose Assumption 3.1 holds. Assume that
there exists a η-CGPS Lyapunov function V for (Σ,Σ′)
and let uv be the associated control interface that is ad-
missible. If furthermore, one has that ‖w‖∞ < ε̃ :=

σ−12 (µα(ᾱ−1(α(ε/ρ)))/4),∀w ∈ W; then, Σ′ �(ε,ε̃)
S Σ if

α−1(ᾱ(η)) + η + α−1
(
ᾱ

(
α−1

(
4σ1(η)

µ

)))
<
ε

ρ
− α−1

(
ᾱ

(
α−1

(
4σ2(‖w‖∞)

µ

)))
.

(13)

Proof: By definition of [Rn]η, for all x0 ∈ Rn, there
exists x′0 ∈ [Rn]η such that ‖x0 − x′0‖ ≤ η. Then, one

has from Assumption 3.1 that

‖h(x0)− h(x′0)‖ ≤ ρ‖x0 − x′0‖ ≤ ε.

Hence, (x0, x
′
0) ∈ X̂0. Item i) of Definition 3.4 holds.

Given (x0, x
′
0) ∈ X̂0 and an input signal v ∈ U ′. Since

the control interface uv is admissible, then one has u(t) =
uv(t, v(t), ξ(x0, uv, w, t), ξ

′(x′0, v, t)) ∈ U,∀t ∈ dom(v).
Thus, u ∈ U . Let q(t) = ξ(x′0, v, t)). Then, one has
x2(t) = ξ′(x′0, v, t) = Qη(q(t)),∀t ∈ dom(v). Let also
x1(t) = ξ(x0, uv, w, t)), where uv is the admissible con-
trol interface. To prove item ii) of Definition 3.4, it is
sufficient to prove that ‖h(x1(t)) − h(x2(t)‖ ≤ ε,∀t ∈
dom(v).

Since V is a η-CGPS Lyapunov function for (Σ,Σ′), then
(11) holds. One has from Theorem 3.1 that

‖x1(t)−q(t)‖ ≤ α−1(e−
µ
2 tᾱ(‖x1(0)− q(0)‖))

+ α−1(ᾱ(α−1 (4σ1(η)/µ)))

+ α−1(ᾱ(α−1 (4σ2(‖w‖∞))/µ))).

In addition, ‖x1(0) − q(0)‖ = ‖ξ(0) − ξ′(0)‖ = ‖x0 −
x′0‖ ≤ η. Using (13), one can further get

‖x1(t)− x2(t)‖ ≤ ‖x1(t)− q(t)‖+ ‖q(t)− x2(t)‖
= ‖x1(t)− q(t)‖+ ‖q(t)−Qη(q(t))‖
≤ ε/ρ,

and thus ‖h(x1(t)) − h(x2(t))‖ ≤ ρ‖x1(t) − x2(t)‖ ≤ ε.

Item ii) of Definition 3.4 holds and thus Σ′ �(ε,ε̃)
S Σ. �

Remark 3.6 In Theorem 3.2, one can further deduce

that Σ′ ∼=(ε,ε̃)
S Σ if the input set of Σ is unbounded (i.e.,

U = Rn) or if the control interface can be designed as
u(t) = uv(v(t), x1(t), x2(t)) = v(t),∀t ≥ 0 (e.g., for
incrementally stable systems).

Remark 3.7 The construction of symbolic models and
the implementation of the admissible control interface
rely on the computation of the state-space abstraction and
the abstract controller. For different systems, computa-
tional tools have been developed for this purpose, e.g.,
PESSOA [22], SCOTS [29], and LTLCon [18].

Remark 3.8 One key step for the construction of sym-
bolic models is to find an admissible control interface.
From Definition 3.1, one can see that for a control inter-
face uv to be admissible, the key factor is to find an in-
put map U ′ admissible to uv. When the input set for the
concrete system is unbounded, i.e., U = Rm, any con-
trol interface that maps to Rm is admissible. However,
in practical applications, input saturations are common
constraints. We note that when the input set for the con-
crete system is bounded, it is not always possible to find
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an admissible control interface. The good news is that,
for a certain class of incrementally quadratic nonlinear
systems, we show in the next section that it is possible to
construct an admissible control interface uv, such that Σ
robustly approximately simulates Σ′.

4 Incrementally quadratic nonlinear systems

In this section, we consider a class of perturbed incre-
mentally quadratic nonlinear systems [8], for which the
systematic construction of the admissible control inter-
face and robust approximate symbolic models is possi-
ble. This kind of nonlinear systems are very useful and in-
clude many commonly encountered nonlinearities, such
as the global Lipschitz nonlinearity, as special cases. In
addition, many practical applications, such as vehicle
models, manipulators, and electrical power convertors,
are incrementally quadratic nonlinear systems.

Consider the nonlinear time-varying system described
by

Σ1 :

{
ẋ(t) =Ax(t) +Bu(t) + Ep(t, Cqx+Dqp) + w(t)

y(t) =Cx(t),
(14)

where x(t) ∈ Rn, y(t) ∈ Rl, u(t) ∈ U ⊆ Rm, and
w(t) ∈W ⊂ Rn are the state, output, control input, and
external disturbance, respectively, p : R≥0 × Rlp → Rle
represents the known continuous nonlinearity of the sys-
tem, andA,B,C,E,Cq, Dq are constants matrices of ap-
propriate dimensions.

Definition 4.1 [1] Given a function p : R≥0 × Rlp →
Rle , a symmetric matrixM ∈ R(lp+le)×(lp+le) is called an
incremental multiplier matrix for p if it satisfies the fol-
lowing incremental quadratic constraint for any q1, q2 ∈
Rlp :

[
q2 − q1

p(t, q2)− p(t, q1)

]T
M

[
q2 − q1

p(t, q2)− p(t, q1)

]
≥ 0.

(15)

Remark 4.1 The incremental quadratic constraint (15)
includes a broad class of nonlinearities as special cases.
For instance, the globally Lipschitz condition, the sector
bounded nonlinearity, and the positive real nonlinearity
pTSq ≥ 0 for some symmetric, invertible matrix S. Some
other nonlinearities that can be expressed using the in-
cremental quadratic constraint were discussed in [1, 8],
such as the case when the Jacobian of p with respect to q
is confined in a polytope or a cone.

Assumption 4.1 There exist matrices P = PT � 0, L
and a scalar α > 0 such that the following matrix in-

equality[
P (A+BL) + (A+BL)TP + 2αP PE

ETP 0

]

+

[
Cq Dq

0 I

]T
M

[
Cq Dq

0 I

]
≤ 0

(16)

is satisfied, where M = MT is an incremental multiplier
matrix for function p.

Remark 4.2 The matrix inequality (16) is not a LMI.
Hence, one can not solve for P,L reliably via, e.g., the
interior point method algorithms. However, we note that
parameterization methods, such as block diagonal param-
eterization [1] can be utilized to transform (16) into Ri-
catti equations and/or LMIs under certain conditions.
Moreover, we note that several necessary and/or suffi-
cient conditions have been provided in [1,8] to guarantee
the existence of solutions to (16).

The abstract system (obtained by applying the state-
space discretization (6)) is given by

Σ′1 :


ξ(t) =Qη(ξ̂(t))

˙̂
ξ(t) =Aξ̂(t) +Bv(t) + Ep(t, Cq ξ̂ +Dqp),

ζ(t) =Cξ(t),

(17)

where v(t) ∈ U ′.

According to Remark 3.3, we first ignore the input con-
straint for the concrete system (14) by assuming that
U = Rm. The control interface uv : Rm ×Rn × [Rn]η →
Rm is then designed as

uv(v(t), x(t), ξ(t)) = v(t) + L(x(t)− ξ(t)), (18)

where L is the solution of (16). One can verify that uv
is admissible by letting U ′ = Rm. Then, we get the fol-
lowing result.

Theorem 4.1 Consider the concrete system (14) with
the input set U = Rm and the abstract system (17). Let
ε > 0 be the desired precision. The input u(t) of (14)
is synthesized by the control interface (18). Suppose that
Assumption 4.1 holds and the disturbance set W satisfies
‖w‖∞ < ε̃ := αε

√
λmin(P )/(2‖c‖

√
λmax(P )),∀w ∈ W;

then, Σ′1 �
(ε,ε̃)
S Σ1 if the state-space discretization pa-

rameter η satisfies

η ≤

(
ε

‖C‖
−

2
√
λmax(P )‖w‖∞
α
√
λmin(P )

)
α
√
λmin(P )

α
√
λmin(P ) +

√
α2λmax(P ) + 2‖L̂‖

,
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where L̂ = LTBTPBL and P,L, α are the solution to
(16).

Proof: Let e(t) = ξ(t)−ξ̂(t), then one has ‖e(t)‖ ≤ η,∀t.
Define δ(t) = x(t)− ξ̂(t). Then, from (14) and (17) one
has

δ̇(t) =Aδ(t) +BL(δ(t) + e(t))

+ E(p(t, Cqx+Dqp)− p(t, Cq ξ̂ +Dqp)) + w(t)

=Acδ(t) +BLe(t) + EΦp(t, x, ξ̂) + w(t),

where Ac = A+BL and

Φp(t, x, ξ̂) = p(t, Cqx+Dqp)− p(t, Cq ξ̂ +Dqp).

Post and pre multiplying both sides of inequality (16) by

(δ(t),Φp(t, x, ξ̂)) and its transpose and using condition
(15) we obtain

δT (t)P δ̇(t) ≤ −αδT (t)Pδ(t)+δT (t)PBLe(t)+δT (t)Pw(t).

Consider the following Lyapunov function candidate

V (t, x, ξ̂) = (x− ξ̂)TP (x− ξ̂).

Then, one has λmin(P )‖x − ξ̂‖2 ≤ V (t, x, ξ̂) ≤
λmax(P )‖x − ξ̂‖2. Taking the derivative of V on t, one
has

V̇ (t, x, ξ̂) =2δT (t)P δ̇(t)

≤− 2αδT (t)Pδ(t) + 2δT (t)PBLe(t)

+ 2δT (t)Pw(t)

≤− αV (t, x, ξ̂) +
2

α
‖L̂‖η2 +

2

α
‖P‖‖w(t)‖2.

(19)

Therefore, V (t, x, ξ̂) is a valid η-CGPS Lyapunov func-
tion for (Σ1,Σ

′
1), where α(x) = λmin(P )x2, ᾱ(x) =

λmax(P )x2, σ1(η) = 2‖L̂‖η2/α and σ2(‖w‖∞) =
2‖P‖‖w‖2∞/α. In addition, one can verify that As-
sumption 3.1 holds with ρ = ‖C‖. Then, the conclusion
follows from Theorem 3.2. �

Next, we will show how to find an input set U ′ admissible
to uv when the real input set U is considered.

From Theorem 4.1, we have (19) holds. Then, using the
comparison principle, we can further get

V (t, x(t), ξ̂(t))

≤e−αtV (t, x(0), ξ̂(0)) +
2‖L̂‖η2 + 2‖P‖‖w‖2

α2
(1− e−αt)

≤λmax(P )η2 +
2‖L̂‖η2 + 2‖P‖‖w‖2

α2
.

Then, one can further have

‖x(t)− ξ̂(t)‖ ≤

√
V (t, x(t), ξ̂(t))

λmin(P )
≤ K1η +K2w̄,

where K1 =

√
λmax(P )/λmin(P ) + 2‖L̂‖/(α2λmin(P )),

K2 =
√

2λmax(P )/(α2λmin(P )), w̄ = maxw∈W{‖w‖∞},
and ‖x(t)−ξ(t)‖ ≤ ‖x(t)− ξ̂(t)‖+‖ξ̂(t)−ξ(t)‖ ≤ (K1 +
1)η +K2w̄. Define eu(t) = u(t)− v(t). Then, one has

‖eu(t)‖ = ‖L(x(t)− ξ(t))‖
≤ ‖L‖((K1 + 1)η +K2w̄).

(20)

From (20), one can see that the norm of the relative error
between u(t) and v(t), i.e., ‖eu(t)‖ is upper bounded,
and the radius of the upper bound is determined by η
and w̄ (due to the special form of control interface that
was designed in (18)). Let

Ũ =
{
z ∈ U |d(z, Fr(U)) < ‖L‖((K1 + 1)η +K2w̄)

}
,

be the set of points in U , whose distance to the bound-
ary of U is less than ‖L‖((K1 + 1)η + K2w̄). Then, by

choosing U ′ = U \ Ũ , one can guarantee that u(t) ∈
U,∀v(t) ∈ U ′,∀t ≥ 0. Moreover, we note that when Σ1 is
deterministic, i.e., w(t) ≡ 0, one can always find U ′ 6= ∅
for all U, intU 6= ∅ since U ′ → U as η → 0.

5 Simulation

In this section, two simulation examples are provided to
validate the effectiveness of the theoretical results.

5.1 Example 1

Consider a mobile robot moving in R2, the dynamics of
which is given by:

Σ2 :

{
ẋ1(t) = Ax1(t) +Bu(t) + w(t)

y1(t) = x1(t),
(21)

where

A =

[
0.2 0.3

0.5 − 0.5

]
, B =

[
1 0

0 1

]
.

The input set U = [−5, 5] × [−5, 5] and the distur-
bance set W = [−0.05, 0.05] × [−0.05, 0.05]. The prob-
lem is to drive the robot in the bounded workspace W
shown in Fig. 1, where the three grey solid polygons
O1, O2, O3 represent obstacles and the three green solid
polygons S1, S2, S3 represent target regions. The goal
of the motion planning problem consists in visiting all
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the three target regions S1, S2, S3 infinitely many times
while avoiding collision with the obstacles. This speci-
fication can be represented by a linear temporal logic
(LTL) [6] formula φ = GW∧G(¬(O1∨O2∨O3))∧G(FS1∧
FS2∧FS3), where ¬,∧,∨ are negation, logic ‘AND’, logic
‘OR’ operators, respectively, and G,F are temporal op-
erators ‘ALWAYS’ and ‘EVENTUALLY’, respectively.
The details about the syntax and semantics of LTL can
be found in [6], Chapter 5.

Let the desired precision be ε = 1. The control interface
is designed as

uv(v(t), x(t), ξ(t)) = v(t)− 1

2
BTP (x(t)− ξ(t)), (22)

where P is the solution to the ARE ATP + PA −
PBBTP + I2 = 0. According to Theorem 4.1, the
desired precision ε can be achieved by choosing the
state-space discretization parameter η = 0.15. Then, by
further choosing U ′ = [−3.5, 3.5] × [−3.5, 3.5], one can
guarantee that the control interface (22) is admissible.
The abstract system (obtained by applying the state-
space abstraction (6)) is denoted by Σ′2 and the output
of Σ′2 is denoted by y2.

Using the LTL control synthesis toolbox LTLCon [18],
we first synthesize a trajectory and the associated con-
trol policy for the abstract system Σ′2, which is shown
by the red solid line in Fig. 1. One can see that any tra-
jectory remaining within the distance 1 from this trajec-
tory satisfies the problem specification. We note that in
this example, the state-space abstraction is obtained in
two steps: 1. The state-space is discretized based on the
atomic propositions defined in the LTL formula φ. This
step is the same as [18], and can be done using LTLCon.
2. We further discretize each state obtained in step 1 ac-
cording to the state-space abstraction technique (6). We
have added this step to LTLCon since it is not included
there in [18].

The output trajectory y1 of Σ2 is obtained by applying
the synthesized input for the abstract system Σ′2 via the
control interface (22). Furthermore, in order to validate
robustness, we run 100 realizations of the disturbance
trajectories. The resulting trajectories for these 100 real-
izations are shown (by the solid blue line) in Fig. 1. One
can see that all the trajectories satisfy the goal of the
motion planning problem. The evolution of the output
error ‖y1−y2‖ for the 100 realizations is depicted in Fig.
2, and one can see that the desired precision is preserved
at all times. In addition, the evolution of the input com-
ponents v1, v2 for the abstract system Σ′2 and the input
components u1, u2 for the concrete system Σ2 are plot-
ted in Fig. 3, respectively. One can see that u ∈ U (i.e.,
the input constraint is satisfied) at all times.

The desired precision is ε = 1 in this example while the
simulation result in Fig. 2 shows that the output error

Fig. 1. Output trajectories of the concrete system Σ2 (blue
lines) for 100 realizations of disturbance signals and output
trajectory of the abstract system Σ′

2 (red line).
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||y
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Fig. 2. The evolution of ‖y1 − y2‖ for 100 realizations of
disturbance signals.
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Fig. 3. The evolution of the inputs u (blue lines) for 100
realizations of disturbance signals and v (red line).

‖y1 − y2‖ is at most 0.25. This means that the theoreti-
cal bound of η obtained using Theorem 4.1 can be con-
servative (due to the use of Lyapunov-like function).

5.2 Example 2

In this example, we consider the (undisturbed) pendu-
lum system studied in [26], which is described by

Σ3 : ẋ(t) = f(x(t)) +Ax(t) +Bu(t), (23)
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where

A =

[
0 1

0 − k
m

]
, B =

[
0

1

]
, f(x) =

[
0

− gl sinx1

]
.

The constant g = 9.8 is the gravity acceleration, l = 5
is the length of the rod, m = 0.5 is the mass, and k = 3
is the coefficient of friction. Here, we omit y(t) = x(t)
for simplicity. The pendulum works in the state-space
X = [−1, 1]× [−1, 1] and the input set U = [−1.5, 1.5].
One can verify that (23) is δ-ISS.

Denote by P1 and P2 two different periodic motions,
where P1 requires the state of Σ3 to cycle between
(−0.4, 0) and (0, 0) while P2 requires the state to cycle
between (−0.4, 0) and (0.4, 0). Similarly to [26], the ob-
jective here is to find a control strategy that enforces
system Σ3 to satisfy a specification P , where P re-
quires the execution of the sequence of periodic motions
P1, P1, P2, P1, P1. In the following, we will compare
our construction of the abstract system with the one
proposed in [26].

For the desired precision ε = 0.25, an abstract sys-
tem, denoted by Tτ,η,µ(Σ3), is proposed in [26], where
τ = 2, η = 0.4, and µ = 1.5 × 10−4 are respectively the
time-, state-, and control-space discretization parame-
ters. Denote by x1, x2 and q1, q2 the two state compo-
nents of Σ3 and Tτ,η,µ(Σ3), respectively. In [26], a con-
trol strategy that enforces P is synthesized and the state
trajectory (x1, x2) is plotted. Here, we further plot the
trajectories of the state errors x1 − q1 and x2 − q2 in
Fig. 4, where the black dashed lines represent the de-
sired precision and the red stars mark the values at the
discrete instants t = iτ, i = 1, . . . , 12.

Next, we construct the abstract system using the state-
space abstraction (6), which gives

Σ′3 :

{
ξ(t) =Qη(ξ̂(t)),

˙̂
ξ(t) =f(ξ̂(t)) +Aξ̂(t) +Bv(t),

(24)

where ξ(t) = (ξ1(t), ξ2(t)) ∈ [X]η and v(t) ∈ U ′ are the
state and control input of (24), respectively. Since (23) is
δ-ISS, the control interface can be chosen as uv(t) ≡ v(t)
and the input set as U ′ = U . According to Theorem
4.1, the same precision ε = 0.25 can be achieved by
choosing the state-space discretization parameter η =
0.2. The simulation result is shown in Fig. 5, where the
trajectories of the state errors x1 − ξ1 and x2 − ξ2 are
depicted.

Let us compare Figs. 4 and 5. The abstract system pro-
posed in [26] only ensures that the desired precision
ε = 0.25 is preserved at discrete instants (as shown at
the red stars in Fig. 4) while the abstract system pro-
posed in this work ensures that the desired precision

ε = 0.25 is preserved continuously (see Fig. 5). This dif-
ference results from the fact that our method does not
involve time-space discretization.

0 2 4 6 8 10 12 14 16 18 20 22 24
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0 2 4 6 8 10 12 14 16 18 20 22 24
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-0.2

0

0.2

0.4

x 2
-q
2

Fig. 4. The trajectories of the state errors x1 − q1 (up) and
x2−q2 (down) with the abstract system Tτ,η,µ(Σ3) proposed
in [26], where the black dashed lines represent the desired
precision ε = 0.25 and the red stars mark the values at the
discrete instants t = iτ, i = 1, . . . , 12.
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Fig. 5. The trajectories of the state errors x1 − ξ1 (up) and
x2 − ξ2 (down) with our proposed abstract system (24).

6 Conclusion

This paper involved the construction of discrete state-
space symbolic models for continuous-time uncertain
nonlinear systems. Firstly, a stability notion called η-
CGPS and its Lyapunov function characterizations were
proposed. After that, a notion of robust approximate
simulation relation was further introduced. It was shown
that every continuous-time uncertain concrete system,
under the condition that there exists an admissible con-
trol interface such that the augmented system can be
made η-CGPS, robustly approximately simulates its dis-
crete state-space abstraction. In the future, more effi-
cient abstraction techniques, such as multi-scale abstrac-
tion [14], will be taken into account and experimental
validation will be pursued.

10



References
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