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Abstract— This paper presents algorithms for performing
data-driven reachability analysis under temporal logic side
information. In certain scenarios, the data-driven reachable
sets of a robot can be prohibitively conservative due to the
inherent noise in the robot’s historical measurement data. In
the same scenarios, we often have side information about the
robot’s expected motion (e.g., limits on how much a robot
can move in a one-time step) that could be useful for further
specifying the reachability analysis. In this work, we show
that if we can model this side information using a signal
temporal logic (STL) fragment, we can constrain the data-
driven reachability analysis and safely limit the conservatism
of the computed reachable sets. Moreover, we provide formal
guarantees that, even after incorporating side information, the
computed reachable sets still properly over-approximate the
robot’s future states. Lastly, we empirically validate the prac-
ticality of the over-approximation by computing constrained,
data-driven reachable sets for the Small-Vehicles-for-Autonomy
(SVEA) hardware platform in two driving scenarios.

I. INTRODUCTION

Reachability analysis is an essential tool that provides a
principled understanding of the dynamic capabilities of a
system [1], [2]. In recent years, researchers have proposed
a variety of formulations in which reachability analysis
provides formal guarantees on the safety of an autonomous
system (i.e., for autonomous vehicles [3] and drones [4]).
Traditionally, a reachable set of states is computed based on
a model of the subject system using either set-propagation
techniques [5]–[7] or simulation-based techniques [8]–[11].
Most techniques compute over-approximations of the robot’s
reachable states to ensure that the resulting reachable set
can be used for providing safety guarantees. However, these
traditional approaches are sensitive to model error and do not
incorporate the readily available trajectory data that robots
continuously produce.

Several recent works have proposed performing reacha-
bility analysis from data [12]–[20] to overcome the limita-
tion of prior model knowledge. By performing reachability
analysis directly from data, we can form a direct link
between the actual, historical performance of a robot and
our prediction of its reachability, removing the dependency
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Fig. 1: Snapshots from our experiment video where an SVEA
vehicle leaves a parking lot in the Smart Mobility Lab and
its STL reachable sets are drawn in red at different time
instances.
on the accuracy of first-principles-based modeling. Moreover,
in [21], [22], authors provide formal guarantees on the over-
approximation of a system’s reachability based on data that
contains noise. However, in order to provide guarantees on
the over-approximation of the data-driven reachable sets, the
computed sets might become prohibitively conservative when
the noise becomes significant. In this work, we aim to limit
this conservatism whenever we have useful side information.

The main contribution of this paper is an approach for
performing data-driven reachability analysis under signal
temporal logic (STL) side information. We choose to use
STL since it can be interpreted over continuous-time signals,
supports imposing strict deadlines and robust semantics [23],
and allows for the formulation of complex specifications. To
the extent of the authors’ knowledge, the presented approach
is novel in its use of STL formulae as side information
instead of as specifications (e.g. [24], [25]) while performing
reachability analysis. More specifically, the contributions of
this work are as follows: (1) We provide two algorithms for
performing data-driven reachability analysis under STL side
information, which, in turn, reduces the conservatism of data-
driven reachable sets. (2) We provide state inclusion guar-
antees in reachable sets by intersecting a predicate function
constructed from STL side information with either reachable
zonotopes or reachable constrained zonotopes. (3) We vali-
date our approach in two driving scenarios using the Small-
Vehicles-for-Autonomy (SVEA) hardware platform (e.g., in
Fig. 1).

The remainder of the paper is organized as follows. In
Section II, we introduce preliminary material. In Section III,
we present our approach to constrain the reachable sets using
STL-based side information. In Section IV, we validate the
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practicality of our approach using the SVEA platform. In
Section V, we conclude the paper with final remarks.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we start by describing our assumed model
for the subject system. After establishing our assumed model,
we overview some necessary preliminary material and end
the section by detailing the problem that we solve in Sec-
tion III.
A. Model Description

We consider a discrete-time Lipschitz nonlinear system
x(k + 1) = f(x(k), u(k)) + w(k). (1)

We assume f to be an unknown twice differentiable function
and w(k) ∈ Zw to be process noise bounded by the set Zw.
B. Reachable Set and Set Representations

In the following definitions, we define the reachable sets
and different set representations used in our approach.

Definition 1: (Reachable set) The reachable set RN after
N steps of system (1) from a set of initial states X0 ⊂ Rn
and a set of possible inputs Uk ⊂ Rm is
RN =

{
x(N) ∈ Rn

∣∣∀k ∈ {0, ..., N − 1} :

x(k + 1) = f(x(k), u(k)) + w(k), w(k) ∈ Zw,
u(k) ∈ Uk, x(0) ∈ X0

}
.

Definition 2: (Zonotope [26], [27]) Given center cZ ∈
Rn and γZ∈N generator vectors in a generator matrix
GZ=

[
g

(1)
Z . . . g

(γZ)
Z

]
∈Rn×γZ , a zonotope is defined as

Z =
{
x ∈ Rn

∣∣∣ x = cZ +GZβZ , −1 ≤ β(i)
Z ≤ 1

}
.

We use the shorthand notation Z = 〈cZ , GZ〉 for a zonotope.
The linear map is defined and computed as follows [28]:

LZ = {Lz|z ∈ Z} = 〈LcZ , LGZ〉. (2)
Given two zonotopes Z1 = 〈cZ1 , GZ1〉 and Z2 =
〈cZ2

, GZ2
〉, the Minkowski sum Z1 + Z2 = {z1 + z2|z1 ∈

Z1, z2 ∈ Z2} can be computed exactly as [28]:

Z1 + Z2 =
〈
cZ1 + cZ2 , [GZ1 , GZ2 ]

〉
. (3)

The Cartesian product of two zonotopes Z1 and Z2 is defined
and computed as

Z1 ×Z2 =

{[
z1

z2

] ∣∣∣∣∣z1 ∈ Z1, z2 ∈ Z2

}

=

〈[
cZ1

cZ2

]
,

[
GZ1 0

0 GZ2

]〉
. (4)

The noise w(k) is random but bounded by the zonotope
w(k) ∈ Zw = 〈cZw , GZw〉. With a minor abuse of notation,
we write Z = zonotope(l, l) ⊂ Rn to represent an interval
vector I = [l, l] ⊂ Rn as a zonotope where the interval vec-
tor is defined element wise. Zonotopes have been extended
in [29] to represent polytopes by applying constraints on the
factors multiplied with the generators.

Definition 3: (Constrained zonotope [29]) An n-
dimensional constrained zonotope is defined by

C=
{
x ∈ Rn

∣∣∣ x = cC +GCβC , ACβC = bC ,−1 ≤ β(i)
C ≤ 1

}
,

where cC ∈ Rn is the center, GC ∈ Rn×γC is the generator

matrix and AC ∈ Rnc×γC and bC ∈ Rnc constrain the factors
βC . In short, we write C = 〈cC , GC , AC , bC〉.

Definition 4: (Strip [30]) For given parameters yi,k ∈
Rp, Hi,k ∈ Rp×n and ri,k ∈ Rp, the strip Si,k of index i
is the set of all possible state values satisfying

Si,k = {x | |Hi,kx− yi,k| ≤ ri,k} , (5)
where | · | and ≤ are applied element wise.

Definition 5: (Nonlinear strip) For given hi,k(x) ∈ Rp
and ri,k ∈ Rp the nonlinear strip Ni,k of index i is the set
of all possible state values satisfying

Ni,k = {x | |hi,k(x)| ≤ ri,k} . (6)
We denote the Moore-Penrose pseudoinverse by † and the

Kronecker product by ⊗. We also the denote the jth column
of a matrix A by (A).,j . The Frobenius norm is denoted by
by ‖.‖F . For simplicity, we consider dimension of p = 1.
C. Signal Temporal Logic

STL is an expressive language that is able to model
complex, time-varying side information. STL is based on
predicates ν which are obtained by evaluation of a predicate
function h(x) : Rn → R, where ν := > (True) if h(x) ≥ 0
and ν := ⊥ (False) if h(x) < 0 for x ∈ Rn [31]. In this
paper, we consider side information that can be modeled
with the following STL fragment:

φ̄ ::= G[a,b]φ|F[a,b]φ|φ′U[a,b]φ
′′|φ′ ∧ φ′′, (7)

where φ, φ′, φ′′ are STL formulas. In addition, U[a,b] is the
until operator with a ≤ b <∞, and F[a,b]φ = >U[a,b]φ and
G[a,b]φ = ¬F[a,b]¬φ are eventually and always operators,
respectively. Let (x, t) |= φ̄ denote the satisfaction relation.
A formula φ̄ is satisfiable if ∃x : R≥0 → Rn such that
(x, t) |= φ̄. STL semantics are defined formally as follows:

Definition 6: (STL semantics [31]) The STL semantics
for a signal x : R≥0 → Rn are recursively given by:
(x, t) |= ν ⇔ h(x) ≥ 0,

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ),

(x, t) |= φ′ ∧ φ′′ ⇔ (x, t) |= φ′ ∧ (x, t) |= φ′′,

(x, t) |= φ′U[a,b]φ
′′ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t.(x, t1) |= φ′′

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ′,

(x, t) |= F[a,b]φ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t.(x, t1) |= φ,

(x, t) |= G[a,b]φ ⇔ ∀t1 ∈ [t+ a, t+ b] s.t.(x, t1) |= φ.
We omit the time to simplify the notation and write x |= φ.
D. Data-Driven Reachablibity Analysis

In this section, we show how we compute data-driven
reachable sets from recorded trajectories. Consider K input-
state data trajectories of length Tj , j = 1, . . . ,K, from
system (1), given by {u(j)(k)}Tj−1

k=0 , {x(j)(k)}Tjk=0. Denote
the following matrices containing the set of all data sequence.
X=

[
x(1)(0) . . . x(1)(T1) . . . x(K)(0) . . . x(K)(TK)

]
,

U−=
[
u(1)(0) . . . u(1)(T1−1) . . . u(K)(0) . . . u(K)(TK−1)

]
,

X+=
[
x(1)(1) . . . x(1)(T1) . . . x(K)(1) . . . x(K)(TK)

]
,

X−=
[
x(1)(0) . . . x(1)(T1−1) . . . x(K)(0) . . . x(K)(TK−1)

]
.

The total number of data points is denoted by T=
∑K
j=1 Tj ,

and the set of all data by D={U−, X}.



Algorithm 1 Reachability analysis for Lipschitz nonlinear
system
Input: input-state trajectories D = (U−, X), initial set X0,
process noise zonotope Zw and matrix zonotope Mw =
〈CMw , G̃Mw〉, Lipschitz constant L?, covering radius δ,
input zonotope Uk, data-driven zonotope Ẑk−1

Output: data-driven zonotope Ẑk

1: M̃ = (X+ − CMw
)

 11×T
X− − 1⊗ x?k
U− − 1⊗ u?k

†

2: l = maxj

(
(X+).,j − M̃

 1
(X−).,j − x∗k
(U−).,j − u∗k

)

3: l = minj

(
(X+).,j − M̃

 1
(X−).,j − x∗k
(U−).,j − u∗k

)
4: ZL = zonotope(l, l)−Zw
5: Zε = 〈0, diag(L?δ, . . . , L?δ)〉
6: Ẑk = M̃(1× Ẑk−1 × Uk) + ZL + Zε + Zw

After collecting the data offline, we calculate an over-
approximation of the reachable sets online using Algorithm 1
[22]. We compute a least-squares model M̃ at a linearization
point (u?k, x

?
k) in line 1 where Mw = 〈CMw

, G̃Mw
〉 is a

the noise matrix zonotope [22] with center matrix CMw

and a list of generator matrices G̃Mw . Then, we compute
a zonotope that over-approximates the model mismatch and
the nonlinearity terms in lines 2 to 4. Given that the data
have a limited covering radius, we compute a Lipschitz
zonotope in line 5 to provide guarantees. Next, we perform
the reachability recursion in line 6 given the previously
computed zonotopes. Note that the Lipschitz constant L?

and covering radius δ can be computed as proposed in [22],
[32], [33].

E. Problem Statement

Now that we have introduced the necessary preliminaries,
we can detail the problem that we aim to solve.

Problem 2.1: Given the STL side information φk = φ1,k∧
· · · ∧ φnφ,k,k with φi,k of the form (7), i = 1, . . . , nφ,k,
a historical data set D = {U−, X} collected from an
unknown system model, noise zonotope Zw, and input
zonotope Uk, compute the STL reachable set R̄N at time
step k = N starting from initial zonotope X0 that properly
over-approximates the set of states Rφ,N where
Rφ,N = {x(N) ∈ Rn

∣∣ ∀k ∈ {0, ..., N − 1} : x(k+1)|=φk+1,

x(k + 1)=f(x(k), u(k)) + w(k), w(k) ∈ Zw,
u(k) ∈ Uk, x(0) ∈ X0, x(0)|=φ0}. (8)

The reachable set R̄N can represented by a zonotope
Z̄N ⊇ Rφ,N or a constrained zonotope C̄N ⊇ Rφ,N .

III. REACHABILITY ANALYSIS GIVEN STL SIDE
INFORMATION

In the previous section, we showed how to generate a data-
driven reachable set from input-state data. In this section,

Algorithm 2 Reachability analysis under STL side informa-
tion using zonotopes

Input: data-driven zonotope Ẑk = 〈ĉk, Ĝk〉, STL side
information φi,k, ∀i = 1, . . . , nφ,k
Output: STL zonotope Z̄k = 〈c̄k, Ḡk〉

1: c̄k = ĉk, Ḡk = Ĝk
2: for i = 1, . . . , nφ,k do
3: Construct hi,k(x) from φi,k
4: λ∗i,k = arg minλi,k‖Ḡk‖2F
5: if hi,k(x) is linear then
6: // hi,k(x) = ri,k − |Hi,kx− yi,k|
7: c̄k = c̄k + λ∗i,k(yi,k −Hi,k c̄k)

8: Ḡk =
[
(I − λ∗i,kHi,k)Ḡk λ∗i,kri,k

]
9: else if hi,k(x) is nonlinear then

10: // hi,k(x) = ri,k − |hi,k(x)|

11: c̄k=c̄k−λ∗i,k
(
hi,k(x∗i,k)+

∂hi,k
∂x |x∗i,k(c̄k−x∗i,k)+cL,i,k

)
12: Ḡk=

[
(I −λ∗i,k

∂hi,k
∂x |x∗i,k)Ḡk λ∗i,kri,k −λ∗i,kGL,i,k

]
13: end if
14: end for

we show how to incorporate STL formulas in data-driven
reachability analysis. Algorithm 2 summarizes our proposed
approach using zonotopes. The input to the algorithm is the
data-driven zonotope Ẑk from Algorithm 1 and STL side
information φi,k, i = 1, . . . , nφ,k, of the form (7). In line
3, we construct a predicate function hi,k(x) from φi,k, such
that if hi,k(x) ≥ 0, then x |= φi,k [23]. We consider first the
linear case, where hi,k(x) is a linear formula with respect
to x. In this case, we represent hi,k(x) by a linear strip
Si,k in (5) by having hi,k(x) = ri,k − |Hi,kx − yi,k|. The
intersection between the linear strip hi,k(x) ≥ 0 and the
current zonotope is provided in lines 7 and 8. Many scenarios
contain nonlinearity in the side information in which we
propose to represent the hi,k(x) as a nonlinear strip Ni,k and
perform an intersection with the data-driven reachable set.
More specifically, we consider nonlinear strips in (5) with
hi,k(x) = ri,k − |hi,k(x)|, where the intersection with the
reachable zonotope is provided in lines 11 and 12. The opti-
mal parameter λi,k is computed by λ∗i,k=arg minλi,k‖Ḡk‖2F
in line 4.

The reachable set R̂k can be represented by a zonotope
Ẑk from Algorithm 1 or as a constrained zonotope Ĉk [22].
Using constrained zonotopes allows for less conservative
results, but come with extra computational cost. We propose
Algorithm 3 to compute reachable sets under STL side infor-
mation using constrained zonotope. Similar to Algorithm 2,
we construct hi,k(x) from φi,k in line 3. Then, we provide
intersection between constrained zonotope and linear strip
hi,k(x) ≥ 0 in lines 6 and 7. In case of nonlinear hi,k(x), we
provide the intersection in lines 10 to 13. In both Algorithms
2 and 3, we guarantee state inclusion by providing an over-
approximated intersection between the data-driven reachable
set R̂k and the hi,k(x) ≥ 0. To guarantee state inclusion
in the STL generated set in case of nonlinear hi,k(x), we



Algorithm 3 Reachability analysis under STL side informa-
tion using constrained zonotopes

Input: data-driven constrained zonotope Ĉk=〈ĉk, Ĝk, Âk,
b̂k〉, STL side information φi,k, i=1, . . ., nφ,k
Output: STL constrained zonotope C̄k=〈c̄k, Ḡk, Āk, b̄k〉

1: c̄k = ĉk, Ḡk = Ĝk, Āk = Âk, b̄k = b̂k
2: for i = 1, . . . , nφ,k do
3: Construct hi,k(x) from φi,k
4: if hi,k(x) is linear then
5: // hi,k(x) = ri,k − |Hi,kx− yi,k|
6: c̄k = c̄k, Ḡk = Ḡk

7: Āk=

[
Āk 0

Hi,kḠk −ri,k

]
, b̄k=

[
b̄k

yi,k −Hi,kc
′
k

]
8: else if hi,k(x) is nonlinear then
9: // hi,k(x) = ri,k − |hi,k(x)|

10: c̄k = c̄k, Ḡk = Ḡk
11: Compute ZL,i,k = 〈cL,i,k, GL,i,k〉 [3, p.65]

12: Āk =

[
Āk 0 0

∂hi,k
∂x |x∗i,kḠk −ri,k GL,i,k

]

13: b̄k =

[
b̄k

−hi,k(x∗i,k)−∂hi,k∂x |x∗i,k(c̄k−x∗i,k)−cL,i,k

]
14: end if
15: end for

linearize and over-approximate the infinite Taylor series
by a first order Taylor series and its Lagrange remainder
ZL,i,k = 〈cL,i,k, GL,i,k〉 [3, p.65]. The next theorems shows
the provided guarantees.

Theorem 1: Algorithm 2 provides reachability analysis
with state inclusion guarantees under STL side information,
i.e., Z̄k ⊇ Rφ,k.

Proof: In order to prove state inclusion guarantees,
we show that the resultant intersection Z̄k between Ni,k :
hi,k(x) ≥ 0 and the data-driven zonotope Ẑk = 〈ĉk, Ĝk〉
contains the state in all cases. We omit the proof in the
linear case as it follows immediately from [30, Prop.1]. We
prove the guaranteed intersection in the nonlinear case as
follows: We aim to find the zonotope that over-approximates
the intersection. Let x∈(Ẑk∩Ni,k), then there is a zk ∈
[−1γẐ×1, 1γẐ×1], where

x = ĉk + Ĝkzk. (9)

Adding and subtracting λi,k
∂hi,k
∂x |x∗i,kĜkzk to (9) results in

x=ĉk+λi,k
∂hi,k
∂x
|x∗i,kĜkzk+

(
I−λi,k

∂hi,k
∂x
|x∗i,k

)
Ĝkzk.

(10)

Given that x ∈ (Ẑk ∩Ni,k), then x ∈ Ni,k, i.e., there exists
d ∈ [−1p×1, 1p×1] for Ni,k such that:

hi,k(x∗i,k) +
∂hi,k
∂x
|x∗i,k(x− x∗i,k) + · · · = ri,kd. (11)

Inserting (9) into (11)

−hi,k(x∗i,k)− ∂hi,k
∂x
|x∗i,k(ĉk − x∗i,k)− . . .+ ri,kd =

∂hi,k
∂x
|x∗i,kĜkzk

Considering the Lagrange remainder ZL,i,k=〈cL,i,k, GL,i,k〉
[3, p.65] results in

∂hi,k
∂x
|x∗i,kĜkzk ∈ − hi,k(x∗i,k)−∂hi,k

∂x
|x∗i,k(ĉk−x∗i,k)

−ZL,i,k+ri,kd. (12)
Inserting (12) in (10) results in

x ∈ĉk+λi,k

(
−hi,k(x∗i,k)−∂hi,k

∂x
|x∗i,k(ĉk − x∗i,k)−ZL,i,k

+ri,kd

)
+

(
I − λi,k

∂hi,k
∂x
|x∗i,k

)
Ĝkzk

= ĉk−λi,k
(
hi,k(x∗i,k)+

∂hi,k
∂x
|x∗i,k(ĉk−x∗i,k)+cL,i,k

)
︸ ︷︷ ︸

c̄k

+
[
(I−λi,k ∂hi,k∂x |x∗i,k)Ĝk λi,kri,k −λi,kGL,i,k

]
︸ ︷︷ ︸

Ḡk

zkd
zL


︸ ︷︷ ︸
zb

Note that zb ∈ [−1γZ̄×1, 1γZ̄×1] as d ∈ [−1p×1, 1p×1], zk ∈
[−1γẐ×1, 1γẐ×1], and zL ∈ [−1γZL×1, 1γZL×1]. Thus, the
center and the generator of the over-approximating zonotope
are c̄k and Ḡk, respectively.

Theorem 2: Algorithm 3 provides reachability analysis
with state inclusion guarantees under STL side information,
i.e., C̄k ⊇ Rφ,k.

Proof: Similar to the proof of Theorem 1, we omit the
proof for the linear case as it follows immediately from [29,
Prop.1] and prove the guaranteed intersection in the nonlinear
case as follows: Let x ∈ (Ĉk ∩ Ni,k), then there is a zk ∈[
−1γĈ×1, 1γĈ×1

]
such that

x = ĉk + Ĝkzk, (13)

Âkzk = b̂k. (14)
Given that x is inside the intersection of the constrained
zonotope Ĉk and Ni,k, there exists a d ∈ [−1p×1, 1p×1] such
that

hi,k(x∗i,k) +
∂hi,k
∂x
|x∗i,k

(
x− x∗i,k

)
+ · · · = ri,k d. (15)

Inserting (13) into (15) results in

hi,k(x∗i,k)+
∂hi,k
∂x
|x∗i,k

(
ĉk+Ĝkzk−x∗i,k

)
+· · · = ri,k d. (16)

We combine (16) and (14) while considering the Lagrange
remainder yielding[

Âk 0 0
∂hi,k
∂x |x∗i,kĜk −ri,k GL,i,k

]
︸ ︷︷ ︸

Āk

zkd
zL


︸ ︷︷ ︸
zb

=

[
b̂k

−hi,k(x∗i,k)− ∂hi,k
∂x |x∗i,k(ĉk − x∗i,k)− cL,i,k

]
︸ ︷︷ ︸

b̄k

.

Note that we consider the superset consisting the equal-
ity (16) by solving it for all d ∈ [−1p×1, 1p×1]. Then, we
can assure that (16) is also satisfied.

In the next section, we empirically show that the reachable
sets computed from these intersections is a practical improve-



Fig. 2: Illustration of our parking lot example on the left and
roundabout example on the right.

TABLE I: Average volumes in the parking example.

Zonotope Constrained zonotope

No constraints 9.722 -
φp constraints 9.311 7.042
φθ constraints 0.124 0.076

ment compared to original data-driven reachable sets.

IV. EVALUATION

In this section, we detail the application of our method
to two examples. Readers can find an overview video of
our experiments conducted at the Smart Mobility Lab at
[https://bit.ly/DataReachSTL].

For our experimental platform, we represent a vehicle V
with a SVEA vehicle [25]. We use historical data sets of
length 1000 points gathered from the same car from other
driving scenarios than the presented ones. We perform a
single-step reachability analysis for each example, and we
manually operate the car such that its behavior satisfies
the known side information. Measurements for both the
historical data sets and our two examples are made using a
motion capture system. The assumed process noise zonotope
is Zw = 〈0,

[
0.9 0.9

]T 〉 and measurement noise zonotope
of value 〈0,

[
0.01 0.01

]T 〉. For both examples, let V and
its environment be defined over R2. In other words, V ’s state
x ∈ R2 is written as x = [x1 x2]>, where x1 and x2 are
the x and y positions of V . Now, in the following sections,
we will introduce our two scenarios for V and present the
results for each case.

A. Parking Lot Example

In this example, we consider side information that contains
only linear spatial constraints. Suppose V is parked in the
parking lot and is scheduled to depart the parking lot soon.
As denoted in Fig. 2, let the set of states corresponding to the
parking region be P ⊂ R2 and the set of states corresponding
to the outside of the parking region (the street) be O ⊂ R2.
Note, the entrance and exit of the parking lot is considered
both part of the parking region and the street. We know that
V is scheduled to leave the parking region within 25 seconds
of the start of our scenario. Thus, we can write the following
STL formula as the known side information about V :
φp :: =G[0,25](P) ∧ F[0,25](P ∧ O) ∧ G[25,40](O). (17)
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Fig. 3: Snapshot showing the result of constraining a reach-
able set from the parking example.

TABLE II: Average volumes in the roundabout example.

Zonotope Constrained zonotope

No constraints 9.722 -
φr constraints 9.109 5.956

We can find the functions h1 to h5, which encode (17):
h1(x1, x2) = 1.7175− |x1 − 0.2805|, t ∈ [0, 25],

h2(x1, x2) = 2.429− |x2 − 0.839|, t ∈ [0, 25],

h3(x1, x2) = 1.3045− |x1 + 0.3225|, t ∈ [24, 25],

h4(x1, x2) = 0.453− |x2 + 1.137|, t ∈ [24, 25],

h5(x1, x2) = 1− |x2 + 1.665|, t ∈ [25, 40],

where h1 and h2 models our knowledge of V ’s time within
the region P , h3 and h4 encodes V eventually reaching the
exit region P ∧O before t = 25, and h5 corresponds to our
knowledge of when V departs to O. Fig. 3 shows a snapshot
of the data-driven reachable sets before and after being
constrained by φp at t = 1. We show the unconstrained,
data-driven reachable sets in Fig. 4a and the STL reachable
sets constrained by φp in Fig. 4b.

Then, suppose we know the upper limit of V ’s capability
to move forward and change heading between each sampling
time. Let this set be denoted by T (x). Then, we can ex-
pand (17) into the following STL formula as the known side
information about V : φθ ::= G[0,40](T (x)) ∧ G[0,25](P) ∧
F[0,25](P ∧O) ∧ G[25,40](O). Now, we find the additional
functions h6, h7, which encode the constraints corresponding
to G[0,40](T (x)). Let θ be the heading angle and θc be
the known, maximum heading angle change between each
sampling time. We derive the constrained rectangular region
T (x), shown in Fig. 6, with the following equations using
the edges coordinates xθi , y

θ
i , i = 1, · · · , 4:

h6(x1, x2) = 0.5|c2 − c3| − | −m2x1 + x2 − 0.5(c1 + c4)|,
h7(x1, x2) = 0.5|c1 − c4| − | −m1x1 + x2 − 0.5(c2 + c3)|,

where mi =
yθi+1−y

θ
1

xθi+1−xθ1
, ci = −mix

θ
1 + yθ1 for i = 1, 2, c3 =

−m2x
θ
2 + yθ2 , and c4 = −m1x

θ
3 + yθ3 . Both h4 and h5 are

https://www.kth.se/is/dcs/research/control-of-transport/smart-mobility-lab/smart-mobility-lab-1.441539
https://bit.ly/DataReachSTL
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Fig. 4: The reachable sets without constraint in (a), with φp constraints in (b) and φθ constraint in (c) for the parking lot
example.
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Fig. 5: The reachable sets without constraint in (a), with φr constraints using zonotope and constrained zonotope in (b) and
(c), respectively, for the roundabout example.
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Fig. 6: Constrained region for T (x).

defined for t ∈ [0, 40]. The reachable sets using φθ as side
information and constrained zonotope are shown in Fig. 4c.
The average volumes of the reachable sets are presented in
Table I.

B. Roundabout Example

We evaluate how the STL-based side information con-
strains the reachable sets when a nonlinear spatial constraint
is included in the side-information. Suppose V enters, drives
around, and exits a roundabout intersection. For this example,
we assume we have a rough prediction of when V will enter
and exit the roundabout. As illustrated in Fig. 2, let the region
before the roundabout be B ⊂ R2, the roundabout itself be
O ⊂ R2, and the region after the roundabout be A ⊂ R2.
We model the roundabout as a circle and we will use O
to introduce nonlinearity into our side information. Finally,
we know that V will enter the roundabout within 4 seconds
and will leave the roundabout within 10 seconds of the start
of the scenario. We formalize the side information with the

following STL formula:
φr ::= G[0,4](B) ∧ G[4,10](O) ∧ G[10,14](A). (18)

Accordingly, the functions h1, · · · , h3 encode (18):
h1(x1, x2)=1− |x2 − 2.25|, t ∈ [0, 4],

h2(x1, x2)=1.429−‖[x1, x2]>−[0.307, 0.044]>‖, t ∈ [4, 10],

h3(x1, x2)=1− |x2 + 2.169|, t ∈ [10, 14],

where h1, h2 and h3 models the satisfaction of the formulae
corresponding to the regions B, O and A, respectively. We
show the unconstrained, data-driven reachable sets in Fig. 5a,
the STL reachable sets constrained by φr using zonotopes
in Fig. 5b, and the STL reachable sets using constrained
zonotopes in Fig. 5c. The average volumes of the reachable
sets are presented in Table II.

V. CONCLUSION

We have provided an approach to achieve less con-
servative, data-driven reachable sets. We have shown that
known, STL-based side information can be used to constrain
reachable zonotopes post-analysis, while still maintaining
safety guarantees on the resulting constrained zonotopes.
In future work, we will evaluate our approach on more
complex scenarios and potentially apply the work to multi-
agent tasks.
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