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Guarding, Searching and Pursuing 
Evaders using Multiagent Systems 
Petter Ögren 
Robotics, Perception and Learning (RPL) 

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Example Scenario 

• Airport 
• Power plant 
• Military base 
• Port 
• Factory 
• … 

An intruder alarm is set of … 

Multiagent surveillance bots are 
remotely activated Cooperative search of area 
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A broken window is spotted An indoor alarm is set off 

Cooperative Guarding of buildings  A virtual perimeter is set up 

A suspect exits a building Human teleoperates bot to make sure 
suspect leaves area 
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Area is searched for remaining 
intruders (pursuit evasion problem) 

All is clear 

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

• This field is very broad 
- Overview of problems, results and tools  

But first: Bullo 

• Beautiful theory 
• Relevant application 

 

Common theme: Discretizing the 
search space 

• Partitioning search space into convex sets is often useful 
• Create a graph 

-  Set <-> vertex 
-  Neighbor <-> edge 

 
Some naïve solutions: 
• Guarding 

-  Put a guard in each vertex 
• Search 

-  Travelling salesman 
 

Can we improve on these conservative solutions?

Todays topics 

• Cooperative search 
- Static targets  

• Cooperative guarding 
- Static guards  

• Cooperative pursuit evasion 
- Moving targets and guards 
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Coordinated Guarding/Coverage 

• Applications: Art gallery, Industrial Area, Camera 
positioning 

• Possible objectives:  
- Min no of cameras,  
- Max coverage with N cameras,  
- Weighted coverage 

• Environment: 2D/3D 

Bounds on number of Guards 

• The General Art Gallery Problem: What is the 
smallest number of guards needed to cover any 
polygon with n vertices and h holes.  

• For h=0, Chvatal (1975) proved bound: Floor(n/3)  
• Hoffmann (1991) proved bound: Floor ((n+h)/3) 

Minimize number of guards (3D etc) 

• Problem: (Min number of guards)  
• Problem (Minimum set cover) Let E = {e1, . . . , en} be a finite set 

of elements, and let S = {s1,...,sm} be a collection of subsets of E, 
i.e. sj ⊆ E. The problem minimum set cover is the problem of finding 
a minimum subset S′ ⊆ S such that every elements ei ∈ E belongs 
to at least one subset in S′. We say that E is covered by S′.  
-  NP-hard 
-  Greedy algorithm performs well , Eidenbenz (2002)  

Movie: Guarding with resolution constraints

Guarding with resolution constraints 

Minimizing number of guards (3D etc) 

• Marangoni (2000)  
-  Triangulation of 3D environment 
-  Vertex coloring to find subset 
-  Visibility computation to get candidates 

• Efrat (2002) randomized search instead of the greedy 
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Non-line-of-sight guarding 

• Distribute agents pi to 
• Minimize Expected squared distance  

-  From random event 
-  To nearest agent 
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of Voronoi. Moreover, one can deduce some smoothness prop-
erties of : since the Voronoi partition depends at least con-
tinuously on , for all , the function
is at least continuously differentiable on

for some .

C. Centroidal Voronoi Partitions

Let us recall some basic quantities associated with a region
and a mass density function . The (generalized) mass,

centroid (or center of mass), and polar moment of inertia are
defined as

Additionally, by the parallel axis theorem, one can write

(4)

where is defined as the polar moment of inertia of
the region about its centroid .

Let us consider again the locational optimization problem (1),
and suppose now we are strictly interested in the setting

(5)

that is, we assume . The parallel axis
theorem leads to simplifications for both the function and
its partial derivative

Here, the mass density function is . It is convenient to
define

Therefore, the (not necessarily unique) local minimum points
for the location optimization function are centroids of their
Voronoi cells, i.e., each location satisfies two properties si-
multaneously: it is the generator for the Voronoi cell , and it
is its centroid

Accordingly, the critical partitions and points for are called
centroidal Voronoi partitions. We will refer to a sensors’ config-
uration as a centroidal Voronoi configuration if it gives rise to a
centroidal Voronoi partition. Of course, centroidal Voronoi con-
figurations depend on the specific distribution density function

, and an arbitrary pair admits, in general, multiple cen-
troidal Voronoi configurations. This discussion provides a proof
alternative to the one given in [10] for the necessity of centroidal
Voronoi partitions as solutions to the continuous -median lo-
cation problem.

III. CONTINUOUS AND DISCRETE-TIME LLOYD DESCENT FOR

COVERAGE CONTROL

In this section, we describe algorithms to compute the loca-
tion of sensors that minimize the cost , both in continuous and
in discrete time. In Section III-A, we propose a continuous-time
version of the classic Lloyd algorithm. Here, both the positions
and partitions evolve in continuous time, whereas the Lloyd al-
gorithm for vector quantization is designed in discrete time. In
Section III-B, we develop a family of variations of Lloyd algo-
rithm in discrete time. In both settings, we prove that the pro-
posed algorithms are gradient descent flows.

A. A Continuous-Time Lloyd Algorithm

Assume the sensors location obeys a first-order dynamical
behavior described by

Consider a cost function to be minimized and impose that
the location follows a gradient descent. In equivalent con-
trol theoretical terms, consider a Lyapunov function, and
stabilize the multivehicle system to one of its local minima via
dissipative control. Formally, we set

(6)

where is a positive gain, and where we assume that the
partition is continuously updated.

Proposition 3.1 (Continuous-Time Lloyd Descent): For the
closed-loop system induced by (6), the sensors location con-
verges asymptotically to the set of critical points of , i.e., the
set of centroidal Voronoi configurations on . Assuming this set
is finite, the sensors location converges to a centroidal Voronoi
configuration.

Proof: Under the control law (6), we have

By LaSalle’s principle, the sensors location converges to the
largest invariant set contained in , which is precisely the
set of centroidal Voronoi configurations. Since this set is clearly
invariant for (6), we get the stated result. If consists of
a finite collection of points, then converges to one of them
(see Corollary 1.2).

Remark 3.2: If is finite, and , then a
sufficient condition that guarantees exponential convergence is
that the Hessian of be positive definite at . Establishing
this property is a known open problem, see [10]. Note that this
gradient descent is not guaranteed to find the global minimum.
For example, in the vector quantization and signal processing
literature [12], it is known that for bimodal distribution density
functions, the solution to the gradient flow reaches local minima
where the number of generators allocated to the two region of
maxima are not optimally partitioned.
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Non-line-of-sight guarding 
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of Voronoi. Moreover, one can deduce some smoothness prop-
erties of : since the Voronoi partition depends at least con-
tinuously on , for all , the function
is at least continuously differentiable on

for some .

C. Centroidal Voronoi Partitions

Let us recall some basic quantities associated with a region
and a mass density function . The (generalized) mass,

centroid (or center of mass), and polar moment of inertia are
defined as

Additionally, by the parallel axis theorem, one can write

(4)

where is defined as the polar moment of inertia of
the region about its centroid .

Let us consider again the locational optimization problem (1),
and suppose now we are strictly interested in the setting

(5)

that is, we assume . The parallel axis
theorem leads to simplifications for both the function and
its partial derivative

Here, the mass density function is . It is convenient to
define

Therefore, the (not necessarily unique) local minimum points
for the location optimization function are centroids of their
Voronoi cells, i.e., each location satisfies two properties si-
multaneously: it is the generator for the Voronoi cell , and it
is its centroid

Accordingly, the critical partitions and points for are called
centroidal Voronoi partitions. We will refer to a sensors’ config-
uration as a centroidal Voronoi configuration if it gives rise to a
centroidal Voronoi partition. Of course, centroidal Voronoi con-
figurations depend on the specific distribution density function

, and an arbitrary pair admits, in general, multiple cen-
troidal Voronoi configurations. This discussion provides a proof
alternative to the one given in [10] for the necessity of centroidal
Voronoi partitions as solutions to the continuous -median lo-
cation problem.

III. CONTINUOUS AND DISCRETE-TIME LLOYD DESCENT FOR

COVERAGE CONTROL

In this section, we describe algorithms to compute the loca-
tion of sensors that minimize the cost , both in continuous and
in discrete time. In Section III-A, we propose a continuous-time
version of the classic Lloyd algorithm. Here, both the positions
and partitions evolve in continuous time, whereas the Lloyd al-
gorithm for vector quantization is designed in discrete time. In
Section III-B, we develop a family of variations of Lloyd algo-
rithm in discrete time. In both settings, we prove that the pro-
posed algorithms are gradient descent flows.

A. A Continuous-Time Lloyd Algorithm

Assume the sensors location obeys a first-order dynamical
behavior described by

Consider a cost function to be minimized and impose that
the location follows a gradient descent. In equivalent con-
trol theoretical terms, consider a Lyapunov function, and
stabilize the multivehicle system to one of its local minima via
dissipative control. Formally, we set

(6)

where is a positive gain, and where we assume that the
partition is continuously updated.

Proposition 3.1 (Continuous-Time Lloyd Descent): For the
closed-loop system induced by (6), the sensors location con-
verges asymptotically to the set of critical points of , i.e., the
set of centroidal Voronoi configurations on . Assuming this set
is finite, the sensors location converges to a centroidal Voronoi
configuration.

Proof: Under the control law (6), we have

By LaSalle’s principle, the sensors location converges to the
largest invariant set contained in , which is precisely the
set of centroidal Voronoi configurations. Since this set is clearly
invariant for (6), we get the stated result. If consists of
a finite collection of points, then converges to one of them
(see Corollary 1.2).

Remark 3.2: If is finite, and , then a
sufficient condition that guarantees exponential convergence is
that the Hessian of be positive definite at . Establishing
this property is a known open problem, see [10]. Note that this
gradient descent is not guaranteed to find the global minimum.
For example, in the vector quantization and signal processing
literature [12], it is known that for bimodal distribution density
functions, the solution to the gradient flow reaches local minima
where the number of generators allocated to the two region of
maxima are not optimally partitioned.

Non-line-of-sight guarding: 
Discretized 
• Distribute agents pi to 
• Minimize Expected squared distance  

-  From random event 
-  To nearest agent 
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is at least continuously differentiable on

for some .
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Let us recall some basic quantities associated with a region
and a mass density function . The (generalized) mass,

centroid (or center of mass), and polar moment of inertia are
defined as

Additionally, by the parallel axis theorem, one can write

(4)

where is defined as the polar moment of inertia of
the region about its centroid .

Let us consider again the locational optimization problem (1),
and suppose now we are strictly interested in the setting

(5)

that is, we assume . The parallel axis
theorem leads to simplifications for both the function and
its partial derivative

Here, the mass density function is . It is convenient to
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Therefore, the (not necessarily unique) local minimum points
for the location optimization function are centroids of their
Voronoi cells, i.e., each location satisfies two properties si-
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, and an arbitrary pair admits, in general, multiple cen-
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alternative to the one given in [10] for the necessity of centroidal
Voronoi partitions as solutions to the continuous -median lo-
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III. CONTINUOUS AND DISCRETE-TIME LLOYD DESCENT FOR

COVERAGE CONTROL

In this section, we describe algorithms to compute the loca-
tion of sensors that minimize the cost , both in continuous and
in discrete time. In Section III-A, we propose a continuous-time
version of the classic Lloyd algorithm. Here, both the positions
and partitions evolve in continuous time, whereas the Lloyd al-
gorithm for vector quantization is designed in discrete time. In
Section III-B, we develop a family of variations of Lloyd algo-
rithm in discrete time. In both settings, we prove that the pro-
posed algorithms are gradient descent flows.

A. A Continuous-Time Lloyd Algorithm

Assume the sensors location obeys a first-order dynamical
behavior described by

Consider a cost function to be minimized and impose that
the location follows a gradient descent. In equivalent con-
trol theoretical terms, consider a Lyapunov function, and
stabilize the multivehicle system to one of its local minima via
dissipative control. Formally, we set

(6)

where is a positive gain, and where we assume that the
partition is continuously updated.

Proposition 3.1 (Continuous-Time Lloyd Descent): For the
closed-loop system induced by (6), the sensors location con-
verges asymptotically to the set of critical points of , i.e., the
set of centroidal Voronoi configurations on . Assuming this set
is finite, the sensors location converges to a centroidal Voronoi
configuration.

Proof: Under the control law (6), we have

By LaSalle’s principle, the sensors location converges to the
largest invariant set contained in , which is precisely the
set of centroidal Voronoi configurations. Since this set is clearly
invariant for (6), we get the stated result. If consists of
a finite collection of points, then converges to one of them
(see Corollary 1.2).

Remark 3.2: If is finite, and , then a
sufficient condition that guarantees exponential convergence is
that the Hessian of be positive definite at . Establishing
this property is a known open problem, see [10]. Note that this
gradient descent is not guaranteed to find the global minimum.
For example, in the vector quantization and signal processing
literature [12], it is known that for bimodal distribution density
functions, the solution to the gradient flow reaches local minima
where the number of generators allocated to the two region of
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Non-line-of-sight guarding: 
Discretized 
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Further reading on Guarding 

•  V. Chvatal. A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial Theory Series B, 
18:39–41, 1975. 

•  F. Hoffmann, M. Kaufmann, and K. Kriegel. The Art Gallery Theorem for Polygons With Holes. 
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages 39–48, 
1991. 

•  S. Eidenbenz. Approximation Algorithms for Terrain Guarding. Information Processing Letters, 
82(2):99–105, 2002. 

•  M. Marengoni and B. Draper. System to Place Observers on a Polyhedral Terrain in Polynomial Time. 
Image and Vision Computing, 18(10):773– 780, 2000. 

•  A. Efrat and S. Har-Peled. Guarding Galleries and Terrains. Proceedings of the IFIP 17th World 
Computer Congress-TC1 Stream, 2002. 

•  U. Nilsson, P. Ögren, and J. Thunberg, “Optimal positioning of surveillance UGVs,” presented at the 
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pp. 2539–
2544. 

•  Y. Wang, M. Colledanchise, A. Marzinotto, and P. Ögren , A Distributed Convergent Solution to the 

Ambulance Positioning Problem on a Streetmap Graph World Congress of the International 
Federation of Automatic Control (IFAC), 2014  

•  W.R. Franklin. Siting Observers on Terrain. Symposium on Spatial Data Handling, Ottawa, pages 
109–120, 2002.  

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Cooperative Search (Background: TSP) 

• Travelling Salesperson 
Problem (TSP) 

• Variations 
- Multi-TSP 
- Metric TSP 
-  Vehicle routing problem 
- Max capacity 
-  Time windows 
- … 

"It involves ideas from polyhedral combinatorics and combinatorial 
optimization, integer and linear programming, computer science data 
structures and algorithms, parallel computing, software engineering, 
numerical analysis, graph theory, and more."

13000 cities, Applegate, Bixby, Cook and Chvatal
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Cooperative Search 

• Sensor range gives two cases 
• Range << environment size 

-  Lawn mowing 
-  Vacuum cleaning 
-  Seeding, harvesting 
- Mine clearing 
-  UAV search 

• Range similar to environment size 
-  UGV search 

Cooperative search (short range) 

• Search the area in minimum time 

Spanning Tree Coverage (Search) 

1.  Cover the search area with squares 4x the sensor footprint 
2.  Create a graph G = (V,E) 
3.  V - Centers of each large square 
4.  E - Adjacent squares 
5.  Find a spanning tree T 
6.  Move clockwise around T 

Running the algorithm 

The graph G

The tree T

Algorithm Properties 

1.  The algorithm completes the search 
2.  The algorithm completes the search in minimum 

time 

Multi-robot search 

• Given N robots  
• Can we complete the task in 1/N of the time? 
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Multi agent search... (extension) 

• Same as singe agent algorithms 
• Agents stop when reaching already covered square 

Tree 1:   31  steps Tree 2:  15  steps

Multi agent search... (extension) 

• What is the optimal spanning 
tree? 

• Optimal Multi-agent search is 
NP-hard 

• P-time Heuristics have been 
proposed 
-  (Agmon and Kaminka 2006) 

Seabed mapping (search) 

• Given polygon of GPS 
coordinates 

• No map  
• Plan and execute a path to  
• cover the whole seabed 

- mapping depth  
- mines 

• Avoid  
-  getting grounded 
-  other moving vessels 

• Use a bare minimum of sensors 
- GPS 
-  downward looking sonars 
-  (transponder) 

Seabed mapping (search) 

• Classical Search Patterns 
-  Scanning 
-  Spiral 

• Disadvantages 
-  Land... 

• Solution 
-  Reactive Greedy approach 

  

Reactive Greedy approach 
Cooperative Search 

• Sensor range gives two cases 
• Range << environment size 

-  Lawn mowing 
-  Vacuum cleaning 
-  Seeding, harvesting 
- Mine clearing 
-  UAV search 

• Range similar to environment size 
-  UGV search 
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Cooperative Search (long sensor range) 

Possible approaches: 
• Use Guard positions and solve m-TSP 

• Discretize to a graph and solve m-TSP 

• Use convex cover and solve m-TSP … 
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Example of Cooperative search 
(Anisi 2010) 

How?

Cooperative Search 

• How can we make search less conservative? 
• Replace partition with overlapping convex cover 

Create Convex Cover Sets

Perform Tabu Search on Order of Set Visitation

Solve Shortest Path Problem to find Paths Visiting Sets

Cooperative Search 

• How can we make search less conservative? 
• Replace partition with overlapping convex cover 

Create Convex Cover Sets

Perform Tabu Search on Order of Set Visitation

Solve Shortest Path Problem to find Paths Visiting Sets

Further reading on cooperative search 

•  E. Frazzoli and F. Bullo. Decentralized algorithms for vehicle routing in a 
stochastic time-varying environment. In Proc. of the 43rd IEEE Conference 
on Decision and Control, CDC, 2004.  

•  Maria John, David Panton, and Kevin White. Mission planning for regional 
surveillance. Annals of Operations Research, 108:157–173, Nov. 2001.  

•  Shuzhi Sam Ge and Cheng-heng Fua. Complete Multi-Robot Coverage of 
Unknown Environments with Minimum Repeated Coverage. In IEEE 
International Conference on Robotics and Automation, Barcelona, Spain, 
pages 727–732, April 2005. 

•  N Agmon, N Hazon, GA Kaminka, Constructing spanning trees for efficient 
multi-robot coverage, IEEE International Conference on Robotics and 
Automation (ICRA), 2006 

•  I. I. Hussein and Stipanovic, “Effective Coverage Control using Dynamic 
Sensor Networks,” presented at the Decision and Control, 2006 45th IEEE 
Conference on, 2006. 

•  D. A. anisi, P. Ögren, and X. Hu, “Cooperative Minimum Time Surveillance 
With Multiple Ground Vehicles,” Automatic Control, IEEE Transactions on, 
vol. 55, no. 12, pp. 2679–2691, 2010. 

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 
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Cooperative Pursuit Evasion 

• First introduced by Parsons (1976) 
-  Problem on a graph 
- Multiple searchers 

• A continuous version: Suzuki et al. (1992).  
-  simple polygon  
-  single searcher (k-searcher)  

• Limited field of view: Gerkey et al. (2006) 
-  capability of a robot with a camera  
-  (phi-searcher) 

Randomized Pursuit Evasion 

• Randomized strategy: Isler et al. (2005).  

• By repeating a randomized strategy, capture 
probability can be made arbitrarily high (if simply 
connected) 

876 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 5, OCTOBER 2005

Fig. 1. Single pursuer cannot capture an evader using deterministic strategies.

We also address the harder task of capturing the evader. For
this problem, we present a strategy for two pursuers, one of
which is at least as fast as the evader. The strategy is based on
the randomized strategy to locate the evader and the known solu-
tion to a problem called the “lion and man problem” [2], which
is reviewed in Section III-A. The same strategy can be used to
capture the evader while protecting a door. This problem was in-
troduced in [13] to model scenarios where the goal is to locate
the evader, which may leave the polygonal area through a door
and win the game.

The two-pursuer strategy can be modified so that a single pur-
suer can also capture the evader. However, the expected time-to-
capture in this case, though finite, may be significantly longer
than the expected time-to-capture with two pursuers.

Organization of the Paper: We start the paper with a mo-
tivating example for randomized strategies (Section I-A). We
present preliminary concepts and definitions in Section I-B. In
Section II, we address the problem of locating a fast, unpre-
dictable evader with global visibility.

Next, in Section III, we address the task of capturing the
evader in a simply connected environment. For this problem, we
present a randomized strategy for two pursuers, who can com-
municate at all times, to quickly capture the evader. We show
how this strategy can be modified for a single pursuer, at the ex-
pense of increasing the capture time, in Section IV-A. We also
present extensions of the basic two-pursuer strategy for the case
where the pursuers have limited communication (Section IV-B),
and for a scenario where the polygonal room has a door through
which the evader can escape (Section IV-C).

A. Randomized Strategies

The power of randomization in the context of pursuit–evasion
games is nicely illustrated by the example in Fig. 1. A similar
example can be found in [14].

In this example, a single pursuer can never locate the evader
using a deterministic strategy. Let us distinguish four regions

, and , as shown in the figure. Now suppose the pur-
suer has a deterministic strategy of visiting these regions in the
order . In this case, the evader can first hide at
and escape to while the pursuer is visiting . Afterwards,
it can repeat the same strategy and escape to while is at

. If visits the regions in a different order, it is easy to see
that can find a similar strategy to avoid . Therefore, in this
polygon, one pursuer can never locate the evader.

An alternative interpretation of this situation is the following.
Suppose the polygon in Fig. 1 is contaminated with many

evaders executing all possible evader strategies. There is no de-
terministic pursuer strategy that guarantees that all the evaders
will be caught; for any given deterministic pursuer strategy,
there will be at least one evader which can avoid being located
forever.

Now consider the following randomized strategy. Instead of
committing to a deterministic strategy, moves to the center
of the polygon and selects one of the regions uni-
formly at random and visits it. It is easy to see that if guesses
the region where is located correctly, then cannot escape,
and the probability of this desired event is . The crucial
observation is that since does not know which region will
visit, it cannot choose a strategy based on the order of points
visited by .

The probability of locating the evader can be made arbitrarily
small by repeating the same strategy a few times. If is the
number of trials, the probability of missing in all trials is

in this example, which decreases exponentially with .
In general, if the probability of capture is , the expected number
of rounds to capture is . Note that each round is indepen-
dent. We can obtain the expected time to locate the evader as fol-
lows. Since the length of a round is bounded by the time to travel
between the two furthest points in the polygon (say, ), the ex-
pected time to capture is . By repeating the experiment
roughly times, we can show (using the Chernoff
bound) that the pursuer has a high probability of locating the
evader. For details of this analysis, the reader is referred to [15].

B. Preliminaries

Let be the input polygon, including its interior, and be the
set of vertices of . The letter denotes the number of vertices
of the polygon. Two points can see each other if the
line segment lies entirely in .

We use to denote the length of the shortest path from
to that remains inside . The shortest path has the following

property.
Property 1: The shortest path between any two points and
inside a polygon is a polygonal path whose inner vertices

are vertices of .
The shortest path tree from a point in is defined as

, where denotes the shortest path from
to . A polygon is simply connected if any simple closed curve
inside the polygon can be shrunk to a point. In other words, a
simply connected polygon does not contain any “holes.” All
the polygons considered in this paper are simply connected.

The triangulation of a polygon is a decomposition of the
polygon into triangles by a maximal set of nonintersecting diag-
onals (see Fig. 2). The dual of a triangulation is a graph whose
vertices correspond to the triangles. There is an edge between
two vertices if the corresponding triangles share a side. It is well
known that the triangulation of a simply connected polygon has
exactly triangles. In addition, the dual of the triangulation
is a tree [16].

Game Formulations: In this paper, we study two pur-
suit–evasion games with different objectives. Both games take
place in a simply connected polygon , which is known to all
players.

Cooperative Pursuit Evasion 

• Efrat et al.(2000) consider chains of searchers in 
simple polygons 

• Hollinger et al. (2007) a probabilistic approach 
inspired by Markov Decision processess (MDP) and 
partially observable MDP (POMDP)  

• Thunberg (2011) MILP/MPC formulation … 

3

first for exact optimization, then for approximation. Due to lack of space, we defer most proofs to
the full version of the paper; some proofs are contained in the appendices.

2 Geometric Preliminaries

Let P be a simple polygon in the plane. Let G = {G1, G2, . . . , Gr} be a set of point guards
in P . For a guard Gi ∈ G, let γi(t) denote the position of Gi in P at time t; we require that
γi(t) : [0,∞) → P be a continuous function. A configuration of G at time t, denoted Γ(t) is the set
of points {γi(t) | 1 ≤ i ≤ r}. We say that Γ(t) is legal if

1. γ1(t) and γr(t) both lie in ∂P , and

2. for every 1 ≤ i < r, the segment γi(t)γi+1(t) does not intersect the exterior of P .

From now on, we will use the term configuration to mean legal configuration. A useful way to
think of a configuration of G is as a piecewise-linear path connecting the points γ1(t) and γr(t) that
“cuts” through P and does not intersect the exterior of P .

A motion strategy (γ,G) = {γi, 1 ≤ i ≤ r} is a specification of γi, for each guard Gi ∈ G. We
assume that each guard can follow an algebraic path, once the path is specified. Thus, each γi is a
piecewise-algebraic function. The complexity of γi is the number of algebraic functions needed to
define it. The complexity of a motion strategy is the total complexity of the γi’s.

In order to formalize the notion of sweeping a polygon, we assume that the chain corresponding
to the configuration of the guards is oriented from G1 to Gr. For a motion strategy (γ,G), let AP (t)
denote the fraction of the area of P to the right of the configuration Γ(t); AP (0) = 0. We say that
a motion strategy (γ,G) is a search schedule for P if AP (t) = 1, for some t > 0. Finally, we say
that P is r-searchable if a search schedule that uses at most r guards exists for P . See Figure 1 for
an example of such a sweep. In Appendix A, we show that there are n-vertex polygons that are
not o(n)-searchable.

(a) (b) (c) (d)

$G_1$

(e) (f)

Figure 1: A search schedule with three guards. The unswept region is shown shaded.

We assume without loss of generality that all of the guards start at the same point in ∂P at the
beginning of the sweep and converge at another point of ∂P at the end of the sweep. The following
lemma characterizes when a motion strategy is a search schedule:
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p1 . . . p
N

represent the probability that the evader is in the
corresponding cell. Let the value p0 represent the probability
that the evader has already been captured by the pursuers.
Refer to this as the “capture state.” The vector p now defines
a probability distribution function over the evader’s position
in the environment (with the addition of a capture state).
The pursuers’ goal is to minimize the expected time

of reaching a capture event. Thus, the pursuers seek to
maximize the probability that the evader is in the capture
state at any given time t. The coordination problem is then
defined as the determination of paths for the pursuers such
that the probability of capture is maximized at any given
time.

IV. ALGORITHM DESCRIPTION

A. Map Discretization

Our method for discretization takes advantage of the
inherent characteristics of indoor environments. To discretize
an indoor map by hand, simply label convex hallways and
rooms as cells and arbitrarily collapse overlapping sections.
This method is simple enough that it can be performed by
hand even for large maps. Fig. 1 shows an example with
a small map, and Fig. 3 gives an example discretization
for a large map. Taking into account the cell adjacency in
a discretized map yields an undirected graph that can be
searched by the pursuers. This ties our research into that of
probabilistic graph search. Fig. 2 shows the undirected graph
derived from the house map.
This method for discretization also has the advantage of

guaranteeing that a pursuer in a given convex cell will have
line-of-sight to an evader in the same cell. This allows the
capture event to be reduced to the attainment of line-of-sight
to the evader. This makes intuitive sense because gaining
line-of-sight effectively collapses the unknown state of the
evader to a known state. Gaining line-of-sight is relevant to
nearly all sensors that a robotic pursuer would possess.
In comparison with the visibility-based discretization pro-

posed by LaValle and Guibas [8], our discretization tech-
nique yields far fewer cells making it more applicable
to large, complex environments. The tradeoff is that our
discretization does not provide a discretization suitable for
use with LaValle and Guibas’s visibility-based pursuit algo-
rithms.

Fig. 1. Small house map used for pursuit-evasion simulation

Fig. 2. Undirected graph built from house discretization

Fig. 3. Office building map used for pursuit-evasion simulation (dotted
lines show discretization boundaries)

B. Dispersion and Capture Modeling
To integrate a motion model of the evader into our pursuit-

evasion framework and better define capture events, we
develop “capture” and “dispersion” matrices for application
to the evader’s state vector. As presented in Section III,
the location of the evader is represented by a vector p =

[p0, . . . , pN

] where p0 represents the probability the evader
has already been captured, and p1 . . . p

N

represent the proba-
bility the evader is in the corresponding discretized cell. We
can mathematically represent a capture event on that state
vector by defining a matrix that moves all probability1 from
all cells visible from pursuer i’s current cell XP

i

(t) to the
capture state. The appropriate capture matrix C

X

P
i (t) for cell

XP

i

(t) is applied at time t to yield p(t+1) = p(t)C
X

P
i (t). For

example, if we assume that the pursuer cannot see through
doorways, the capture matrix for a pursuer in cell 1 of the
environment in Fig. 1 would be:

C1 =

0

BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCA

Under the current assumption that capture is guaranteed
in the pursuer’s current cell and not possible in neighboring
1The capture matrix can also contain non-unity values if the probability

of seeing an evader when it is in a pursuer’s line-of-site is less than one.
This would be the case with noisy sensors.

Recontamination may be needed... 
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the full version of the paper; some proofs are contained in the appendices.
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Let P be a simple polygon in the plane. Let G = {G1, G2, . . . , Gr} be a set of point guards
in P . For a guard Gi ∈ G, let γi(t) denote the position of Gi in P at time t; we require that
γi(t) : [0,∞) → P be a continuous function. A configuration of G at time t, denoted Γ(t) is the set
of points {γi(t) | 1 ≤ i ≤ r}. We say that Γ(t) is legal if

1. γ1(t) and γr(t) both lie in ∂P , and

2. for every 1 ≤ i < r, the segment γi(t)γi+1(t) does not intersect the exterior of P .

From now on, we will use the term configuration to mean legal configuration. A useful way to
think of a configuration of G is as a piecewise-linear path connecting the points γ1(t) and γr(t) that
“cuts” through P and does not intersect the exterior of P .

A motion strategy (γ,G) = {γi, 1 ≤ i ≤ r} is a specification of γi, for each guard Gi ∈ G. We
assume that each guard can follow an algebraic path, once the path is specified. Thus, each γi is a
piecewise-algebraic function. The complexity of γi is the number of algebraic functions needed to
define it. The complexity of a motion strategy is the total complexity of the γi’s.

In order to formalize the notion of sweeping a polygon, we assume that the chain corresponding
to the configuration of the guards is oriented from G1 to Gr. For a motion strategy (γ,G), let AP (t)
denote the fraction of the area of P to the right of the configuration Γ(t); AP (0) = 0. We say that
a motion strategy (γ,G) is a search schedule for P if AP (t) = 1, for some t > 0. Finally, we say
that P is r-searchable if a search schedule that uses at most r guards exists for P . See Figure 1 for
an example of such a sweep. In Appendix A, we show that there are n-vertex polygons that are
not o(n)-searchable.
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(e) (f)

Figure 1: A search schedule with three guards. The unswept region is shown shaded.

We assume without loss of generality that all of the guards start at the same point in ∂P at the
beginning of the sweep and converge at another point of ∂P at the end of the sweep. The following
lemma characterizes when a motion strategy is a search schedule:
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Greedy fails, planning horizon needed ...

MILP/MPC approach to Pursuit Evasion 

• Classical model: pi pursuer location 
• MILP model:  

-  pit a pursuer at location i and time t 

-  Label nodes as (cleared/seen/contaminated) 
- MILP constraints Capture 
•  Agent motion 
•  Contaminated area dynamics 

- Minimize Contaminated area  

Movement 
neighborhood

Visible 
neighborhood

MILP/MPC example execution 

• Long planning horizon … 
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MILP approach to Pursuit Evasion 

• Too short planning horizon … 
• More searchers or decompose problem 

MILP: Additional constraint 

• Additional constraint can be added: 
-  Line of sight every 4th timestep 

MILP/MPC Pros and Cons 

• Handles recontamination (planning horizon) 
• Handles connectivity constraints 
• Scales poorly with planning horizon length 
• Scales poorly with environment size 

-  Add static “guard” to partition environment 
• Scales well with number of agents 
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Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Thank you … 


