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Today’s lecture

• Distance based formations

• Rigidity

• Persistence

• Leader-follower networks
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Formation Control

• Convergence to desired relative states with respect to
neighbors

• Can be distinguished between position based and distance
based

• Other relative states can be considered such as relative
orientation
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Distance-based formations

• Goal: Convergence to desired relative distances in R2.

• Consider undirected and static graph Gf = (V ,Ef ,w).

• A scalar weight w(i , j) = dij > 0 is associated to each edge
(i , j) ∈ E representing the desired relative distance of agents
i , j .

• The formation configuration is called feasible if the set
D =

{
q ∈ RpN | ||qi − qj || = dij , ∀ (i , j) ∈ Ef

}
of feasible

formation configurations is nonempty. p = 2, 3 typically.
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Distance-based formations

• Scale invariance: D ′ = aD, a > 0.

• Translational invariance (not rotational): let q ∈ D, ie,
||qi − qj || = dij∀(i , j) ∈ Ef . Then any configuration
x = [xT1 , . . . , x

T
N ]T with xi = qi + τ for an arbitrary τ ∈ Rp

satisfies the formation specification.

• What about both translational and rotational invariance?
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Rigidity

• Let q = [qT1 , . . . , q
T
N ]T a set of feasible points.

• Framework G (q) = (Gf , q). Trajectory of framework is any
x(t) starting from xi (0) = qi , i = 1, . . . ,N.

• Edge consistent if ||xi − xj || is constant ∀(i , j) ∈ Ef .

• Rigid trajectory: if ||xi − xj || is constant ∀i , j ∈ V , i 6= j .

• A framework is rigid iff all edge consistent trajectories are
rigid trajectories.

• Maintaining formation graph edge distances maintains ALL
distances!
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Infinitesimal rigidity

• Edge consistency: ||xi (t)− xj(t)|| = dij and then

(xi − xj)
T (ẋi − ẋj) = 0,∀(i , j) ∈ Ef

• Assigning constant+instantenuous ẋi = ui satisfying the
above at t = 0: infinitesimal motion u of the framework.

• For t = 0, xi (0) = qi , i = 1, . . . ,N and then
(xi − xj)

T (ẋi − ẋj) = 0,∀(i , j) ∈ Ef becomes

R(G (q))u = 0

where R is the rigidity matrix.
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Infinitesimal rigidity

• G (q) infinitesimally rigid if R(G (q))u = 0 for all infinitesimal
motions u.

• Rank condition for planar graphs: G (q) = (Gf , q) with N ≤ 2
and p = 2 infinitesimally rigid if and only if

rankR(G (q)) = 2N − 3

• Result: infinitesimal rigidity implies rigidity but not necessarily
the other way round.
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Graph rigidity

• G (q) = (Gf , q) particular realization of Gf .

• Gf is (generically) rigid if it has an infinitesimally rigid
realization.

• For Gf rigid and G (q) = (Gf , q) infinitesimally rigid, then q is
called generic configuration and G (q) generic realization of
Gf .

• If Gf is (generically) rigid, then the set of all generic
configurations of Gf is a dense open subset of RpN .
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Minimal rigidity

• Gf is minimally rigid if it is rigid but does not remain rigid
after the removal of a single edge.

• Planar graphs: Gf with N ≤ 2 and p = 2 is minimally rigid if
and only if

1. |Ef | = 2N − 3 and
2. Any induced subgraph with N ′ ≤ N vertices has no more than

2N ′ − 3 edges.
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Persistence

• To distinguish directed case from undirected, the term graph
persistence instead of graph rigidity is used.

• And now we look at directed graphs.

• i → j : i responsible for maintaining the correct distance from
j , and j may be unconscious of i .
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Persistence

Theorem

A rigid graph is minimally persistent if and only if either

1. there are three vertices that have one outgoing edge, and the
remaining vertices have two outgoing edges, or

2. there is one vertex that has no outgoing edge, one vertex that
has one outgoing edge, and the remaining vertices have two
outgoing edges.
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Leader-follower networks

Leaders can be important in various properties

• Network Controllability

• Containment control (not covered)

• Leader-follower ratio can be also a factor in various problems
(see HW2)
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Network Controllability

• Goal: how to control a multi-agent system to any
configuration with some agents as free inputs.

• Simplest case: ẋi = − 1
|Ni |
∑

j∈Ni
(xi − xj), i = 1, . . . ,N − 1

• One leader (free input): ẋN = uN

• Denote yi = xi , i = 1, . . . ,N − 1,z = xN .

• Then ẏ = −Fy − rz where F is the matrix obtained from
∆−1L after deleting the last row and column, and r is the
vector of the first N − 1 elements of the deleted column.
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Network Controllability

• Controllability of the followers through the motion of the
leader z is examined through the controllability matrix of the
system:

C =
(
−r Fr −F 2r . . . (−1)nF n−1r

)
• Main result: The system is controllable iff (i) F has distinct

eigenvalues and (ii) the eigenvectors of F are not orthogonal
to r .

15 / 17



Remarks

• It can be shown that the complete graph is uncontrollable,
whereas a tree graph is controllable (connectivity is not always
good).

• Extensions to multiple leaders in later works.
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Next Lecture

Sensing Constraints 2: Swarming-sensor networks

• Swarm aggregation

• Swarm dispersion

• Collision avoidance
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