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Periodic Behaviors for Discrete-time Second-order
Multi-agent Systems with Input Saturation

Constraints
Tao Yang, Ziyang Meng, Dimos V. Dimarogonas, Karl H. Johansson

Abstract—This paper considers the existence of periodic be-
haviors for discrete-time second-order multi-agent systems with
input saturation constraints. We first consider the case where
the agent dynamics is double integrator and establish conditions
on the feedback gains of the linear consensus control law for
achieving periodic behaviors. This in turn shows that the previous
established sufficient condition for reaching global consensus has
a necessary aspect since these two conditions are exclusive. We
further consider all other second-order agent dynamics and show
that these multi-agent systems under the linear consensus law
exhibit periodic solutions provided the feedback gains satisfy
certain conditions. Simulation results are used to validate the
theoretical findings.

Index Terms—Input saturation, multi-agent systems, periodic
behaviors.

I. INTRODUCTION

In the multi-agent systems literature, the consensus problem,
where the goal is to achieve asymptotic agreement on agents’
states, has been extensively studied. Various distributed control
laws have been proposed to achieve consensus through neigh-
boring information exchange, e.g., [1]–[4]. Recently, global
consensus and semi-global consensus for multi-agent systems
with input saturation constraints have been considered, e.g.,
[5]–[10]. In particular, it has been shown that the multi-agent
system with continuous-time double integrator agent dynamics
in the presence of input saturation constraints, achieves global
consensus under all locally linear consensus control laws [5].
On the other hand, we have previously shown that part of
locally linear consensus control laws render global consensus
for the discrete-time counterpart [6]. However whether global
consensus is achieved when the other part of locally linear
consensus laws are used is still unknown.

This motivates our study. In particular, we show that the
multi-agent system under the linear consensus control law
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exhibits periodic behaviors if the feedback gains satisfy certain
conditions. This in turn implies that global consensus is not
achieved. We further investigate the existence of the periodic
behavior for all other second-order agent dynamics including
asymptotic stable, marginally stable, and unstable dynamics.
We show that these multi-agent systems under the linear
consensus feedback law exhibit periodic behaviors provided
the feedback gains satisfy certain conditions.

The contribution of this paper is three-fold: 1) compared to
[11] where the existence of the periodic phenomenon has been
shown for discrete-time single integrator multi-agent systems,
the considered systems are second-order. Such an extension is
not only challenging since the dynamics may diverge without
control laws, but also useful since many physical systems
can be modeled as second-order systems; 2) compared to
[12] where only double integrator agent dynamics has been
considered, we consider all other second-order agent dynamics
including asymptotically stable, marginally stable and unstable
dynamics; and 3) this paper also extends the existence of pe-
riodic behavior for individual discrete-time system [13]–[15],
to multi-agent systems. Although this paper only studies the
second-order multi-agent systems, these systems are known as
a key benchmark for dynamical behavior of nonlinear multi-
agent systems. By fully understanding these systems, we make
a key step in understanding the abilities of linear consensus
control law for achieving periodic behaviors.

The remainder of the paper is organized as follows: In
Section II, we present the motivation and formulate the con-
sidered problem. In Section III, we show that the multi-agent
system with the double integrator dynamics under the linear
consensus control law exhibit periodic solutions provided that
the feedback gains satisfy certain conditions. In Section IV,
we further show the existence of periodic behaviors for multi-
agent systems with all other second-order agent dynamics.
Simulation examples are offered in Section V. Finally, Sec-
tion VI concludes the paper.

II. MOTIVATION AND PROBLEM FORMULATION

Consider a multi-agent system of N identical discrete-time
second-order linear systems

yi(k + 1) = Ayi(k) +Bσ(ui(k)), i ∈ {1, . . . , N}, (1)

where yi = [xi; vi] ∈ R2, ui ∈ R, σ(ui) is the saturation
function: σ(ui) = sgn(ui) min{1, |ui|}, and the pair (A,B)
describes the agent dynamics.
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The network among agents is described by an undirected
graph G = (V, E ,A), with the set of agents V = {1, . . . , N},
the set of edges E ⊆ V×V , and the weighted adjacency matrix
A = [aij ] ∈ RN×N , where aij > 0 if and only if (j, i) ∈ E
and aij = 0 otherwise. We also assume that aij = aji for all
i, j ∈ V . The set of neighboring agents of agent i is defined as
Ni = {j ∈ V|aij > 0}. The linear consensus feedback control
law with gain parameters α and β is given by:

ui(k) =
∑
j∈Ni

aij
[
α β

]
(yj(k)− yi(k)). (2)

For the case where the agent dynamics is double integrator,
i.e.,

A =

[
1 1
0 1

]
, B =

[
0
1

]
, (3)

we have shown in [6] that the multi-agent system (1) achieves
global consensus under the linear consensus control law (2) if
the feedback gain parameters satisfy the following condition

0 <
√

3α < β <
3

2λN
, (4)

where λN is the largest eigenvalue of the Laplacian matrix
associated with the network.

It is natural to ask whether global consensus is still achieved
if the condition (4) is not satisfied. In this paper, we will
show that the if the condition (4) is not fulfilled, the multi-
agent system may exhibit a non-converging and non-diverging
behavior, i.e., the periodic solution. In particular, we explicitly
construct the linear consensus control law with appropriated
gain parameters under which the multi-agent system exhibits
the periodic solution in the following sense.

Definition 1: A solution yi(k) of the multi-agent system
(1) under the linear consensus control law (2) is a periodic
solution with period T > 0, if for some initial states yi(0)
for i ∈ {1, . . . , N}, we have yi(k + T ) = yi(k) for all i ∈
{1, . . . , N}, and for all k = 0, 1, . . ..

III. MAIN RESULTS

Our main result is given below.
Theorem 1: Consider the multi-agent system (1) with the

pair (A,B) given by (3) under the linear consensus control
law (2). Suppose that G is connected. If the feedback gain
parameters α and β satisfy

0 < α < β < 3
2α. (5)

Then there exists initial states such that the corresponding
solution of the multi-agent system is periodic with the period
T = 2m, where

m ≥ 4(α−β)+
2
ā

3α−2β , (6)

and
ā = min

(i,j)∈E
i∈Se, j∈So

aij , (7)

with Se and So defined in the proof.
Proof: Since the graph is connected, without loss of

generality, we assume that agent 1 is the root agent. We define

the following sets based on whether the distance between agent
i ∈ V and the root agent 1 is even or odd:

Se = {i|d(i, 1) = 0, 2, . . .}, So = {i|d(i, 1) = 1, 3, . . .}, (8)

where the distance between two nodes i and j, d(i, j) is the
number of edges of a path between i and j minimized over
all possible paths.

We prove the theorem by explicitly constructing periodic
solutions with an even period T = 2m. The periodic solution
that we will construct is such that the input sequences (2) for
all the agents are always in saturation, and for i ∈ Se,

ui(k) ≥ 1, k = 0, . . . ,m−1, ui(k) ≤ −1, k = m, . . . , 2m−1,
(9)

and for i ∈ So,

ui(k) ≤ −1, k = 0, . . . ,m−1, ui(k) ≥ 1, k = m, . . . , 2m−1.
(10)

In what follows, we will show that (9) and (10) are satisfied
for certain m and initial states xi(0) and vi(0) for i ∈ V , and
that the solution is periodic with period T = 2m for these
initial states. The proof has three steps.
Step 1: It is sufficient to show that xi(T ) = xi(0) and vi(T ) =
vi(0) for all i ∈ V . It follows from (1), (9) and (10) that
vi(T ) = vi(0) for all i ∈ V . It is also easy to obtain that
xi(2m) = xi(0) + 2mvi(0) + m2 for i ∈ Se and xi(2m) =
xi(0) + 2mvi(0) − m2 for i ∈ So. Thus, in order to have
xi(T ) = xi(0) for all i ∈ V , we must have that{

vi(0) = −m/2, i ∈ Se,
vi(0) = m/2, i ∈ So.

(11)

Step 2: We show that the 2m inequalities in either (9) or (10)
can be reduced to two inequalities by appropriately choosing
initial states xi(0) for some i ∈ V .
Step 2.1: For agent j ∈ So, we have

uj(k) =
∑
i∈Nj

aij
[
α β

]
(yi(k)− yj(k))

=
∑

i∈Nj∩Se

aij
[
α β

]
(yi(k)− yj(k))

+
∑

i∈Nj∩So

aij
[
α β

]
(yi(k)− yj(k)).

Choosing xi(0) = xj(0) for i ∈ So if (i, j) ∈ E , and using
vi(0) = vj(0) for all i, j ∈ So, gives

uj(k) =
∑

i∈Nj∩Se

aij
[
α β

]
(yi(k)− yj(k)). (12)

Similarly, for agent i ∈ Se, choosing xj(0) = xi(0) for j ∈ Se
if (i, j) ∈ E , yields

ui(k) =
∑

j∈Ni∩So

aij
[
α β

]
(yi(k)− yj(k)).

Step 2.2: Let us now focus on any edge (i, j) ∈ E , such that
i ∈ Se and j ∈ So. We first note that 0 < α < β from (5)
implies that β > α− 1

2kα for k = 0, . . . ,m− 1, which yields
−αm2 +β > 1

2α(−m−k+2). Since m−k−1 ≥ 0, multiplying
the above inequality on both sides with m− k − 1 yields

−αm2 (m−k−1) +β(m−k−1) ≥ α[k(k−1)
2 − (m−1)(m−2)

2 ].



1549-7747 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2532078, IEEE
Transactions on Circuits and Systems II: Express Briefs

3

This is equivalent to that

aij
[
α β

]
(yi(m− 1)− yj(m− 1))

≥ aij
[
α β

]
(yi(k)− yj(k)) (13)

for k = 0, . . . ,m− 1, since vi(0) = −m2 for i ∈ Se, vj(0) =
m
2 for j ∈ So, and aij ≥ 0.

Step 2.3: Since the inequality (13) holds for each i ∈ Nj ∩Se,
where j ∈ So, adding them up together with (12) yields that

uj(m− 1) ≥ uj(k), k = 0, . . . ,m− 1, j ∈ So.

Hence, for j ∈ So, uj(m− 1) ≤ −1 implies that uj(k) ≤ −1
for all k = 0, . . . ,m− 1.

A similar argument shows that

uj(2m− 1) ≤ uj(k), k = m, . . . , 2m− 1, j ∈ So.

Hence, for j ∈ So, uj(2m − 1) ≥ 1 implies that uj(k) ≥ 1
for all k = m, . . . , 2m− 1.

Similarly, we can show that for i ∈ Se, ui(m − 1) ≥ 1
implies that ui(k) ≥ 1 for k = 0, . . . ,m−1, and that ui(2m−
1) ≤ −1 implies that ui(k) ≤ −1 for k = m, . . . , 2m− 1.

To summarize, if there is an edge connecting agents within
Se or So, we set their initial states the same, i.e.,

xi(0) = xj(0) for (i, j) ∈ E , if i, j ∈ Se, or i, j ∈ So.
(14)

Then inequalities (9) or (10) are reduced to uj(m− 1) ≤ −1
and uj(2m − 1) ≥ 1 for j ∈ So, or ui(m − 1) ≥ 1 and
ui(2m− 1) ≤ −1 for i ∈ Se.
Step 3: It is clear that these two inequalities are satisfied
provided that for each edge (i, j) ∈ E , where i ∈ Se and
j ∈ So the following two conditions

aij
[
α β

]
(yi(m− 1)− yj(m− 1))

=aij

{
α [xi(0)− xj(0)− 2m+ 2] + β(m− 2)

}
≤ −1,

aij
[
α β

]
(yi(2m− 1)− yj(2m− 1))

=aij

{
α [xi(0)− xj(0) +m− 2]− β(m− 2)

}
≥ 1,

are satisfied. They are equivalent to
1
aij

+ (β − α)(m− 2) ≤ α(xi(0)− xj(0))

≤ 2α(m− 1)− β(m− 2)− 1
aij
. (15)

We see that suitable xi(0) and xj(0), where i ∈ Se, j ∈ So,
and (i, j) ∈ E , exist if

1
aij

+ (β −α)(m− 2) ≤ 2α(m− 1)− β(m− 2)− 1
aij
. (16)

For m > 2, (16) is equivalent to β ≤ 3m−4
2m−4α −

1
aij(m−2) . If

we take the value of m to be sufficiently large, we obtain that

β ≤ lim
m→+∞

[
3m−4
2m−4α−

1
aij(m−2)

]
= 3

2α.

Therefore for any α and β which satisfy (5), if the condition
(6) holds, then (16) is satisfied.

From the above analysis, we see that the solution of the
multi-agent system is periodic with period T = 2m, where m
satisfies (6), for initial states satisfying (11), (14), and (15).

Remark 1: For the multi-agent system (1) in the absence
of input saturation constraints, where the agent dynamics is a

double integrator and the undirected network is connected, it
is shown in [16, Corollary 1] that the condition

0 < α < β <
α

2
+

2

λN
(17)

is a necessary and sufficient condition for achieving consensus.
Note that condition (5) overlaps (17) provided that α < 2

λN
.

In view of this, the existence of the periodic solution shown
in Theorem 1 is clearly due to the input saturation constraints.

Remark 2: Condition (5) implies that 0 <
√

3α < β <
3

2λN
, which is a sufficient condition for achieving global

consensus in the presence of input saturation constraints [6,
Theorem 2], has a necessary aspect since these conditions are
exclusive in the sense that 3α

2 <
√

3α.
Remark 3: In [13], [14], the periodic behaviors have been

considered for individual discrete-time system. Theorem 1
extends this result to multi-agent systems for the double
integrator case. In particular, the specified input is explicitly
designed based on the saturation and the linear consensus
control law.

IV. PERIODIC BEHAVIORS FOR OTHER AGENT DYNAMICS

In this section, we further investigate the existence of pe-
riodic behaviors for multi-agent systems with all controllable
second-order agent dynamics. Without loss of generality, we
assume that the pair (A,B) is in the following controllable
canonical form:

A =

[
0 1
−a0 −a1

]
, B =

[
0
1

]
, (18)

since otherwise the system can be transferred into this form
via a non-singular state transformation [17, Theorem 9.2].

Our main result for this case is given below.
Theorem 2: Consider the multi-agent system (1) with the

pair (A,B) given by (18) under the linear consensus control
law (2). Suppose that G is connected and that A has no
eigenvalues at ±1 and ±j. If the feedback gain parameters
α and β satisfy

(1− a0 + a1)α+ (1− a0 − a1)β ≥ (1−a0)2+a21
2ā , (19a)

(1− a0 − a1)α− (1− a0 + a1)β ≥ (1−a0)2+a21
2ā , (19b)

where ā is defined by (7). Then there exist initial states such
that the corresponding solution of the multi-agent system is
periodic with period T = 4.

Proof: A periodic solution with period T = 4 is such
that the input sequences (2) for all the agents are always in
saturation. Moreover, it holds that{

ui(k) ≥ 1, k = 0, 1,
ui(k) ≤ −1, k = 2, 3,

i ∈ Se, (20){
ui(k) ≤ −1, k = 0, 1,
ui(k) ≥ 1, k = 2, 3,

i ∈ So. (21)

In what follows, we will show that (20) and (21) are satisfied
for certain initial states yi(0), i ∈ V , and that the solution is
periodic with period T = 4. Again, the proof is carried out in
three steps.
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Step 1: It follows from (1) and (20) that for i ∈ Se, yi(4) =
A4yi(0) + A3B + A2B − AB − B. Thus, in order to have
yi(0) = yi(4) for i ∈ Se, we need

yi(0) = (I −A4)−1(A3B +A2B −AB −B)

= −(I +A2)−1(I +A)B,

where we have used the assumption on the eigenvalues of A.
By plugging in the matrices A and B given in (18) into this

equation, we obtain that

yi(0) = − 1
(1−a0)2+a21

[
1− a0 + a1

1− a0 − a1

]
for i ∈ Se. (22)

Similarly, in order to have yi(0) = yi(4) for i ∈ So, we need

yi(0) = 1
(1−a0)2+a21

[
1− a0 + a1

1− a0 − a1

]
for i ∈ So. (23)

Step 2: In this step, we show that the four inequalities in
either (20) or (21) can be reduced to two inequalities. For
agent j ∈ So, we have

uj(k) =
∑
i∈Nj

aij
[
α β

]
(yi(k)− yj(k))

=
∑

i∈Nj∩Se

aij
[
α β

]
(yi(k)− yj(k))

+
∑

i∈Nj∩So

aij
[
α β

]
(yi(k)− yj(k)).

Taking into account that xi(0) = xj(0) and vi(0) = vj(0) for
all i, j ∈ So, we obtain

uj(k) =
∑

i∈Nj∩Se

aij
[
α β

]
(yi(k)− yj(k)). (24)

From (24) and initial states given by (22) and (23), it is easy
to verify that for j ∈ So, uj(k + 2) ≥ 1 are equivalent to
uj(k) ≤ −1 for k = 0, 1. Similarly, for i ∈ Se, ui(k +
2) ≤ −1 is equivalent to ui(k) ≥ 1 for k = 0, 1. Thus,
the inequalities (20) and (21) are equivalent to the following
inequalities: ui(0) ≥ 1 and ui(1) ≥ 1 for i ∈ Se, and uj(0) ≤
−1 and uj(1) ≤ −1 for j ∈ So.
Step 3: These two inequalities are satisfied for each agent
provided that for each edge (i, j) ∈ E , where i ∈ Se and
j ∈ So, the two conditions

aij
[
α β

]
(yi(0)− yj(0))

=− 2aij
(1−a0)2+a21

[(1− a0 + a1)α+ (1− a0 − a1)β] ≤ −1,

aij
[
α β

]
(yi(1)− yj(1))

=− 2aij
(1−a0)2+a21

[(1− a0 − a1)α− (1− a0 + a1)β] ≤ −1,

are satisfied. It is easy to see that this is the case, if the
feedback gain parameters α and β satisfy (19).

From the above analysis, it follows that the solution of the
multi-agent system is periodic with period T = 4, for initial
states satisfying (22) and (23).

Remark 4: Note that the periodic behavior presented in
Theorem 2 has a period T = 4, which is independent of
the network topology, while the feedback gain parameters for
achieving this periodic behavior depend on the minimal edge
weights of the underlying graph as given by (19). This is in

1

2 3 4

5 6 7

1.7 3.8

4.22.7 0.5

2.4

Fig. 1. Network with seven agents

contrast to the double integrator case in Theorem 1, where the
feedback gain parameters for achieving periodic behaviors do
not depend on the network topology, however, the periodic T
depends on the minimal edge weights.

Remark 5: In [13, Corollary 21.10], it has been shown
that for the time-invariant system x(k + 1) = Ax(k) +
Bu(k), x(0) = x0, if AK has no unity eigenvalue, then for
every K-periodic input signal u(k) there exists an x0 such
that the corresponding solution is K-periodic. In view of this,
Theorem 2 extends this result to multi-agent systems for the
second-order dynamics. In particular, A4 has no unity eigen-
value because of the assumption that A has no eigenvalues at
±1 and ±j. Moreover, a 4-periodic input is constructed based
on the saturation and the linear consensus control law with the
gain parameters satisfying (19).

V. ILLUSTRATIVE EXAMPLES

In this section, we present examples to illustrate the results.
The network consists of N = 7 agents and the topology is
given by the undirected weighted graph depicted in Fig. 1.

A. Double Integrator Case

For the double integrator case, we choose the feedback gain
parameters α = 1 and β = 1.2 so the sufficient condition for
achieving a periodic behavior (5) is satisfied. It is easy to see
that ā = a36 = 0.5, and therefore we choose m = 11 so
that (6) is satisfied. From the proof of Theorem 1, we see
that the multi-agent system exhibits a periodic solution with
T = 22 if the initial states satisfy (11) and (15) with m = 11,
i.e., vi(0) = −5.5 for i ∈ Se = {1, 5, 6, 7}, vi(0) = 5.5
for i ∈ So = {2, 3, 4}, 2.3882 ≤ x1(0) − x2(0) ≤ 8.6118,
2.2167 ≤ x1(0)−x3(0) ≤ 8.7833, 2.0632 ≤ x1(0)−x4(0) ≤
8.9368, 2.1704 ≤ x5(0)−x2(0) ≤ 8.8296, 3.8000 ≤ x6(0)−
x3(0) ≤ 7.2000, and 2.0381 ≤ x7(0) − x3(0) ≤ 8.9619. We
then choose x1(0) = 21, x2(0) = 16, x3(0) = 17, x4(0) =
15, x5(0) = 23, x6(0) = 22 and x7(0) = 24 so that the
above conditions are satisfied. With these initial states, the
multi-agent system with input saturation constraints exhibits a
periodic behavior of period 22 as shown in Fig. 2, where state
trajectories for agents 1, 2, 5 and 7 are given.

B. Unstable Case

Next, we consider the case where the agent dynamics is
given by (18). We begin by considering where a0 = 0 and
a1 = −2, which results in an unstable eigenvalue at 2. For
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Fig. 2. Periodic solutions of period 22 for the double integrator case
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Fig. 3. Periodic behavior of period 4 for the unstable case

this case, (19) becomes −β+5
3 ≤ α ≤ 3β− 5. We then choose

the feedback gain parameters α = 1 and β = 3. According
to the proof of Theorem 2, the multi-agent system exhibits a
periodic solution of period T = 4 if the initial states satisfy
(22) and (23), that is, xi(0) = 0.2, vi(0) = −0.6 for i ∈
Se = {1, 5, 6, 7} and xi(0) = −0.2, vi(0) = 0.6 for i ∈ So =
{2, 3, 4}. Fig. 3 shows that the multi-agent system exhibits a
periodic behavior with T = 4.

C. Marginally Stable Case

We then consider the case where a0 = 1 and a1 = −1,
which results in eigenvalues 1

2 ±
√

3
2 j on the unit circle. For

this case, (19) becomes −β+1 ≤ α ≤ β−1. We then choose
the feedback gain parameters α = 0.5 and β = 2. Fig. 4 shows
that the multi-agent system exhibits a periodic behavior with
T = 4 for initial states xi(0) = 1, vi(0) = −1 for i ∈ Se =
{1, 5, 6, 7} and xi(0) = −1, vi(0) = 1 for i ∈ So = {2, 3, 4},
which satisfy (22) and (23).

VI. CONCLUSIONS

In this paper, we considered second-order discrete-time
multi-agent systems with input saturation constraints. We
showed that these multi-agent systems under linear consensus
control laws exhibit periodic behaviors. We explicitly char-
acterized conditions on feedback gain parameters and initial
states for achieving periodic behaviors. An interesting future
direction is to extend the results to high-order multi-agent
systems.
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Fig. 4. Periodic behavior of period 4 for the marginally stable case
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