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Abstract— We develop a cooperative sampling-based motion
planning algorithm for two autonomous agents under coupled
tasks expressed as signal temporal logic constraints. The algo-
rithm builds incrementally two spatio-temporal trees, one for
each agent, by sampling points in an extended space, which
consists of a compact subset of the time domain and the physical
space of the agents. The trees are built by checking if newly
sampled points form edges in time and space that satisfy certain
parts of the coupled task. Therefore, the constructed trees
represent time-varying trajectories in the agents’ state space
that satisfy the task. The algorithm is distributed in the sense
that the agents build their trees individually by communicating
with each other. The proposed algorithm inherits the properties
of probabilistic completeness and computational efficiency of
the original sampling-based procedures.

I. INTRODUCTION

Planning of autonomous agents subject to tasks encoded
as temporal logic specifications has attracted a great deal
of attention during the last two decades. A special form of
temporal logic, namely signal temporal logic (STL), offers
the incorporation of spatial and time specifications for au-
tonomous agents, providing a rich variety of tasks [1]. There
exist numerous works that consider planning under tem-
poral logic specifications. Such specifications include both
qualitative properties, such as linear temporal logic (LTL)
[2], and quantitative properties, such as metric temporal
logic (MTL) [3], [4], metric interval temporal logic (MITL)
[5]–[7] or STL [8]–[12]. MTL and MITL usually specify
tasks over finite-state spaces, requiring the abstraction of the
underlying continuous-time and -state systems to discrete
ones. However, such abstractions bring several drawbacks,
such as loss of information and risk of state explosion. Using
STL avoids the aforementioned drawbacks and allows one to
express specifications in continuous time and space.

Several works consider the multi-agent motion-planning
planning problem under STL tasks [11], [13]–[15]. The
works [11], [13] develop distributed feedback control al-
gorithms based on funnel control and barrier functions to
guide robots toward satisfying the underlying STL tasks.
The limitations of continuous spaces, however, such as the
inability to explore the entire time and state spaces, leads
to the consideration of only specific STL fragments, losing
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the full expressivity of STL. Works that consider the entire
STL fragment adopt centralized solutions based on mixed-
integer linear programming (MILP) [14], [15]. However,
MILP programs can be computationally demanding and yield
long running times. Furthermore, centralized algorithms do
not scale with the number of agents and are sensitive to
faults, since a single computer unit plans the actions of
all agents. This paper develops a distributed algorithm that
employs a sampling procedure, inheriting its efficiency and
probabilistic completeness properties.

This paper addresses the cooperative motion planning
problem of two autonomous agents, which evolve contin-
uously in time and space, to deliver coupled tasks expressed
as signal temporal logic specifications. Our contribution
with respect to the related literature is the development
of a computationally-efficient algorithm that solves, in a
distributed manner, the cooperative motion-planning prob-
lem under the entire fragment of signal temporal logic
for continuous-time and -state systems, without resorting
to discretization techniques. Among many places, coupled
autonomous-agents find application in warehouses where a
load is too heavy for a single manipulator and thus require
cooperation between two manipulators to move the load.
Multiple-agents can then form teams of coupled-agents to
move multiple loads at once.

Inspired by standard sampling-based motion-planning
techniques, we develop a cooperative time-augmented
sampling-based algorithm. In particular, the algorithm builds
incrementally two spatio-temporal trees, one for each agent,
by sampling points in the coupled state and time domain
of the agents. The algorithm checks if the new edges to be
added to the trees satisfy certain parts of the given task. In
that way, the resulting spatio-temporal trees represent time-
varying trajectories in the agents’ state space that satisfy
the given spatio-temporal task. Finally, the algorithm can
be executed in a distributed manner since the agents build
their own trees by communicating with each other. The
proposed algorithm is relevant to the approach of [16], which
introduces a time-augmented sampling-based algorithm for
single-agent systems under STL tasks. Similarly, [12] pro-
poses a sampling-based algorithm for single-agent systems,
encoding a temporal-logic task in a cost function to be
minimized, without sampling in the time domain.

The rest of the paper is organized as follows. Section
II describes the problem considered, Section III provides
the proposed algorithm, and Section IV presents simulation
results. Finally, Section V concludes the paper.



II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

The set of natural numbers is denoted by N and the set
of real numbers by R. With n ∈ N, Rn is the set of n-
coordinate real-valued vectors and Rn

+ is the set of real n-
vector with non-negative elements. The cardinality of a set
A is denoted by |A|. If a ∈ R and [b, c] ∈ R2, the Kronecker
sum a ⊕ [b, c] = [a + b, a + c] ∈ R2. We further define the
boolean set as B = {⊤,⊥} (True, False).

B. Signal Temporal Logic

Let x : R≥0 → Rn be a continuous-time signal. Signal
temporal logic [1] is a predicate-based logic with the follow-
ing syntax:

φ = ⊤ | µ | ¬φ | G[a,b]φ | F[a,b]φ | φ1U[a,b]φ2 | φ1∧φ2 (1)

where φ1, φ2 are STL formulas and U[a,b] encodes the until
operator, with 0 ≤ a ≤ b < ∞; µ is a predicate of the
form µ : Rn × R≥0 → B defined via a predicate function
h : Rn × R≥0 → R as

µ =

{
⊤ h(x, t) ≥ 0

⊥ h(x, t) < 0
. (2)

We consider time bounded temporal operators. The satisfac-
tion relation (x, t) |= φ indicates that signal x satisfies φ at
time t and is defined recursively as shown in [1].

We also define the operators disjunction, eventually, and
always as φ1∨φ2 ≡ ¬(¬φ1∧¬φ2), F[a,b]φ ≡ ⊤U[a,b]φ, and
G[a,b]φ ≡ ¬F[a,b]¬φ, respectively. The satisfaction relation
(x, t) |= φ can also be quantified using the robustness metric
ρ(φ,x, t) as shown in [1].

C. STL Parse Tree

An STL formula defined recursively over the form (1) can
be represented as a tree, we name it as an STL parse tree.
An STL parse tree is constructed as follows:

• each node is either a temporal operator {GI ,FI}, a
logical operator {∨,∧,¬} or a predicate,

• each node, apart from predicate nodes, is accompanied
by a satisfaction variable τ ∈ {+1,−1}; such nodes are
termed set nodes,

• the leaf nodes constitute the predicate nodes and have
no child nodes.

A path is a formula from a root node to a leaf node and we
see that set of all paths constitutes the tree. A sub-path (or
a sub-formula) is a path from a set node to a leaf node.
Each set node is accompanied by a satisfaction variable
τ ∈ {+1,−1} and each leaf node is accompanied by a
predicate variable π = µ. A signal x satisfies a sub-path if
τ = +1 corresponding to the set node where the path begins.
An analogous tree of satisfaction and predicate variables can
be drawn, called satisfaction variable tree. The satisfaction
variable tree borrows the same tree structure as the STL parse
tree. Each set node from the STL parse tree maps uniquely to
a satisfaction variable τi and each leaf node maps uniquely
to a predicate variable πi, where i is an enumeration of the
nodes in the satisfaction variable tree. Before we proceed to
the problem formulation, we need the following definition:

Definition 1: The time horizon ‘th(φ)’ of an STL formula
φ is recursively defined as,

th(φ) =


0, if φ = µ

th(φ1), if φ = ¬φ1

max{th(φ1), th(φ2)}, if φ = φ1 ∧ φ2

b+max{th(φ1), th(φ2)}, if φ = φ1U[a,b]φ2.

(3)

D. Problem Formulation

In this paper, we consider the motion-planning problem of
two autonomous agents subject to a coupled task expressed
as an STL formula φ. We assume that the agents evolve in
Rn, with n ∈ N, characterized by the state trajectories xi :
R≥0 → Rn, for i ∈ {1, 2}. More specifically, the problem
we consider is the design of time-varying trajectories yi :
[0,∞) → Rn, starting at the initial configurations yi(0) =
xi(0), i ∈ {1, 2}, that satisfy a user-defined coupled STL
task φ, i.e., (y, 0) |= φ. with y := [y⊤1 , y

⊤
2 ]

⊤.
We currently do not focus on dynamics of the agent or

the explicit control design that guarantees tracking of the
trajectory yi(t); we assume that the agents are endowed
with a control algorithm that allows such tracking. Instead,
we focus on the planning problem, i.e., the derivation of
continuous time-varying trajectories that satisfy φ. Unlike
previous works in the related literature (e.g., [10]), we
consider the entire fragment of STL and develop a distributed
and efficient sampling-based algorithm.

III. SAMPLING-BASED PLANNING UNDER STL

This section provides the proposed solution to the co-
operative STL planning problem. The solution consists of
a variation of the standard Rapidly-exploring Random Tree
(RRT) algorithm and it derives a time-varying trajectory y(t)
that satisfies φ. The key element is the incorporation of
time in the sampling process, leading to a time-augmented
sampling method. Compared to the original sampling-based
algorithms, we replace the obstacle collision-checking pro-
cedure with a procedure that checks whether a specific frag-
ment of the constructed tree violates the given STL formula.
The aforementioned properties allow the direct derivation of
a time-varying trajectory y(t) that satisfies the given STL
task encoded in φ. This problem poses additional challenges
since it involves determining satisfaction of φ, which is
defined over a continuous signal, using only point-wise data.
We propose the following algorithm, called STLcoRRT, to
address these challenges.

The STLcoRRT algorithm comprises two main compo-
nents, namely the sampling-based procedure to build a tree,
and the STL verification procedure that decides the satisfac-
tion of a STL formula. Each sample corresponds to a point
z = (t,x) ∈ Z ⊂ R+ × Rn, which the STL verification
procedure decides if it is feasible with respect to the STL
formula φ; if yes, it approves it and adds it as a vertex to
the tree. Every added edge is verified against a formula and
a path traversing any edge ensures the satisfaction of φ by
construction. The termination of the STLcoRRT algorithm
guarantees the generation of a trajectory that satisfies the
formula.



A. Sampling-based Procedure
The traditional RRT algorithm samples a point xsamp from

Rn, finds its nearest neighbour xnearest from the existing tree
T = (V, E), and draws an edge of predefined length step to
create a new vertex xnew. The inputs to the RRT algorithm
are a starting vertex x(0), representing the initial condition
of a path, a goal region, signifying the termination of the
algorithm (once xnew is sampled in the goal region), and a
hyper-parameter step representing the edge length. An edge
from xnearest to xnew is added to E in the direction of xsamp.
The Euclidean distance between xnew and xnearest is user
defined and denoted by step. The STLcoRRT algorithm, as
opposed to the traditional RRT algorithm, generates a spatio-
temporal tree T = (V, E), where V is the set of vertices and
E the set of edges. Each vertex in the set V = {z1, z2, . . . }
is given by zi = (ti,xi) ∈ Z ⊂ R+ × Rn. By sampling in
time, the termination of STLcoRRT generates a trajectory in
space and time while RRT only returns a path in space. The
continuous sample space Z is predefined based on the range
of variables xi and the time horizon of the STL formula. We
assume the states xi are sampled from a closed set. Another
distinction is that in STLcoRRT, a vertex znew = (tnew,xnew)
is sampled if and only if tnew > tnearest and subsequently
any znew mentioned henceforth is considered to be ahead
in time with respect to znearest. Along with this restriction,
every eligible znew goes through a STL verification process
deciding if the vertex could be a satisfactory point in the
final trajectory satisfying y(t) |= φ.

B. Overall Algorithm

To solve the coupled motion planning problem for two
cooperating agents, agent i and agent j, we partition the al-
gorithm into three modules. From the point of view of agent
i, the first module is about sampling in a time region where
agent j has already explored, i.e. Algorithm 3: PastAgent.
The second module is sampling in a time region where agent
j is yet to explore, i.e. Algorithm 2: FutureAgent. And
the final module is verification of the STL formula based on
the sampled points, i.e. Algorithm 4: EdgeApproval. For
the discussions, we use index i to refer to an agent that is
currently running the pseudo-code and index j for the other
agent. We now describe the algorithm and modules in detail.

1) Algorithm 1 - STLcoRRT: The main body of STL-
coRRT starts with the initialisation of the tree Ti (not to
be confused with the STL parse tree and the satisfaction
variable tree) with the initial conditions zi0 = (0,xi(0)) (line
1-3). In the pseudo-code, we denote the time component of
a sample zi = (ti,xi) as zi.ti i.e., ti := zi.ti. Agent i then
requests the updated tree of agent j (line 5). The sampling
takes place between lines 7-9 where the functions Sample,
Nearest and Steer are standard and borrowed from the
original RRT algorithm ;

• Sample samples a random point zisamp = (tisamp,x
i
samp),

• Nearest finds the nearest node zinearest =
(tinearest,x

i
nearest) with respect to the Euclidean distance

in Ti to the sampled point zisamp, and,

• Steer finds a node zinew = (tinew,x
i
new) which is step

units apart from zinearest in the direction of zisamp.
The condition in line 6 imposes every sample to be sampled
ahead in time compared to its nearest neighbour. This guar-
antees every path in the tree to only move forward in time.
Each agent samples points sequentially and builds its tree
after communicating with the other agent. We distinguish
two scenarios in this sampling procedure: a new sample
zinew = (tinew,x

i
new) of one agent is at a point in time

tinew when (1) the other agent j hasn’t built a tree yet i.e.
tinew > max{tjk}, k ∈ {1, . . . , |Vj |} or (2) the other agent
j has existing edges passing through this time instant tinew
i.e tinew < max{tjk}, k ∈ {1, . . . , |Vj |}. In the former case,
each agent uses the function FutureAgent and in the latter
case each agent uses the function PastAgent to decide the
satisfiability of φ. This process is repeated until zi ∈ Zi

goal
and terminates by finding the trajectory pathi. The goal
region is Zi

goal = {zi ∈ Z | ti ≥ th(φ)}. Both the agents
simultaneously run STLcoRRT and communicate with the
other agent after every edge addition. We further need the
following definition

Definition 2 (Vertex Incidence): A vertex zjnew is said to
be incident on an edge {zinearest, z

i
new} if and only if tinearest <

tjnew < tinew.

Algorithm 1: STLcoRRT: Agent i perspective
Input: φ, zi0, step, L, Zi

goal, and Z
Output: Ti and pathi

1 Vi ← {zi0};
2 Ei ← ∅, Ti ← (Vi, Ei), τ ← {−1};
3 t0 ← 0, pathi ← ∅;
4 while zi /∈ Zi

goal do
5 Tj ← Agent j;
6 while zinew.t < zinearest.t do
7 zisamp ← Sample(Z);
8 zinearest ← Nearest(Ti, zisamp);
9 zinew ← Steer(zinearest, z

i
samp, step);

10 if zinew.t > max (Vj .t) then
11 Ti, Tj ← FutureAgent (φ, step, L, zinew,

zinearest, τ , Ti, Tj);
12 else
13 Ti ← PastAgent (φ, L, zinew, zinearest, τ , Ti, Tj);

14 pathi ← pathi∪ PlotPath (Ti)

Recall that STL is a predicate-based logic and predicates
are defined over predicate functions which are functions of
states of both agents. To evaluate if a sampled point zinew
could be a potential point in the final satisfiable path for
formula φ, we require points of both agent states zinew =
(tnew,x

i
new) and zjnew = (tnew,x

j
new) at the same time instant

tnew. The pair {zinew, z
j
new} is used to evaluate the predicate

and therein the formula φ. Suppose the edge resultant
from adding zinew to Ti is {zinearest, z

i
new}. As in obstacle

avoidance problems, where an edge connecting two non-
collision vertices can still intersect an obstacle, we follow
the same principle and evaluate points on the edge to ensure
such points do not violate φ. We pick L ∈ N points on the
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Fig. 1: FutureAgent illustration (i) Left: Agent i adds
an edge where Agent j has no incident edges (lines 1-2),
(ii) Center: Agent j samples until it finds a vertex incident
to Agent i’s new edge (lines 3-6), (iii) Right: Agent i
interpolates to create a vertex pain {ziinter, z

j
new} (line 7).

edge {zinearest, z
i
new} as zi = zinearest + l(zinew − zinearest), where

l = 0, 1
L−1 ,

2
L−1 , . . . ,

L−2
L−1 , 1. Each zi corresponds to zj via

zi.t = zj .t (discussed in Section III-B.2 and III-B.3 below)
over which we evaluate φ. The hyper-parameter L specifies
the discretisation of the edge.

2) Function 2 - FutureAgent: This function is called
when agent i samples a point zinew = (tinew,x

i
new) where

tinew > tjk for all k ∈ (1, 2, . . . , |Vj |) as seen in Figure 1
(left). It starts by temporarily adding the sampled vertex zinew
to the tree of agent i (lines 1-2). Next, it communicates this
{zinearest, z

i
new} to agent j and agent j samples indefinitely

until a sampled point lies incident to the temporarily added
edge of agent i, lines 3-6 and seen in Figure 1 (center).
Then, the algorithm linearly interpolates in line 7 to obtain
the vertex ziinter = (tjnew,xi

inter) as seen in Figure 1 (right).
We define a function Interpolate that solves the afore-
mentioned computation. We can now sample points over the
edge {zinearest, z

i
inter} and all the corresponding interpolated

points from Tj to evaluate the STL formula through the
EdgeApproval function, depicted in Function 4. By L ∈
N (see Section III-B.1) we chose the number of equally
spaced points on the edge {zinearest, z

i
inter} in the evaluation

of φ. The new vertex zinew of agent i is deleted if it does not
satisfy the STL formula (lines 13-14).

3) Function 3 - PastAgent: This function, depicted in
Function 3, is called when an agent i samples a point zinew =
(tinew, x

i
new) and when there is at least one edge in Tj that

is being incident to zinew; PastAgent begins by evaluating
zjinter from the incident edges using linear interpolation as
seen in lines 1-9 . In line 7, we chose L samples over the edge
{zinearest, z

i
new} and find the corresponding interpolated zjinter’s

from Tj to evaluate EdgeApproval. If all the pairs result
in π = ⊤, then the node zinew and the edge {zinearest, z

i
new} are

added to the tree Ti, see lines 5-10.
4) Encoding STL formula into the algorithm via Function

4 (EdgeApproval): Function 4 is recursively defined and
takes as input an STL formula of the form (1), a pair of
points {zi, zj} from the trees of both agents, and returns a
truth value π to determine if the vertices satisfy the STL
formula. Along with π, it returns a variable τ(φ) taking
values in the set {−1,+1} indicating satisfaction of the STL
sub-formula φ. The satisfaction of an STL formula cannot
be determined by an individual point zinew = (tinew, x

i
new).

Function 2: FutureAgent
Input: φ, step, L, zinew, zinearest, τ , Ti, and Tj
Output: Ti and Tj

1 Vi ← Vi ∪ zinew;
2 Ei ← Ei ∪ {zinearest, z

i
new};

3 while zinew.t < zinearest.t or zjnew.t /∈ (zinearest.t, z
i
new.t) do

4 zjsamp ← Sample(Z);
5 zjnearest ← Nearest(Tj , zjsamp);
6 zjnew ← Steer(zjnearest, z

j
samp, step);

7 ziinter ← Interpolate({zinearest, z
i
new}, zjnew.t);

8 for l← 0 to L by 1/(L− 1) do
9 zi = zinearest + l(ziinter − zinearest);

10 zj ← Interpolate({zjnearest, z
j
new}, zi.t);

11 π, τ ← EdgeApproval(φ, zi, zj , τ);
12 if !π then
13 Vi ← Vi\zinew;
14 Ei ← Ei\{zinearest, z

i
new};

15 return Ti and Tj

16 Vj ← Vj ∪ zjnew;
17 Ej ← Ej ∪ {zjnearest, z

j
new};

18 Vi ← Vi\zinew;
19 Ei ← Ei\{zinearest, z

i
new};

20 Vi ← Vi ∪ ziinter;
21 Ei ← Ei ∪ {zinearest, z

i
inter};

Function 3: PastAgent
Input: φ, L, zinew, zinearest, τ , Ti, and Tj
Output: Ti

1 foreach {zjm, zjm+1} ∈ Ej do
2 tjm ← zjm.t;
3 tjm+1 ← zjm+1.t;
4 if tjm < tinew < tjm+1 then
5 for l← 0 to L by 1/(L− 1) do
6 zi = zinearest + l(zinew − zinearest);
7 zj ← Interpolate({zjm, zjm+1}, zi.t);
8 π, τ ← EdgeApproval(φ, zi, zj , τ);
9 if !π then return Ti;

10 Vi ← Vi ∪ zinew, Ei ← Ei ∪ {zinearest, z
i
new};

However, a point zinew along with zjnew can momentarily
determine the satisfaction at that particular instant in time,
since the formula consists of both temporal and spatial
variables. Next, we present a set of rules for adding a a pair
of sampled points zinew, z

j
new to the tree based on the STL

formula φ in (1).
• φ = ⊤ : Any sampled point zinew is added to the tree.
• φ = µ : If µ = ⊤, the point zinew is added to the tree.
• ¬φ : A sampled point zinew is added to the tree if and

only if it is not added to the tree for φ.
• φ = φ1 ∨ φ2 : A sampled point zinew is added to the

tree if it is added to the tree for φ1 or φ2 in the sense
presented above. But the point-wise evaluation of an
STL formula does not track history of satisfaction of
parts of the formula. If, in the construction of the tree,
a sampled point satisfies any sub-formula of φ1, then we



deactivate φ2 and if a sampled point satisfies any sub-
formula of φ2, then we deactivate φ1. In the pseudo-
code, if a child node of φ1, denoted by φ1 >, satisfies
τ(φ1 >) = +1, then φ1 ∨φ2 = φ1 ∨⊥. And if a child
node of φ2, denoted by φ2 >, satisfies τ(φ2 >) = +1,
then φ1∨φ2 = ⊥∨φ2. It may appear that by formulating
disjunction as presented above we deliberately make a
choice of satisfying either φ1 or φ2. The algorithm is
designed such that φ1 or φ2 is satisfied depending on
whether a sub-formula from φ1 or φ2 is satisfied prior.
The choice of sub-formula from φ1 or φ2 is completely
random and depends on the evolution of the tree. Thus
the choice of φ1 or φ2 is still random.

• φ = φ1 ∧ φ2 : A sampled point zinew is added to the
tree if it is added to the tree for φ1 and φ2.

• φ = FIφ : In the case of an eventually operator, it is
possible that a single sample zinew could satisfy FIφ.
And it is also possible that such a point might not be a
part of the final trajectory. Thus, to ensure this satisfying
point is included in our final trajectory we first extract
and store the path connecting zio and zinew. The trees
of both agents are then reset and only the nodes zinew
and zjnew are added to Vi and Vj respectively. By doing
this, any final trajectory will pass through zinew as it
is the only sample connecting the prior tree and the
new tree, lines 21-24. For I = [a, b], if zinew.t < b the
sampled point zinew is added to the tree. Any sampled
point where zinew.t > b is not added to the tree, this stops
the tree from growing beyond zinew.t > b until we find
a satisfying point. Once a point is sampled that satisfies
φ, we remove the hold on tree expansion i.e. the tree is
allowed to expand beyond zinew.t > b. Once τ(φ) = +1,
then this implies that τ(FIφ) = +1 for the sample zinew.
Note that if φ = µ, then τ(φ) = +1 ⇔ µ = ⊤.

• φ = GIφ : If zinew.t ∈ [a, b], the sampled point zinew is
added to the tree if τ(φ) = +1. If tnew /∈ [a, b] then zinew
is added to the tree. This means the algorithm does not
proceed if it does not satisfy GIφ.

• φ = φ1UIφ2 : The until operator is treated as
G[znew.t,znew.t]φ1 until τ(F[znew.t,znew.t]φ1) = +1. The
interval is a singleton set since the satisfaction instance
of φ2 cannot be assessed apriori.

The function EdgeApproval is recursively defined over
(1) and hence covers the entire STL formula.

Once the algorithm terminates i.e. when the tree reaches
the designated goal region, a path (y1(t), y2(t)) is generated
by PlotPath as done in the standard RRT. The paths
(y1(t), y2(t)) satisfy the STL formula by construction since
every node in the tree satisfies the STL formula via the
EdgeApproval function. The generated trajectories can be
verified using the robust semantics presented in Section II-B
by evaluating for ρ(φ,x, t). STLcoRRT, unlike monitoring
algorithms, generates trajectories that satisfy the STL for-
mula by construction. The inter-dependency of coupled tasks
between agents poses a significant challenge in solving the
problem in a distributed way while covering the entire STL
formula rather than a fragment of it. We believe that the

Function 4: EdgeApproval

Input: φ, zinew, zjnew, τ
Output: π, τ

1 switch φ do
2 case ⊤ do
3 return ⊤, τ
4 case µ do
5 if µ then return ⊤, τ ;
6 else return ⊥, τ ;
7 case ¬φ do
8 return ¬EA (φ, τ )
9 case φ1 ∨ φ2 do

10 if zinew.t ∈ t0 ⊕ I and EA(φ1 >, τ)= (·,+1)
then

11 return EA (φ1, τ ) ∨ EA (⊥, τ );
12 else if zinew.t ∈ t0 ⊕ I and

EA(φ2 >, τ)= (·,+1) then
13 return EA (⊥, τ ) ∨ EA (φ2, τ );
14 else
15 return EA (φ1, τ ) ∨ EA (φ2, τ ) ;

16 case φ1 ∧ φ2 do
17 return EA (φ1, τ ) ∧ EA (φ2, τ )
18 case FIφ do
19 if zinew.t ∈ t0 ⊕ I and EA(φ, τ)= (⊤, ·) then
20 τ ← +1 ;
21 pathi ← PlotPath (Ti);
22 pathj ← PlotPath (Tj);
23 Vi ← ∅, Ei ← ∅, Vj ← ∅, Ej ← ∅;
24 Vi ← Vi ∪ zinew, Vj ← Vj ∪ zjnew;
25 return EA(φ, τ);
26 else if zinew.t ∈ t0⊕ I and EA(φ, τ)= (⊥, ·) then
27 return ¬ EA(φ, τ);
28 else
29 return EA (⊤, τ ) ;

30 case GIφ do
31 if zinew.t ∈ t0 ⊕ I then
32 return EA(φ, τ )
33 else
34 if zinew.t > I.2 then τ ← +1;
35 return EA(⊤, τ)
36 case φ1UIφ2 do
37 while EA (FIφ2, τ) ̸= (·,+1) do
38 return EA (G[zinew.t,zinew.t]φ1, τ )

39 return EA (F[zinew.t,zinew.t]φ2, τ )

/* EdgeApproval is abbreviated as EA for
readability purposes */

coupled-agents approach treated here is a first step towards
solving the more general multi-agent motion planning under
STL task problem.

Complexity, Completeness and Scalability: The time
complexity is the sum of individual time complexities
of the functions in STLcoRRT. The time complexity of
CSample(N) + CNearest(N) + CSteer(N) is O(N) + O(N) +
O(N) ≈ O(N) [17]. The time complexity of FutureAgent
and PastAgent is the worst case time complexity of either
one of them. The time complexity of FutureAgent is
CFutureAgent(N) ≈ O(N · log(N)). Similarly CPastAgent(N) ≈
O(N · log(N)). Thus the worst case time complexity of
them is still O(N · log(N)). Finally, the time complexity of
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Fig. 2: Trajectories generated by Algorithm 1 for an always, eventually and conjunction and nested operators.

CSTLcoRRT(N) ≈ O(N · log(N)). The STLcoRRT algorithm
inherits the probabilistic completeness property from the
RRT algorithm. The interpolation of temporarily added edges
in FutureAgent ensures such completeness since non-
feasible vertices aren’t added to the tree.

IV. SIMULATIONS

We start with simulating examples from the fragment φ =
µ|G[a,b]µ|F[a,b]µ|φ1 ∧ φ2. Figure 2a simulates the formula
φ = G[4,6]|x1 − x2| < 2 requiring in the interval [4, 6] units,
every added vertex is less than two units apart with respect to
the other agent. The trees are built satisfying this constraint
in the interval [4, 6]. In Figure 2b, we simulate the formula
φ = F[a,b]|x1 − x2| > 8 requiring the agents to be 8 units
apart at any one instant in the interval [4, 6]. All sampled
vertices (zinew, z

j
new) are added to the tree until |x1−x2| > 8

becomes true, indicated by red crosses in Figure 2b. Once
the condition |x1−x2| > 8 holds, the corresponding vertices
are set as new starting vertices for the STLcoRRT algorithm
and are thus included in the final path. Figure 2c requires
x1 < 1 in the interval [2, 8] and |x1−x2| < 2 in the interval
[4, 6]. This is evident from the figure as Agent 1 samples
only in the set {x1 < 1} in the interval [2, 8] and Agent 2
comes closer satisfying |x1 − x2| < 2 in the interval [4, 6].

For the case of a nested formula, φ = G[0,10]F[1,3]|x1 −
x2| > 8, which dictates a task to ‘satisfy |x1 − x2| > 8
every 2 seconds in the interval [1, 13]’. As seen in Figure 2d,
each red cross represents the satisfaction of F[⋆1,⋆2] where
[⋆1, ⋆2] are set to [1, 3] at t = 0 and re-evaluated after every
satisfaction of the eventually.

V. CONCLUSION
This paper presents an efficient sampling-based algorithm

for cooperative motion planning between two agents under
STL specifications. We augment the traditional RRT method
to generate spatio-temporal trees through which we enforce
space and time constraints specified by the STL. The pro-
posed algorithm is distributed as agents independently build
their trees by communicating with each other. For future
work, we will consider robust STL symantics and extend
the existing framework to multiple cooperating agents.
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