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Abstract— We present a cooperative grasping approach based
on a topological representation of objects. Using point cloud
data we extract loops on objects suitable for generating
entanglement. We use the Gauss Linking Integral to derive
controllers for multi-agent systems that generate hooking grasps
on such loops while minimizing the entanglement between
robots. The approach copes well with noisy point cloud data,
it is computationally simple and robust. We demonstrate the
method for performing object grasping and transportation,
through a hooking maneuver, with two coordinated NAO robots.

I. INTRODUCTION

Robots operating in domestic and industrial environments
need to manipulate and transport objects which often fall
outside their capabilities in terms of weight, shape or size.
However, many of these objects can be handled by combin-
ing the efforts of multiple robots through coordinated multi-
agent grasping and manipulation techniques. Our approach
to cooperative multi-robot grasping builds upon our previous
work presented in [1], [2] and relies on detecting loops in
objects using a topological framework.

When multiple robots execute a task cooperatively, possi-
ble collisions with the environment and between the robots
need to be handled. This problem is commonly addressed by
approximating the robot’s geometry using boxes, cylinders,
spheres and other geometric primitives. Such shape elements
are then fed to collision detection algorithms that indicate
whether a pair-wise spatial overlap would occur or not.
This procedure is computationally expensive, even for coarse
approximations of the robot/object shape and has to be
constantly repeated during planning and control.

We propose an alternative approach which is not intended
to replace collision avoidance but rather to complement it. In
short, we propose to leverage the same topological methods
used to derive hook-grasping controllers, to keep the robots
untangled. The contributions of this paper are:

1) Multi-agent topology-based grasping framework.
2) Collision avoidance solution through topology.
An overview of our system is shown in Fig. 1. The system

builds upon our previous work on extracting loops to describe
objects with holes [1] and a topological representation of the
relationship between these loops and robots for grasping [2].
Our method proceeds as follows: First, we extract the object’s
cluster from a point cloud and perform Delaunay triangula-
tion to obtain a simplicial complex that describes the object.
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Considering the object’s geometry in a topological way, we
extract loops from the simplicial complex and heuristically
pick a target loop for entanglement by the robots. To create
a grasp, we describe entanglements with a writhe matrix and
control the robots’ joints in a lower dimensional Eigen-space.
In this process it is our goal to arrive at a secure entanglement
condition which indicates that the loop is secured and the
robots can proceed to transport the object.

The remainder of this paper is organized as follows: In
Section II, we review related works in control and motion
generation based on topological coordinates. Section III
details loop extraction and theory for our topology-based
representation. The grasping framework is presented in Sec-
tion IV and Section V contains a real-world proof-of-concept
demonstration using two NAO robots. In Section VI we
give concluding remarks and elaborate on future research
directions.

II. BACKGROUND AND RELATED WORK

Two fundamental concepts that we build upon are Gauss
Linking Integral (GLI) and writhe matrix. [3] derives a com-
putationally efficient way of calculating the entanglement of
straight line segments, calculating the GLI without having to
compute the integral directly. [4] synthesizes agent’s motion
with close contacts using topological coordinates such as
writhe, center, and density. It allows us to avoid collisions
for complex motions that require entanglement of body parts.
The authors show how to modify the writhe matrix through
rotation, translation and scaling transformations to obtain the
desired entanglement.

The object collision avoidance is inspired by the ideas
presented in [5]. The authors introduce a structure called
interaction mesh that is used to represent spatial relationships
between the agent and its environment. We generalize this
mesh to represent spatial relationships between agents too.
The minimization of the interaction mesh deformation yields
motions that avoid inter-penetrations and — in our case —
also collisions between agents. The authors use two types
of energy in the minimization problem: deformation and
acceleration; and they specify four constrains over the mesh:
bone-length, positions, collisions and energy.

In [6] the authors redefine the energy functions of [5] to
calculate the joint angles directly from the interaction mesh
rather than having to extract them from the Cartesian coor-
dinates. They include additional constraints that preserve the
correctness of the motions generated. The scenario studied
involves a NAO humanoid robot simulation for which not
only the spatial relationship with the obstacle is considered,
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Fig. 1. left) Diagram of the topological control framework. right) Two NAOs carrying a basket cooperatively through the topological control framework.

but also how the weight distribution constrains the move-
ment. To this end, the range of movement is restricted to lie
within the support polygon of the feet.

To deal with the problem of body part inter-penetration, [7]
introduces several techniques: RRT, PCA and IK, which are
compared to the method of parameterizing body movements
using topological coordinates. Traditionally, each posture
would be encoded as a series of Euler angles. However, by
calculating the GLI, the part of the data that interests us can
be encoded by 3 numbers: writhe, center, and density. Both
the agent and the object are defined using line segments that
correspond to its skeleton disregarding the local geometry.

In order to execute interesting sequences of actions gen-
erated using topology based controllers, [8] simulates video-
game characters using a Finite State Machine (FSM) that
sits on top of the topology-generated actions. This creates
a new level of abstraction because different actions can be
scheduled in time depending on their outcome. In this work,
we replace the concept of FSM with that of Behavior Trees
(BTs) [9], [10] as they can represent the same types of action
sequences with simpler notation. Additionally, BTs provide
the benefit of being modular structures, which means they
can be disaggregated into smaller parts or chained together
to build more complex modules seamlessly.

Since we are interested in executing not only multi-
agent grasps but also more complex sequences of actions
using BTs, we investigated dynamic footstep planners which
could be incorporated into our framework. For example, [11]
proposes a method to parameterize a humanoid robot walking
motion using the displacement of one foot with respect to
the other. The authors test several planners such as A* and
D* Lite, of which the latter is preferred because it does
incremental searches. Such footstep planner has the precision
required to drive a humanoid robot to the position where the
loop is within arm’s reach without colliding with it.

In [12], the authors present the idea of switching from
a coarse motion walking function to a foot planner when
the situation demands it. The foot planning parameterization
is maintained with the improvement that now the search
is performed using weighted A*. The implementation also
incorporates ARA* which efficiently reuses previous infor-
mation and progressively finds better solutions by decreasing

the weights. The objects that clutter the environment are
detected using a 3D sensor that is attached to the NAO’s
head. The planner has an adaptive level of detail which
separates the region in two categories: traversable and non-
traversable, determining the planner that ought to be used.

Regarding the problem of finding a feasible path to
execute grasping, [13] uses RRT in combination with IK
considering all the relevant constraints during the search. The
robot is meant to interact with articulated objects such as
drawers and doors while keeping its feet fixed. The authors
compare the Jacobian and randomized methods for doing
planning enforcing the benefits and limitations of each. The
constraint manifold, which represents the limitations of robot
self-collisions, is computed off-line. The robot stability is
calculated by projecting the center of mass (CoM) to the
ground plane and checking if it lies within the support
polygon defined by the feet. Inspired by this work, we use
a modified version of RRTs to execute the hooking grasp
driven by topological coordinates in real-time.

In [14], the authors develop decentralized control strate-
gies for groups of robots to move towards a goal position
while maintaining a condition called object closure. Con-
trary to traditional force closure constraints, the condition
used to transport objects in this framework is less stringent
and therefore allows more tolerance to positioning errors.
We take advantage of the same formalization to transport
the object entangled with two agents in our demonstrator
scenario.

Lastly, we investigated works on navigation in cluttered
environments which could be adapted to work in conjunction
with our framework. For example, [15] achieves almost real-
time plans with bounded sub-optimality using a combination
of a octree-based 3D world representation and an ARA*
planner. It includes a review of several 3D collision checking
algorithms that rely on partial subdivision of the space. The
authors use three horizontal cuts of the PR2 robot shape
at different heights to accelerate the collision avoidance
by doing it in 2D first. If no collisions are detected at
this stage, the algorithm calculates the full 3D collision
test taking into account the geometry of the robot. The
search algorithm ARA* relies on motion primitives which
are concatenated to produce feasible paths. We consider this



work to be suitable for incorporation of entanglement notions
that use the skeletal structure of the robot rather than arbitrary
horizontal cuts to do a simplified object collision avoidance.

III. PRELIMINARIES

A. Loop Extraction Algorithm
A point cloud obtained using a 3D sensor mounted on

the robot is clustered and analyzed for holes: specifically,
given the point cloud of the object’s cluster, we obtain the
Delaunay triangulation D which yields a simplicial complex
K

d1 encompassing the object’s volume, see [2] for details.
To detect holes in dense point clouds — where any two

points that correspond to the solid part of the object are
never apart more than d — we can first refine the simplicial
complex by removing the edges which are larger than d. This
yields a new simplicial complex K

d2 , shown in Fig. 2, that
approximates the shape of the object exposing the detectable
holes [16] while keeping the relevant shape information.

Feeding this structure to the ShortLoop software [17], we
obtain, in polynomial time, the shortest loops of the object.
This corresponds to a set of piecewise linear loops/closed
curves S = {l

1

, l

2

, . . . , l

m

}, which can be classified even
further into graspable/non-graspable loops according to the
size of the gripper, [2]. There exists other criteria to classify
loops besides graspable/non-graspable, for example tunnel
loops and handle loops, [2], [16]. In the current scenario, we
assume that there is only one graspable loop on the object.

Fig. 2. Refined simplicial complex representation of the basket (Kd2 )
obtained from a point cloud by Delaunay triangulation and removing long
edges.

B. Topological Representation
The topology space consists of coordinates that capture

spatial relationships between objects and robots. There are
three main topological coordinates: writhe, center and den-
sity. The writhe measures the degree in which two curves,
�

1

and �

2

, are entangled or twisted around each other. The
writhe can be calculated through the Gauss Linking Integral
(GLI) in continuous space using:
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Clearly, there are many ways in which two curves can
produce the same GLI value, and the election of the curve’s
label order (�

1

, �

2

) is arbitrary. To get additional information

about the entanglement between two curves in topological
space we define also the center and density of the twist,
represented by c and d respectively.

The center c specifies the location of the main twist
along the two strands (�

1

, �

2

). It is composed of two sub-
coordinates (x

g

, y

g

) each of which is a scalar value and
represents the relative location of the main twist along one
of the two strands involved. The density d specifies the
concentration of the twist along one strand with respect to
the other. Evenly spread out entanglements yield lower (in
absolute value) densities than non-evenly spread entangle-
ments. Furthermore, d lies between [�⇡

4

,+

⇡

4

] and its sign
tells us which strand is playing the major role in producing
the entanglement.

We use topological coordinates to control a robot to
reach a target topological configuration. This implies that we
need a fast way of recomputing the topological coordinates,
particularly the writhe matrix, so that we can use it as
feedback to control the robot in real time. Borrowing the idea
of approximating curves with multiple line segments from
integral calculus, we can represent the internal structure of
any robot and object with line segments. This hierarchical
structure can be conveniently represented by a tree graph
and is compliant with the standard definition of robots’ joint
specifications, i.e., URDF models.

Using this curve discretization on (�
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2

) we obtain
(S
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) with n
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edges respectively. In this way,
eq. (1) becomes a computation that can be done in parallel —
leveraging multi-core GPUs — to obtain the entanglement
between each line segment of S

1

and S

2

. A convenient way
of storing and representing this data structure is through
what is called writhe matrix T

i,j

[3]. From such matrix, the
calculation of the approximated GLI is straightforward using:
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Maintaining the same notation, we can approximate the
center c = (x

g

, y

g

) of the entanglement for the discrete case
with eq. (3). The center tells the location of the twist with
respect to each strand, and it can be graphically inferred from
the writhe matrix as shown in [4].
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Lastly, the density is defined as the angle between the main
axis of the writhe matrix and the diagonals. Despite having
a straightforward graphical definition, it is the most complex
topological coordinate to calculate. We first note the fact that
each strand could have a different number of edges, in this
case the one with the largest number of edges must be filtered
so that the writhe matrix has a square shape. This filtering
process consists of grouping together the contents of several
cells into a smaller number of them so that the number of
rows and columns is the same.

At this stage, we must first filter the writhe matrix using an
‘edge to edge’ threshold. The filter outputs 1 if T

i,j

� T

d

or



0 if T
i,j

< T

d

. Using the discrete 2D indices of each of the
points whose value is 1, we can formulate a PCA problem
that allows us to approximate the value of the direction along
which these points are concentrated. The eigenvector with the
highest eigenvalue V

d

gives us the direction of the highest
variance, while the eigenvalue itself tells us how much is
the data concentrated in this direction. We find the angles
between V

d

and the diagonals of the matrix, which choosing
to bottom-left corner of the matrix as the reference frame for
the PCA analysis, would correspond to the vectors [1,1] and
[1,-1]. Lastly, we obtain the density from these two angles by
choosing the one with the lowest absolute value and placing
the sign corresponding to the quadrant where the vector lies,
i.e., ‘plus’ for north / south, and ‘minus’ for east / west.

The insight used in [16] was that if we have 2 non-
intersecting closed curves for which the GLI 6= 0, then they
cannot be “pulled apart”. For example, consider 2 such loops
representing the gripper of a robot and the handle of an
object; if the GLI between them is not zero, they cannot
be unchained without breaking either of them. This situation
when the object cannot be “pulled apart” from the robot(s) is
what we call from this point onwards secure entanglement.

In this paper, we elaborate more general conditions that
can be used to guarantee secure entanglements when con-
sidering two extensions. First, we broaden the idea of robot
grasping to encompass not only gripper/object interactions,
but also whole body/object interactions. Second, we consider
that grasps can be executed cooperatively by more than
one agent at a time on the same object and hole. For the
first extension we show that secure entanglements can be
achieved using, for example, the arms of the robot when
the width of the loop is too large for the gripper. For the
second extension we show that secure entanglements can be
achieved by a group of robots even when none of them is
capable of maintaining a secure entanglement on its own.

1) Robot Representation: In our previous work [16], it
was required to identify at least one pair of opposable fingers
for generating grasps. In the present paper, we propose
a more general framework that allows to generate caging
grasps that can be executed by both hands and arms. Our
algorithm is concerned with finding a secure entanglement
using the set of available joints.

2) Object Representation: The ShortLoop algorithm re-
turns a set of points in 3D which define the coordinates
through which the loop passes. Assuming the loop is approx-
imately planar we can use the loop coordinates to formulate
a minimization problem to fit a plane to the loop. Such
plane — for relatively flat loops — approximates the loop’s
normal vector and we use it to define heuristics for the robot’s
approach direction. When several robots are to entangle with
the same loop, it becomes necessary to introduce a notion of
loop effective traversable area and how to distribute it. To do
this, we take the center of the loop and draw the connecting
lines to the loop’s vertices. The set of triangles that result are
used for calculating and distributing the area through which
each agent should entangle the loop.

Naturally, the limitations of the platform will affect the

choice of heuristics for assigning the entanglement to each
agent. For example, when using two NAOs to grasp the
basket, it is natural to split the loop ‘vertically’, whereas
when doing the same thing with two Youbots, it may actually
be just as feasible to divide the loop ‘horizontally’. In either
case, we assume that the position from which the robots will
begin the entanglement maneuver allows the robot to reach
the object without moving their feet or base.

The object description presented in [1] was given by
(S,K

d

, {G
s

|s 2 S}) where S are the discretized shortest
loops, K

d

is the simplicial complex, and G

s

are clasping
targets. In this work we replace the notion of clasping targets
G

s

by the notion of weighted entanglement analysis, and we
extend the object description to incorporate knowledge of
the agents supposed to grasp it. This means that we have a
function F : E ! A which maps each object edge E to the
agent A that is going to entangle with it.

IV. TOPOLOGICAL GRASPING FRAMEWORK

A. Topology Driven Controller
The relationship between differential changes in the

robots’ joint space and differential changes in its writhe ma-
trix is complex to obtain even for simple robot embodiments
and objects. We take a different approach than [4] to simplify
the computation. We start the robot at the initial pose from
which we know the object is potentially hookable without
moving the feet. Formally, we have a function Z : A⇥J !
{1, 0} that for each agent A specifies the joints J that the
controller is allowed to modify. For example Z will take the
value zero for joints related to the legs of the NAO and the
value one for joints related to the arms and other entangling
body parts.

The aim is to explore the state space of the robot, par-
ticularly that of the joints intended to perform the hooking.
We use a variation of the RRT algorithm that leverages the
knowledge of the quality of each node in the search. This
yields better results because we can quantify and therefore
expand nodes that score higher, rather than simply expand
nodes that belong to the non-collision state space.

For each valid random pose sampled we calculate the
writhe matrix between the robot and the loop, plus the writhe
matrix between the robot and any other agent present. The
agent/object matrix is used to drive the robot towards high
values of entanglement with the loop, whereas the other
agent/agent matrices are used to drive the robot towards low
values of entanglement with the obstacles (other robots).
Clearly, this maximization problem is too complex to be
handled all at once and for all joints simultaneously. For
this reason we take a different approach achieving real-time
execution by carrying out a weighted entanglement analysis.
We first note that the number of edges in the robot skeleton,
unlike the number of edges in the loop, is constant. This
allows us to reward with higher weights the edges in the
robot whose entanglement with the object is more important.

The scoring function, which is described in Sec. IV-B,
must not only reward high entanglements, but also prevent
the collision of the robot with the loop. To this end we set a



threshold on the individual value that the elements of T
i,j

can
take. The reason behind this is that the definition of the GLI
as described by eq. (1) has the distance between �

1

and �

2

in the denominator. This means that, as the edges of the loop
and the robot get closer, the value of the corresponding T

i,j

gets larger. By penalizing high kT
i,j

k we encourage GLI =P
i,j

T

i,j

to grow while avoiding collisions.
In our previous work [1], the clasping target on the loop �

was a point p 2 � and its tangent ṗ. In the present work, this
concept was replaced with a random search that drives the
robot towards entanglement values that fulfill certain proper-
ties. We acknowledge that inappropriate thresholds for T

i,j

(too high or too low) lead to poor entanglements or collisions
respectively. For the situation where the topological approach
fails to prevent collisions, it is possible to apply another
collision avoidance algorithm using K

d2 as a collision model
for the object.

B. RRT Modified Algorithm Overview

In RRTs, a region of the search space is labeled as goal
and it indicates the end of the algorithm. In our case, this
goal region is not static: the condition that guarantees the
loop cannot escape depends on more than one robot and
it will vary with time as they move. For this reason, we
evaluate the goal dynamically using a boolean function that
we call secure entanglement, which depends on all the robots
involved.

The main reason behind introducing the modified RRT
algorithm is to achieve real-time performance for groups
of agents. This means that we need to perform search
using the information that we gain through expanding and
evaluating nodes. A key concept in the modified RRT is
the scoring function that indicates the nodes that ought to
be expanded first because they are ‘better’. The particular
scoring function that we use is called weighted entanglement
and it is represented by eq. (4). Intuitively, the first term
of the summation rewards high entanglement values of
T
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for the agent m/object writhe matrix, the second
term of the summation penalizes high entanglement values of
T
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for the agent m/agent n writhe matrix (or matrices
if there are more than 2 agents), and the third term of the
summation encourages a uniform growth of the entanglement
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We use a goal-less entanglement search algorithm because
it can exit when a certain condition is satisfied over the
set of agents. The scoring function defines exactly what it
means to improve the entanglement and the secure hooking
condition is the trigger that stops the search expansion for
all the agents. We note that there exists an infinite number

of joint configurations that lead to a secure entanglement but
our algorithm will only find one (the first joint configuration
that the random search yields for that particular run).

C. Eigen-Entanglement
The approach to eigen-entaglement is inspired by the idea

of eigen-grasps [18] where PCA is used to determine the
parameters causing the largest variance in a grasp database.
We thus generalize the concept of eigen-grasps to also
encompass entanglements. This allows us to reduce the
dimensionality of the search so that instead of exploring the
whole joint space, we do so in a restricted eigen space that
covers more than 80% of the entanglements.

D. Escaping Distance
Given that we aim at generating caging grasps that do

not fixate the object, robot motion may cause changes in
the object’s pose after it has been grasped. To simplify the
problem we limit the scope of this section referring only to
situations where the object is securely hooked using exactly
one agent. Under this assumption, we look into how the
object moves under internal or external forces for the worst
case scenario. This allows us to estimate a virtual convex
surface around the part of the robot hooking the object. We
use this surface for collision checking and as a safety distance
that guarantees the object will not collide with anything if it
remains hooked.

To obtain this virtual surface we divide the problem into
two phases: first, we disregard the shape of the gripper and
calculate how far the object could move if it was hooked in a
way such that the “abstract gripper” was in contact with the
loop; second, we incorporate the knowledge of the gripper’s
shape so that we know exactly how far from the robot could
the object move if it happened to slide. We say gripper in this
context referring to the part of the robot caging the object.

Consider the simplicial complex representation K
d2 de-

scribed earlier and assume that the ShortLoop [17] algorithm
found a loop that runs through a set of vertices V in the
simplicial complex, such that Q = K

d2\V are the vertices
of K

d2 which do not form part of the loop but are in K
d2 . To

solve the first phase we proceed as follows: 1) Hypothesize
that the gripper is in contact with one of the vertices v of the
loop. 2) For this vertex, loop through all the vertices q 2 Q

building a matrix D of Euclidean distances(v, q). 3) Repeat
the above procedure for all v 2 V adding corresponding rows
to the matrix. 4) Take the maximum of all the entries in the
matrix to obtain the resulting distance r

ext

. The procedure
is summarized in Alg. 1.

Algorithm 1: Escaping Distance - Phase 1
for v 2 V do1

for q 2 Q do2

D dist

Euclidean

(v, q)3

end4

end5

r

ext

 max(max(D))6



To solve the second phase we proceed as follows: 1) For
every vertex g 2 G, where G is the set of vertices that
describe the shape of the gripper, we create a spherical
collision structure centered in g and with radius r

ext

. 2) We
loop through these collision structures appending them to
each other as with a ‘union’ operation. In this way, we can
perform feedback control by measuring (indirectly) how far
could the object slip, and then tightening or loosening the
gripper to decrease or increase the mobility that we allow for
the hooked object. The procedure is summarized in Alg. 2.

For situations where multiple agents are hooking the same
loop, the problem is more complicated because we could
have a finite collision shape without necessarily having either
of the robots chained to the loop. This happens when the set
formed by the agents A and the loop S satisfies what we
call the secure entanglement/hooking condition.

Algorithm 2: Escaping Distance - Phase 2
collision  ?1

for g 2 G do2

collision  collision [ sphere(r

ext

)3

end4

E. Secure Entanglement
This condition is defined for idealized loops and robots,

i.e., those composed of mathematical lines rather than vol-
umetric shapes. This implies that the secure hook estimated
through the idealized representation overestimates the real
condition that takes into account the volume and geometry.
The problem that we are dealing with consists of finding
— for a closed loop and a set of manipulators — whether
the loop can be separated arbitrarily far away from the
manipulators without bending or breaking it. For the case
where we have only one manipulator and one loop, the secure
hooking condition is true when the: GLI(G,S) 6= 0 and the
manipulator edges themselves form a closed loop. When two
agents are entangled with the object, it is no longer necessary
that either of them has a secure entanglement for the system
to fulfill such condition. This means that we could have a
system where two robots do not have secure entanglement
on their own, but as a whole they do prevent the loop from
escaping arbitrarily far away from them.

If either of the robots happens to have secure entanglement
on its own, the two agent system also satisfies the condition.
Otherwise, we proceed as follows: 1) We assume that each
robot on its own is virtually linked to the object [1], i.e., when
completing the missing edge to close the manipulator it turns
out that GLI(G,S) 6= 0, and that their edges define convex
shapes. 2) Similar to the procedure that we used to calculate
r

ext

, we calculate r

int

as the maximum element of the matrix
that stores the Euclidean distance between every pair of
loop vertices v 2 V , i.e., we idealize the loop as a circle
with radius equal to the largest vertex to vertex Euclidean
distance appearing in the loop. 3) For each manipulator,
we label its vertices as belonging to the extremes (ext)

or not (int). 4) For each agent a 2 A we loop through
the internal vertices v

int

of its manipulator calculating the
d

prel

= dist

Euclidean

(v

agent=a

int

, v

agent 6=a

ext

), if r

int

< d

prel

for
both robots, and all combinations of internal and external
vertices, we say the object is preliminarily hooked. 5) We
draw virtual links that join the external nodes of one robot
with the other such that these new edges do not cross. 6)
We check if the area defined by this new virtually closed
manipulator is traversed by the loop or not, if it is not
we have that the individual manipulators are facing away
from each other and we can finally say that the loop is
securely entangled, otherwise we have that one or both of
the manipulators are facing inwards meaning that they are
not actually keeping a secure hook even if they preliminarily
appear to do so. The procedure is summarized in Alg. 3.

Algorithm 3: Secure Entanglement
for v

1

2 V do1
for v

2

2 V do2
D dist

Euclidean

(v
1

, v
2

)3
end4

end5
r
int

 max(max(D))6
pre hook  True7
for a 2 A do8

for vint 2 Vint do9

d
prel

 dist

Euclidean

(vagent=a
int

, vagent 6=a
ext

)10
if not r

int

< d
prel

then11
prel hook  False12
break13

end14
end15

end16
v manip  virtually link(a

1

, a
2

)17
if GLI(v manip, loop) = 0 then18

secure entanglement  True19
else20

secure entanglement  False21
end22

For situations where n > 2 robots are involved, we could
analyze if there is a secure entanglement between any two
robots. If such check is positive, we know the object is
securely hooked. Otherwise, it could still happen that the
loop is securely hooked due to the interaction of three
or more agents simultaneously. Deriving a necessary and
sufficient condition that guarantees secure hooking between
arbitrary number of agents and a loop has been left for future
work.

V. SYSTEM DEMONSTRATION

The system that demonstrates the proposed topological
multi-robot grasping framework consists of two NAO hu-
manoid robots equipped with 3D sensors, a local positioning
system (which for simplicity was replaced with robot odom-
etry), and the object with a graspable loop which in this case
is a basket. In the following subsections we describe the task
used to demonstrate the topological grasping framework and
how each of these parts are coupled together through ROS.



(a) GLI = �0.2065 (b) GLI = +0.1113 (c) GLI = +0.2765 (d) GLI = +0.4515 (e) GLI = +0.6109

Fig. 3. Selection of five nodes evaluated by our RRT modified algorithm. The NAO skeleton entangles a simplified loop with four edges using its left
arm while keeping the rest of the body still. Notice the increasing entanglement value achieved by exploring more nodes.

(a) Scanning Basket (b) Entangling Basket (c) Lifting Basket (d) Turning Basket (e) Transporting Basket (f) Releasing Basket

Fig. 4. Basket secure entanglement with transportation, (basket & robots initial positions known, odometry used for navigation). This figure is merely
for illustrative purposes, for the real run of the system refer to the YouTube video: “Cooperative Grasping Through Topological Object Representation”.

A. Task Description

The evaluation scenario is as follows: 1) two NAOs extract
a graspable loop from the point cloud of a basket while in
crouching position, 2) the NAOs walk towards the basket
until they reach a position from which they can grasp it, 3)
the NAOs move their arms maximizing the writhe matrix
until the secure entanglement condition is satisfied. 4) the
NAOs stand while keeping the same arm pose and walk
cooperatively carrying the basket to deliver it to the goal.

The reason the NAOs must perform the loop recognition
before walking to the place where the grasping will be
performed is because the 3D cameras that we use have a
distance limitation. This means that the NAO is unable to
detect the loop when it is close enough to reach the basket,
or equivalently that it is unable to reach the basket when
standing far enough so that the point cloud is complete.
In a practical sense, this is translated in the fact that we
have to use odometry to recalculate where would the basket
be after we have moved the NAO from the observing pose
to the grasping pose. The scenario described is represented
graphically in Fig. 4.

B. Behavior Tree Middle Layer Representation

The scenario described above requires the switching be-
tween several controllers as certain conditions are achieved,
e.g. detect the loop, move to grasping pose, entangle, trans-
port and release basket. This scheduling is achieved using
BTs [9], [10] instead of the traditional FSMs.

Behavior Trees can handle fallback conditions and have
plenty of interesting features. However, for the current task

only the basic functionality of BTs is required, i.e., the se-
quence node. Informally speaking the sequence node (repre-
sented by!) executes its children from left to right one after
the other for as long as they continue to succeed. One BT
consists of an interconnection of action nodes (controllers)
and control-flow nodes (scheduling the controllers in time
according to their outputs). Each agent runs one BT which
deterministically specifies what the agent should be doing at
each time step. Synchronization decorators1 can be used to
have the agents executing certain actions simultaneously.

C. RRT Modified Search

To drive the robot towards high entanglement values we
have used eq. 4 in conjunction with a modified RRT search.
This search expands nodes in the robot’s joint state space
using eq. 4 as a quality measure that indicates the nodes
that ought to be expanded first because they yield ‘better’
entanglement values between the robot and the loop.

To simplify the understanding of the pictures we have
restricted the scenario to consider only one NAO. The robot
is meant to entangle a simplified loop which consists of four
edges as shown in Fig. 3. The NAO starts from a crouching
position and we enable our algorithm to control only the
joints that correspond to the left arm.

As we previously mentioned, the triggering condition that
stops the search is what we call the secure entanglement.
However, in the example represented in Fig. 3 the NAO by
itself cannot reach such condition because we only allow it

1For details regarding the functionality of BTs and our open source
implementation2 refer to [9].



to move one arm. This means that we have to exit the search
when the GLI does not increase substantially for some time.

In the scenario where two NAOs perform the same ma-
neuver, they exit when the secure entanglement is achieved.
At this point they stand up simultaneously, preserving the
distances between their parts. This guarantees that the object
which is securely entangled will not escape. Unfortunately,
the transportation phase does not have this certainty because
the NAOs bounce sideways and drift away while walking.

VI. CONCLUSIONS

We have presented an approach to topology driven multi-
robot grasping and hooking. Our approach relies on global
topological features [2], inferred from noisy point cloud
data. Even though not explicitly shown, our method is
suitable for deformable/non-rigid object grasping as long as
the properties of the topological space are maintained, i.e.,
existing holes are preserved.

Caging and entanglement-based grasps such as the ones
that can be achieved through the methods proposed in this
paper are important because they allow more flexibility and
error tolerance than force-closure grasps. We humans employ
them on a daily basis when opening doors, holding hand
rails, carrying bags, manipulating tools, etc.

Clearly, not all the objects that we wish to cage or entangle
with are easily recognizable using the computer vision algo-
rithms that exists today. For this reason, more work needs
to be done in the area of perceiving, understanding and
classifying loops in order to unlock the full potential and
applicability of the methods proposed in this paper.

In future work we plan to address more in detail the
problem of obstacle avoidance using topologically inspired
methods. This will permit us to make a reliable comparison
with the state of the art in collision avoidance and evaluate
the true potential of topology to deal with this problem.
Lastly, we are interested in deriving the necessary and
sufficient condition that guarantees secure entanglement for
groups of an arbitrary number of robots and a loop.
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