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a b s t r a c t

The algebraic connectivity of the graph Laplacian plays an essential role in various multi-agent control
systems. In many cases a lower bound of this algebraic connectivity is necessary in order to achieve a
certain performance. Lately, severalmethods based on distributed Power Iteration have been proposed for
computing the algebraic connectivity of a symmetric Laplacian matrix. However, these methods cannot
give any lower bound of the algebraic connectivity and their convergence rates are often unclear. In this
paper, we present a distributed algorithm for estimating the algebraic connectivity for undirected graphs
with symmetric Laplacian matrices. Our method relies on the distributed computation of the powers
of the adjacency matrix and its main interest is that, at each iteration, agents obtain both upper and
lower bounds for the true algebraic connectivity. Both bounds successively approach the true algebraic
connectivity with the convergence speed no slower than O(1/k).

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The diverse applications of multi-agent systems, e.g., sensor fu-
sion, flocking, formation, or rendezvous (Olfati-Saber, Fax, & Mur-
ray, 2007), have led to tremendous research interest in the past
decade. A typical multi-agent system is a network of cooperative
agents targeting a collective aim using the distributed control de-
sign and local information exchange. An underlying communica-
tion graph is thus naturally associated with any given multi-agent
network. The second smallest eigenvalue of the Laplacianmatrix of
this graph, known as the algebraic connectivity, plays an important
role in various multi-agent applications and in many cases serves

✩ A preliminary version of thiswork appears in Aragues et al. (2012). Thematerial
in this paper was partially presented at the 2012 American Control Conference
(ACC2012), June 27–29, 2012, Montreal, Canada. This paper was recommended for
publication in revised form by Associate Editor Tamas Keviczky under the direction
of Editor Frank Allgöwer.
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as a fundamental performance measure (Bullo, Cortés, & Martínez,
2009).

The magnitude of the algebraic connectivity determines the
connectivity of the communication graph. We first remark
some efforts in the literature on maintaining or computing
the connectivity of the graph. Control laws for rendezvous and
formation control that keep the initial topology have been pro-
posed in Dimarogonas and Johansson (2010) and Ji and Egerstedt
(2007). Then in Zavlanos and Pappas (2005), it was shown how to
compute the k-hop connectivity matrix of the graph in a central-
ized fashion. Several distributed methods were then proposed on
computing spanning subgraphs (Zavlanos & Pappas, 2008), speci-
fying Laplacian eigenvectors (Qu, Li, & Lewis, 2011), estimatingmo-
ments of the Laplacian eigenvalue spectrum (Preciado, Zavlanos,
Jadbabaie, & Pappas, 2010), ormaximizing the algebraic connectiv-
ity throughmotion control (Simonetto, Keviczky, &Babuska, 2011).

How to estimate the value of this algebraic connectivity be-
comes an intriguing problem for the study of multi-agent net-
works. In Franceschelli, Gasparri, Giua, and Seatzu (2009), the
Laplacian eigenvalues were estimated by making the agents exe-
cute a local interaction rule that makes their states oscillate at fre-
quencies corresponding to these eigenvalues and then agents use
the Fast Fourier Transform (FFT) on their states to identify these
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Table 1
Notation.

n Number of agents.
i, j Agent indices.
k Iteration, k ∈ N.

Special matrices and vectors
I Identity matrix.
0, 1 Vectors with all entries equal to 0 and 1.
A Adjacency matrix of the graph.
L Laplacian matrix, L = diag(A1) − A.
D Perron matrix D = I − βL.
C Deflated matrix, C = D − 11T /n.

Matrix operations, eigenvalues and eigenvectors
Aij, [A]ij (i, j) entry of matrix A.
diag(b1, . . . , br ) matrix A with Aii = bi and Aij = 0.
λi(A) ith eigenvalue of A.
vi(A) ith eigenvector of A.
λ⋆(L) Algebraic connectivity.
∥A∥∞ Induced ∞-norm, maxi

n
j=1 |Aij|.

∥A∥2 Spectral norm, maxi


λi(ATA).
ρ(A) Spectral radius, maxi |λi(A)|.

eigenvalues. A framework for computing the algebraic connectivity
was then introduced in Montijano, Montijano, and Sagues (2011)
by iteratively bisecting the interval where it is supposed to belong
to. Most of the remaining Laplacian spectra estimation solutions
relied on the Power Iteration method or variations (De Gennaro
& Jadbabaie, 2006; Kempe & McSherry, 2008; Li & Qu, 2013; Ore-
shkin, Coates, & Rabbat, 2010; Sabattini, Chopra, & Secchi, 2011;
Yang et al., 2010). Power Iteration (Householder, 1964) selects an
initial vector and then repeatedlymultiplies it by amatrix and nor-
malizes it. This vector converges to the eigenvector associated to
the leading eigenvalue (the one with the largest absolute value).
The original matrix can be previously deflated so that a particular
eigenvalue becomes the leading one. The distributed implementa-
tions of the power iteration method let each agent maintain one
entry of the state vector. The operations that require global knowl-
edge (normalization and deflation) are usually replaced with aver-
aging iterations, as in Sabattini et al. (2011) and Yang et al. (2010)
for continuous-time systems, and in De Gennaro and Jadbabaie
(2006) and Li andQu (2013) for discrete-time systems. A brief sum-
mary of the power iteration method can be found in Appendix.

Most of these existing algebraic connectivity estimation meth-
ods have asymptotic convergence. However, in order to combine
in parallel these methods with some other algorithms or control
laws that require the knowledge of the algebraic connectivity, it
is necessary to have accurate lower and upper bounds as well as
the convergence rate of the algebraic connectivity estimation algo-
rithms (see, e.g., Seyboth, Dimarogonas, & Johansson, 2013), which
are typically missing in the literature (Oreshkin et al., 2010; Sabat-
tini et al., 2011; Yang et al., 2010).

In this paper, we present an alternative distributed method
for computing the algebraic connectivity (Section 3), whose main
interest is that it provides upper and lower bounds for the true
algebraic connectivity at each iteration.Weprove that both bounds
converge to the true algebraic connectivity, with a convergence
speed no slower than O(1/k).

2. Preliminaries

We use the notation defined in Table 1.
Consider a set of n ∈ N agents with indices i ∈ {1, . . . , n}. The

agents can exchange information with nearby nodes. This infor-
mation is represented by an undirected graph G = (V, E), where
V = {1, . . . , n} are the agents, and E are the edges. There is an
edge (i, j) ∈ E between nodes i and j if they can exchange data. We
assume that G is connected. We use Ni for the set of neighbors of
a node i with whom i can exchange data, Ni = {j | (i, j) ∈ E}, and
we let di be the degree of node i defined as the cardinality ofNi, and
dmax = maxi∈V di. We say an n × n matrix C is compatible with G
if Cij = 0 iff (i, j) ∉ E for j ≠ i; we let the elements in the diag-
onal Cii be either equal or different from 0. The adjacency matrix
A ∈ {0, 1}n×n of G is

Aij = 1 if (i, j) ∈ E, Aij = 0 otherwise, for i, j ∈ V.

The LaplacianmatrixL ∈ Rn×n ofG is the positive-semidefinite
matrix

L = diag(A1) − A, (1)

where 1 is as in Table 1. Note that the same LaplacianL is obtained
for graphs with (i, i) ∈ E and without (i, i) ∉ E self-loops. Both
A and L are compatible with the graph. We sort the eigenvalues
λi(L) of L as follows,

λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L).

The Laplacian matrix L has the following well known properties,
see e.g., Olfati-Saber et al. (2007): (i) its eigenvalues are upper
bounded by λn(L) ≤ 2dmax; (ii) it has an eigenvector v1(L) =

1/
√
n with associated eigenvalue λ1(L) = 0, L1/

√
n = 0; and

(iii) when G is connected, all the other eigenvalues are strictly
greater than zero.

The algebraic connectivity of G denoted by λ⋆(L) is defined as
the second-smallest eigenvalue λ2(L) of the Laplacian L. Usually,
the distributed algorithms that estimate the algebraic connectiv-
ity have asymptotic convergence, i.e., if we let λ̂i(k) be the esti-
mated algebraic connectivity after k iterations of the algorithm,
then limk→∞ λ̂i(k) = λ⋆(L), but for a finite k, we have λ̂i(k) ≠

λ⋆(L). If we do not know how λ̂i(k) approaches λ⋆(L), then the
selection of the number of steps k and the adjust of a parameter α
satisfying α < λ⋆(L) are non-trivial. Instead, if we know that our
estimate approaches λ⋆(L) satisfying λ̂i(k) ≤ λ⋆(L) for all k, then
we can just choose α < λ̂i(k) ≤ λ⋆(L) at any step k.

Problem 2.1. Our goal is to design distributed algorithms to allow
the agents to compute λ⋆(L), and/or a lower bound of λ⋆(L) in a
distributed fashion. �

From now on, we let C be the following deflated version of
the Perron matrix of the Laplacian L, (Aragues, Shi, Dimarogonas,
Sagues, & Johansson, 2012; Olfati-Saber et al., 2007; Xiao & Boyd,
2004; Yang et al., 2010)

C = I − βL − 11T/n, (2)

where the eigenvalues λ1(L), . . . , λn(L) of the Laplacian and of C
are related by

λ1(C) = 0, λi(C) = 1 − βλi(L), for i ∈ {2, . . . , n},

so that the spectral radius ρ(C) of C is associated to the algebraic
connectivity λ⋆(L) by

λ⋆(L) = (1 − ρ(C))/β, if 0 < β < 1/λn(L). (3)

We let D be the not-deflated matrix,

D = I − βL, so that C = D − 11T/n. (4)

3. Distributed computation of the algebraic connectivity

We present a distributed method for estimating the algebraic
connectivity λ⋆(L) of an undirected graph, which is not only
convergent but also provides lower and upper bounds at each step
k. We begin with a brief summary of the method, which is then
discussed in detail along this section. The method computes the
spectral radius of the deflated matrix C , which is related to the
Laplacian L by Eqs. (2), (3). Agents compute the induced ∞-norm
∥ · ∥∞ of matrix Ck, which is the maximum absolute row sum of
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the matrix,

∥Ck
∥∞ = max

i∈V
{|[Ck

]i1| + · · · + |[Ck
]in|}. (5)

This can be easily obtained by the agents using a distributed max-
consensus algorithm, provided that each agent i knows the ith row
of Ck. The following properties (Horn & Johnson, 1985, Chap. 5.6)
relating ρ(C) and the spectral ∥ · ∥2 and induced ∞-norms ∥ · ∥∞

of symmetric matrices C allow us to give lower and upper bounds
for our estimated algebraic connectivity at each step:

ρ(C) ≤ ∥C∥∞, ρ(C) = ∥C∥2 = ∥Ck
∥

1
k
2 ,

∥Ck
∥∞ ≤

√
n∥Ck

∥2, ρ(C) = lim
k→∞

∥Ck
∥

1
k
∞.

Observing Eq. (5), agentsmust compute the powers Ck ofmatrix
C which is not compatible with the graph. As the following result
shows, Ck can be easily obtained if agents know the powers Dk of
matrix D = I − βL = C + 11T/n in Eq. (4), which is compatible
with G.

Proposition 3.1. Consider a symmetric Laplacian matrix L, let D =

I − βL, with β > 0, and let C = D − 11T/n. The kth powers of
matrices C and D are related as follows, for all k ≥ 1,

Ck
= (D − 11T/n)k = Dk

− 11T/n. (6)

Proof. Since 1/
√
n is the eigenvector v1(C) of C associated to the

eigenvalue λ1(C) = 0, D = C + 11T/n and C have the same eigen-
vectors vi(C) = vi(D) for all i ∈ {1, . . . , n}, and all the eigenvalues
equal λi(C) = λi(D) for all i ∈ {2, . . . , n}, but the first one being
λ1(C) = 0 whereas λ1(D) = 1. Thus, their kth powers have the
following expressions:

Ck
= (0)k11T/n +

n
i=2

(λi(C))kvi(C)vi(C)T ,

Dk
= (1)k11T/n +

n
i=2

(λi(C))kvi(C)vi(C)T ,

where 0k
= 0 and 1k

= 1, so that we obtain Eq. (6). �

The powers Dk of a matrix D compatible with the graph can be
computed in a distributed fashion by letting each agent i store the
ith row of Dk and update each element [Dk

]ij, for j = 1, . . . , n, with
its neighbors’ data,

[Dk+1
]ij =


j′∈Ni∪{i}

Dij′ [Dk
]j′j. (7)

Since D is compatible with G, Dij′ = 0 for non-neighbor agents
j′ ∉ Ni ∪ {i} and Eq. (7) gives

[Dk+1
]ij =

n
j=1

Dij′ [Dk
]j′j, (8)

which is exactly the expression for computing the powers of a ma-
trix, i.e., agents obtain exactly Dk at each step k. Observing Eq. (7),
when agent i receives [Dk

]j′j from its neighbor j′, it needs to know
to which agent j (possibly a non-neighbor) this information refers
to, for combining it with its own [Dk

]ij. The following algorithm
is a more flexible version of (7), where each agent keeps a list
li(k) of the identifiers j associated to each of its elements [Dk

]ij
(in real implementations, these identifiers can be, e.g., the IP ad-
dresses). Agents exchange these identifiers li(k) togetherwith their
elements [Dk

]ij. Moreover, when agent i discovers in its neighbors’
data j′ ∈ Ni the identifier of a new agent j ∈ lj′(k), it initializes a
new variable [Dk

]ij and updates li(k) accordingly.

Algorithm 3.2 (Distributed Power Matrix Computation). Each node
i ∈ V maintains a set of node identifiers li(k) and an estimate D̂ij(k)
of the (i, j) entries of the kth power of D, [Dk
]ij, associated to the

nodes j such that j ∈ li(k).
1: At k = 0, each node i ∈ V initializes a single variable D̂ii(k) and

a single identifier,

D̂ii(0) = 1, li(0) = {i}, (9)
and sends this data to its neighbors Ni.

2: At each step k ≥ 1, node i first looks for new nodes in the infor-
mation lj′(k) received from its neighbors j′ ∈ Ni and updates its
identifiers li(k) accordingly,

li(k + 1) =


j′∈Ni∪{i}

lj′(k). (10)

3: Then, node i creates a new variable D̂ij(k) initialized with
D̂ij(k) = 0, for each recently discovered node j,

j ∈ li(k + 1) and j ∉ li(k).

4: Finally, node i updates all its variables D̂ij(k),

D̂ij(k + 1) =


j′∈Ni∪{i},j∈lj′ (k)

Dij′ D̂j′j(k), (11)

for j ∈ li(k + 1), and sends to its neighbors these variables
D̂ij(k + 1) and the identifiers li(k + 1). �

Proposition 3.3. When D is compatible with the graph, (i) the out-
comes D̂ij(k) of Algorithm 3.2 at step k ≥ 0, with j ∈ li(k), are exactly
the entries of the kth power of D,Dk, and (ii) for j ∉ li(k), the entries
of the kth power of D,Dk, equal zero, [Dk

]ij = 0.
Proof. We first prove (ii). Note that li(k) contains the identifiers
of the nodes j which are at k or less hops far from node i. Thus,
if j ∉ li(k), then agents i and j are farther than k hops and, since
matrix D is compatible with the graph, [Dk

]ij = 0 (Bullo et al.,
2009, Lemma 1.32).

Thus, at step k, agent i has variables D̂ij(k) for all the agents
j ∈ li(k) that are at k or less hops from i. For the remaining agents
j ∉ li(k), agent i does not have variables D̂ij(k) yet, but this is not
important because their value [Dk

]ij is zero anyway.
Now we focus in (i). For k = 0, it is straightforward to see that

it is true, since D0
= I, and each agent i ∈ {1, . . . , n} has a single

variable D̂ii = 1 (Eq. (9)). For k ≥ 1, we consider Eq. (7) that con-
tains the explicit expression for Dk+1

= DDk, with D compatible
with the graph. From (ii), when agents j′, j are farther than k hops,
i.e., when j ∉ lj′(k), the entry [Dk

]j′j = 0. Thus, each (i, j) entry of
Dk+1 can be expressed as

[Dk+1
]ij =


j′∈Ni∪{i}

Dij′ [Dk
]j′j

=


j′∈Ni∪{i},j∈lj′ (k)

Dij′ [Dk
]j′j,

which is the update rule for D̂ij(k + 1) in Eq. (11). �

Agents use Algorithm 3.2 for computing the powers Dk of ma-
trix D, whereas the aim (Eq. (5)) was to compute Ck. From Propo-
sition 3.1, Ck

= Dk
− 11T/n. The value D̂ij(k) at each agent i is the

exact value (not an estimate of it) for the entries [Dk
]ij of Dk asso-

ciated to the agents j ∈ li(k) which are at k or less hops; thus, the
equivalent entry of Ck is obtained by subtracting 1/n from D̂ij(k).
Besides, the entries [Dk

]ij for which j ∉ li(k) equal zero (Proposi-
tion 3.3); thus, for each of these n − |li(k)| entries, the associated
entry in Ck equals −1/n. Each agent i uses this transformation for
computing ci(k) = |[Ck

]i1| + · · · + |[Ck
]in|.

Algorithm 3.4 (Distributed Algebraic Connectivity). Let ε ∈ (0, 1)
a number pre-given to the agents and β = ε/(2n). Consider the
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agents execute Algorithm 3.2 for computing the powers of matrix
D = I−βL. Then, at each step k ≥ 1, each node i ∈ V has variables
D̂ij(k), for j ∈ li(k), containing the (i, j) entries of the kth power of
matrix D, [Dk

]ij.
At each step k, each node i locally computes2

ci(k) =


j∈li(k)

|D̂ij(k) − 1/n| + (n − |li(k)|)/n, (12)

and starts a max-consensus (Tahbaz-Salehi & Jadbabaie, 2006) to
get maxj∈V cj(k). The algebraic connectivity λ̂i(k) estimated by
each agent i ∈ V at step k ≥ 1 is given by3

λ̂i(k) =

1 − ρ̂i(k)


/β, ρ̂i(k) = (max

j∈V
cj(k))

1
k . � (13)

The execution of Eq. (12) starts a new max-consensus process,
indicating in the messages the new step number k. At every time
instant, in addition to Algorithm 3.2, there are up to diam(G) max-
consensus processes that run simultaneously in the network.
Agents keep on executing new iterations of Algorithm 3.2 for
computing Ck+1, Ck+2, etc., and simultaneously, they update the
max values associated to the last diam(G) steps.

Theorem 3.5. Let each node i execute Algorithm 3.4 with G undi-
rected and connected. As k → ∞, the variables λ̂i(k) converge to
the Laplacian algebraic connectivity λ∗(L) for all i ∈ V ,

lim
k→∞

λ̂i(k) = λ∗(L), (14)

and for all i ∈ V and all k we have lower and upper bounds for λ⋆(L):

λ̂i(k) ≤ λ⋆(L) ≤ n
−1
2k λ̂i(k) +


1 − n

−1
2k


/β. (15)

Proof. First note thatβ = ε/(2n) satisfies 0 < β < 1/λn(L) since
ε ∈ (0, 1) and λn(L) ≤ 2dmax < 2n, where dmax is the maximum
degree in the graph. Therefore, the algebraic connectivity is related
to the spectral radius of matrix C as in Eq. (3), λ∗(L) = (1 −

ρ(C))/β . From Proposition 3.3, for all i ∈ V , the variables D̂ij(k) are
equal to [Dk

]ij for j ∈ li(k), whereas [Dk
]ij = 0 for j ∉ li(k). Linking

this with the fact that Ck
= Dk

− 11T/n (Proposition 3.1) yields

[Ck
]ij = D̂ij(k) − 1/n, for j ∈ li(k),

[Ck
]ij = −1/n, for j ∉ li(k), for all i ∈ V, k ≥ 1.

When G is connected, ci(k) in Eq. (12) is the absolute ith row sum
of Ck, and ρ̂i(k) in Eq. (13) is

ρ̂i(k) = ∥Ck
∥

1
k
∞, for all i ∈ {1, . . . , n}, k ≥ 1. (16)

For any induced norm, in particular for the∞-norm, it holds (Horn
& Johnson, 1985, Chap. 5.6),

ρ(C) = lim
k→∞

∥Ck
∥

1
k
∞ = lim

k→∞

ρ̂i(k), (17)

and ρ(C) ≤ ∥C∥∞; therefore,

ρ(C) = (ρ(Ck))
1
k ≤ ∥Ck

∥

1
k
∞ = ρ̂i(k). (18)

Since C is symmetric, its spectral norm ∥C∥2 = maxi


λi(C2)
equals ρ(C) = maxi |λi(C)|,

ρ(C) = ∥C∥2 = ∥Ck
∥

1
k
2 . (19)

2 Recall that node imaintains the ith row of Dk .
3 It is available at the nodeswhen the associatedmax-consensus finishes diam(G)

iterations later.
The spectral ∥Ck
∥2 and induced infinite ∥Ck

∥∞ norms of Ck are re-
lated by (

√
n)−1

∥Ck
∥∞ ≤ ∥Ck

∥2, (Horn & Johnson, 1985, Chap.
5.6), which combined with Eq. (19) give

n
−1
2k ρ̂i(k) = n

−1
2k ∥Ck

∥

1
k
∞ ≤ ∥Ck

∥

1
k
2 = ρ(C). (20)

From Eqs. (17)–(20),

ρ(C) = lim
k→∞

ρ̂i(k), n
−1
2k ρ̂i(k) ≤ ρ(C) ≤ ρ̂i(k), (21)

which combined with Eqs. (3) and (13) give

lim
k→∞

(1 − βλ̂i(k)) = 1 − βλ⋆(L), and
n

−1
2k − βn

−1
2k λ̂i(k)


≤ (1 − βλ⋆(L)) ≤ (1 − βλ̂i(k)),

which lead to Eqs. (14) and (15). �

Corollary 3.6. Let each node i execute Algorithm 3.4 with G undi-
rected and connected. The estimation errors, between the estimated
λ̂i(k) and the true Laplacian algebraic connectivity λ∗(L), evolve ac-
cording to:

|λ∗(L) − λ̂i(k)| ≤
1
k
log

√
n(1/β − λ∗(L)) + O(1/k2).

Proof. Noticing

|λ∗(L) − λ̂i(k)| ≤


√
n

1
k − 1


(1/β − λ∗(L))

=


e

1
k log

√
n
− 1


(1/β − λ∗(L)),

the desired conclusion becomes clear in light of the Taylor series of
e

1
k log

√
n
− 1 with respect to 1/k. �

While most of the results in this paper refer to fixed undirected
graphs, Algorithm 3.2 can be also used with non-symmetric
matrices D, and with time-varying graphs (D(k) depends on the
step k), in which case it gives

D̂ij(k) = [D(k)D(k − 1) · · ·D(1)]ij, for j ∈ V.

Equivalently, the estimate ρ̂i(k) of Algorithm 3.4 in Eqs. (13) and
(16) for time-varying graphs is

ρ̂i(k) = ∥C(k)C(k − 1) · · · C(1)∥
1
k
∞,

which captures the connectivity up to the current time step.
This is related, e.g., to the asymptotic convergence rate of certain
distributed systems (Xiao, Boyd, & Lall, 2005).

Remark 3.7 (Knowledge of n).Ourmethod requires knowing n for:
(i) computing β = ε/(2n) satisfying β < 1/λn(L), and for (ii) ex-
ecuting Eqs. (12)–(13). For (i), it is enough to know an upper bound
ofn or to compute themaxdegree dmax with amax-consensus algo-
rithm on the node degrees. In fact, this is common to all the meth-
ods deflating L (Oreshkin et al., 2010; Sabattini et al., 2011; Yang
et al., 2010).

However, (ii) requires the exact value of n, like, e.g., in De Gen-
naro and Jadbabaie (2006). If G is fixed and connected, agents can
automatically obtain n as follows. Note that each agent i can al-
ways compute the powers ofmatrixD (Algorithm3.2)within Algo-
rithm 3.4; let ki be the first instant for which agent i has discovered
the identifiers of all the agents in the network, and thus li(k) stops
changing, ki = min{k | li(k) = li(k − 1)}; then, n = |li(ki)|. At
this moment, agent i can proceed with Eqs. (12)–(13). Moreover,
it can stop executing steps 2 to 3 in Algorithm 3.2 and exchanging
variables li(k). Alternatively, n can be computed in an initial phase.
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(a) Random graph. (b) String graph.

Fig. 1. Scenarios tested. (a) 20 agents (black squares) are placed randomly in a
region of 10 × 10 m; there is an edge e = (i, j) ∈ E (gray lines) between pairs
of agents that are closer than 4 m; λ⋆(L) = 0.7103. (b) String graph with agents 1
and 20 in the extremes; λ⋆(L) = 0.0246.

A method that does not require n at all is Franceschelli et al.
(2009); however, it assumes continuous communication, and it is
unclear if the discrete versions will require knowing n to choose
the step size or to determine triggering conditions. �

Remark 3.8 (Essential Spectral Radius). The essential spectral radius
ρess(W) = ρ(W − 11T/n) plays an important role in systems
that rely on stochastic weight matrices W , such as the Metropolis
weights (Xiao et al., 2005). Algorithm 3.4 can be adapted for com-
putingρess(W) by replacingmatrices C (Eq. (2)) andD (Eq. (4))with

C = W − 11T/n, D = W, so that ρess(W) = ρ(C).

The essential spectral radius ρ̂i(k) (Eq. (13)) estimated at step k
by agent i converges to the true ρess(W), with upper and lower
bounds, as in Eq. (21). �

Remark 3.9 (Complexity). Our method has memory, computa-
tional, and communication complexities order n per agent and it-
eration. This is a benefit compared with De Gennaro and Jadbabaie
(2006), whose complexities are order n2. Other algebraic connec-
tivity estimation algorithms (Franceschelli et al., 2009; Sabattini
et al., 2011; Yang et al., 2010) have lighter memory costs, con-
stant per agent. However, they assume continuous communication
whereasmessages are sent at discrete time instances in real multi-
agent systems. To ensure that the discrete-time version of the sys-
tem properly resembles the original one, a small step size should
be chosen, giving rise to high communication costs. The most effi-
cient method is Oreshkin et al. (2010), which considers discrete-
time communication, and that has memory, computational, and
communication complexities constant per agent and iteration. In
Section 4 we compare the performance of our method and Ore-
shkin et al. (2010) experimentally, concluding thatwe achieve sim-
ilar speed rates, with the additional benefit that we give upper and
lower bounds. �

4. Simulations

We have performed a set of simulations with n = 20 nodes
placed as in the two scenarios in Fig. 1.

Fig. 2 shows the results of our Distributed Algebraic Connec-
tivity method (Algorithm 3.4). The estimated algebraic connectiv-
ity λ̂i(k) at step k (Fig. 2, dac, dark red dashed) is the same for all
the agents i ∈ V; it lower bounds the true algebraic connectivity
λ∗(L) (black solid) and asymptotically converges to λ∗(L). The ex-
pression (

√
n)

−1
k λ̂i(k) + (1− (

√
n)

−1
k )/β (dac up, red solid) upper

bounds λ∗(L) and asymptotically converges to λ∗(L). The rates of
convergence for the random and string graphs are very similar.

Fig. 3 compares our method (Algorithm 3.4) against the Cen-
tralized Power Iteration (Algorithm A.1), which converges expo-
nentially (order rk, where r is the rate between the two largest
modulus eigenvalues); thus it is expected to exhibit a fast con-
vergence, whereas our method has a convergence rate order 1

k

(a) Random graph. (b) String graph.

Fig. 2. Algebraic connectivity λ̂i(k) estimated for 40 steps of our method
(Algorithm3.4). λ̂i(k) (dac, dark red dashed) and the expression (

√
n)

−1
k λ̂i(k)+(1−

(
√
n)

−1
k )/β (dac up, red solid) respectively lower and upper bounds the true λ∗(L)

(black solid), and both converge to λ∗(L). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

(a) Random graph. (b) String graph.

Fig. 3. Estimates for 40 steps of ourmethod (λ̂i(k), dac, dark red dashed), and of the
Centralized Power Iteration (AlgorithmA.1)with 10 different initial vectors (λ̂cpi(k),
cpi, gray solid). The true λ∗(L) is shown in black solid. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

(Corollary 3.6). In practice, the estimates of the Centralized Power
Iteration λ̂cpi(k) (cpi, gray solid) converged to the true λ∗(L) (black
solid) slowly for the string graph, where the two largest modulus
eigenvalues have similar values; we show the results for 10 dif-
ferent initial vectors. Besides, the estimates λ̂cpi(k) are larger than
λ∗(L), as opposed to the goal stated in Problem 2.1. Our method
(dac, dark red dashed) converged fast to λ∗(L) in both cases, and it
produced λ̂i(k) smaller than λ∗(L); additionally, it gives an upper
bound in case it is needed.

Fig. 4 analyzes the estimates (y-axis) versus the total size of
messages sent per agent (x-axis), for our method (λ̂i(k), dac, dark
red dashed), and for two distributed versions of the power itera-
tion. In the first one, the normalization and deflation operations in
Eq. (A.1) are replaced with Tcons = {20, 50, 100} averaging steps,
using the discrete-time rule w(t + 1) = Ww(t), with W the
Metropolis weight matrix (Xiao et al., 2005). As Tcons increases,
the estimates (api, blue solid) converge to a value closer to λ∗(L)
(black solid), but the communication load increases. The second
method (Oreshkin et al., 2010) avoids the deflation by building a
zero-average initial vector, and it normalizes using the ∞-norm
(computed with max-consensus). Its estimates (mpi, green solid)
converge to the true λ⋆(L) (black solid), using a similar number
of messages as our method λ̂i(k) (dac, dark red dashed), although
without giving any bounds. A similar behavior has been observed
for scenarios with different network sizes.

5. Conclusions

We have presented a distributed method to compute the alge-
braic connectivity λ⋆(L) and the essential spectral radius ρess(W)
for networked agent systemswith limited communication. At each
iteration, the algorithmproduces both upper and lower bound esti-
mates of λ⋆(L). We have proved theoretically and experimentally
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(a) Random graph. (b) String graph.

Fig. 4. Estimates (y-axis) vs. messages exchanged (x-axis) for our method λ̂i(k)
(dac, dark red dashed); and for the Dist. Power Iter. with max-consensus (mpi,
green solid) and with averaging (api, blue solid) with Tcons = {20, 50, 100}. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

that both estimates asymptotically converge to the trueλ⋆(L). This
ability to give upper and lower bounds has a great importance
for combining this method with higher level algorithms, execut-
ing both processes simultaneously. Although our agents sendmes-
sages of size n at each step, we have shown that our method has
similar communication load as distributed implementations of the
Power Iteration method.
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Appendix. Power iteration

Algorithm A.1 (Centralized Power Iteration). Let z(k) ∈ Rn be an
estimate of the leading eigenvector, initialized with any value, and
updated at each step kwith

z(k + 1) = Cz(k)/∥Cz(k)∥

= (Dz(k) − 11T z(k)/n)/∥Dz(k) − 11T z(k)/n∥. (A.1)

The estimate ρ̂cpi(k)of the leading eigenvalueρ(C) at step k is given
by the Rayleigh quotient, and the estimated algebraic connectivity
λ̂cpi(k) is as in Eq. (3),

ρ̂cpi(k) =
z(k)TCz(k)
z(k)T z(k)

, λ̂cpi(k) =
1 − ρ̂cpi(k)

β
. � (A.2)

Symbol ∥ ·∥ in Eq. (A.1) denotes a vector norm. In fact, the same
ρ̂cpi(k), λ̂cpi(k) are obtained regardless of the specific values used
for normalizing.

This method upper bounds λ⋆(L) whereas our goal was to ob-
tain a lower bound (Problem 2.1), i.e., if we consider the estimate
after a finite number of steps k, the method believes that the net-
work has a connectivity slightly higher than the actual one.

Lemma A.2. The algebraic connectivity λ̂cpi(k) estimated with Algo-
rithm A.1 for a symmetric matrix C is related to the true Laplacian
algebraic connectivity λ⋆(L) as follows, for all k ≥ 0:

λ̂cpi(k) ≥ λ⋆(L). (A.3)

Proof. Consider ρ̂cpi(k) in Eq. (A.2),

ρ̂cpi(k) =

C 1
2 z(k)

2

2

∥z(k)∥2
2

≤

C 1
2

2

2
∥z(k)∥2

2

∥z(k)∥2
2

=

C 1
2

2

2
,

and for symmetric matrices, ∥C∥2 = ρ(C), andC 1
2

2

2
= ρ(C1/2)2 = ρ(C),

giving ρ̂cpi(k) ≤ ρ(C), and thus

λ̂cpi(k) = (1 − ρ̂cpi(k))/β ≥ (1 − ρ(C))/β = λ⋆(L). �
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