FEL3330 Networked and Multi-agent Control
Systems
Lecture 6:
Sensing constraints 1

September 22, 2016
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Today's lecture

Connectivity

Connectivity maintenance for static interaction graphs

e Connectivity maintenance for dynamic interaction graphs

Robust connectivity maintenance under bounded controls
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Connectivity

e Motiavation: Mobile robots with limited sensing range (e.g,
omnidirectional sensors)

e A-proximity graph: {v;,vj} € £ <= |xi —xj| <A
Notational convention |- |:= |- ||2
e A-proximity graph is a dynamic interaction graph

e Static interaction graph (SIG): Communication links are
assumed fixed between the agents
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Cooperative robots

Single integrator dynamics: x; = u;

SIG(V,E): {i,j} €& < jeEN;

Decentralized relative position contol laws:

uj = Z f(xi — xj)

JEN;

Antisysmetric f: f(x) = —f(—x) = f(x; — xj) = —f(x; — x;)

e Consensus special case:

Xj = — Z(X,‘—Xj),x,' e R"

JEN;
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Cooperative robots

e Apply component operator to reduce to n concsensus
problems in RN

C/(X) = (XL/, . ,XN,/), | = 1, ey X = (Xi,17 . ,X,',,,)

e We then get
).(,'7/:—Z(X,'J-XJ"/),I:1,...,n,i:1,...,N
JEN;

e and thus
&(x) = —L(G)a(x), I =1,....n

o If we apply this control law to the dynamic A-proximity graph
with {i,j} € E(t) <= |xi(t) — x;(t)] < A we might loose
connectivity.
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Weighted graph based feedback

e Feedback components f; : R” — R" of the form

filxi = %) = —w(xi = x)(xi = xj)

with nonlinear weight function w : R” — R+ positive and
symmetric

We obtain the decentarlized contol law

x,:—zW(X,-—)g)(x,-—xj),izl,...,N
JEN;

e and componentwise

a(%) = —D(G)W(x)D(G)T¢i(x), I =1,...,n

State dependent weighted Laplacian
Lw(x) = D(G)W(x)D(G)"
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Weighted graph based feedback

e State dependent weighted Laplacian
Lw(x) = D(G)W(x)D(G)"

e Properties of L, (x) (for each x)

e symmteric
e positive semidefinite

e assuming that G is connected the only zero eigenvalue
corrsponds to span(1)

e Critical edge distance § with initial tolerance € < §

e ¢ shrinking of a § constrained realization of the SIG G

DS = {x e RV 4| < d—eforall {i,j} € E},L;(x) = x—x;
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Weighted graph based feedback

e Edge tension function

;)| e
V“(X)—{ S0 LY EE,

)
ij .
0, otherwise.

e with partial derivatives

IVi(x) _ { T (i —x)T, i {ij} €&,

Ox;

0, otherwise.

e Total energy of G
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Weighted graph based feedback

LEMMA

Given an initial position xg € Dj, for a given € € (0,9), if the SIG
G is conncted then the set Q(9,xp) = {x : V(x) < V(x0)} is
invarinat under the control law

RSN 63T
2 ) .

9/29



Weighted graph based feedback

THEOREM

Consider the connected SIG G with initial condition xg € D5 and a
given € € (0,4). Then the multiagent system under the conrol law
(1) converges asymptoticaly to the static centroid X.
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Dynamic graphs

e Dynamic A-proximity graph with
{i,jy € €(t) < x(t) —x(t) <A
e Add new edge {/,j} when crossing the switching threshold
il <A —e€
e Switching protocol

oy | 0, ifo(i,j)(s) =0,Vs € [0,t) and |/;j| > A —€
o(i )t = { 1, otherwise.
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Dynamic graphs

THEOREM

Consider the an initail position xp € Dj (Go) where € € (0,A) is
the switching threshold and Gy is the initial A-disk DIG. Assume
that the graph G, induced by the indicator function is initially
connected. with initial condition xp € D5 and a given €. Then the
control law

> 24 — |£5(x)|

N 2 Tl )

with the swithcing protcol o (i, j) as previously defined
assymptotically converges to span(1).
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Systems Description

Consider the single integrator multi-agent system

)'(,-:u,-,XiERn,i:{l,...,N} =N

Network graph G := (V, £) undirected & connected
o V=N JEN; <= {i,j} €&

Design decentralized control laws
up = fi(xi, xj,, . . . ’)(j\/\f,-l) +vi,ieN

with free input terms v;.
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Motivation

e Design bounded feedback laws which guarantee
e connectivity maintenance of the multi-robot network
e invariance of systems solutions inside a bounded domain

e robustly wrt free input terms

e Exploit bounds on dynamics and acceptable bound on free
input terms to extract a discretized model of the continuous
time system!

e Exploit invariance to extract a finite transition system

!D. B. and D. V. Dimarogonas, Decentralized Abstractions for Feedback
Interconnected Multi-Agent Systems, CDC 2015
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Problem Description

ASSUMPTIONS

e Multi agent network with static interaction graph.

e Network initially connected.
GOAL

e Specify apriori bounds on the initial distances between
interconnected agents

e Design bounded (for bounded inter-agent distances) control laws

e Guarantee connectivity maintenance robustly wrt. free inputs
EXTENSION

e Guarantee invariance of solutions inside a spherical domain.
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Connectivity Assumptions

e Agents i,j connected iff {/,j} € £ and |x; — xj| < R

e Initial Connectivity Hypothesis: V{i,j} € £ |x(0) — x;(0)| < R < R
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Potential field based Controllers?

e r:R>o — Ryq continuous; increasing.

e Define the potential function
P
P(p) = / H(s)sds, p € R
0

e Gradient of the potential function
Vi P(Ixi = xj1) = r(|xi — xj[)(xi — x))
e Select the control law

up = Z Vi P(Ixi — xi]) + v
JEN;

== rllx = x50 =) + v

JEN;

2M. Ji and M. Egerstedt, Distributed Coordination Control of Multi-Agent

Systems While Preserving Connectedness, 2007
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Dynamics in Compact Form

Overall dynamics

a(%) =~ Lu()a() + a(v), = 1,....n

C/(X) ::(XL/? e 7XN’/),X,' = (Xi,ly R ,X,'v,,)

Weighted Laplacian

e D(G): incidence matrix

Edge weights

W(x) = diag{wa(x),...,wu(x)} = diag{r(|x; — xj|),{i,j} € £}
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Energy Function
e For each {i,j} € £ define

Vii(x) = P(Ixi — xj|), x = (x1,...,xn) € RN

e Define the energy function

1
V=320 Vi
i=1 jeN;
e Partial derivatives
1o}
oV X) = > rlxi = xi) (i — %) T

JEN;

e Componentwise derivative of energy function
C c(x)" Ly (x), l,...,n
! Ox I
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Derivative along System Trajectories

o Derivative of energy function
: n 9 .
V=— ; ol (ax V(x)) c(x)
< =Y al) T Lu(x)alx) +

I=1

term 1 term 2

e | ower bound for term 1

> al) Lw(x)?alx) = Pa(G)r(0)|x 2

I=1

e Upper bound for term 2

n

> alx) T Lu(x)a(v)

=1

< VNID(G)T[|AX]r(|A]o0) V] oo

Ax :=stack vector of x; — x;, {i,j} € £
|Ax|oo :=max{|x; — x| : {i,j} € £}
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Derivative along System Trajectories

e Requirement on v

Ax|e > R=V <0 (#)

e A sufficient condition for (#) is that

1 3 _ 2y/N(N-1)|D(9)"
[V]eo < —r( ) ﬁ Vs > R; K:= X2 (G)?

e Network remains connected for all times if

MP(R) < P(R) & (#)
worst case minimum energy
initial energy required to

loose connectivity
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Connectivity Result

PROPOSITION 1
Consider the control law

==Y (b =)0 =) + v

JEN;

and a constant 6 > 0. Assume that r(-), 6 and the maximum initial
distance R satisfy the restrictions

S O s Nsz R K sz(w'

and

MP(R) < P(R)

Then the network remains connected for all t > 0 provided that the
inputs terms v; satisfy the bound

[vi(t)| < 4,Vt >0
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[llustrative Controller Selection

e Recall that
ui ==Y r(lxi = x)(x = x) + vi
JEN;
e Selection of a linear and a nonlinear control law providing the same

bound on |v|s

e |inear case

o 1
r(s):=1,s>0 & R<—R
M
e Nonlinear case
1, sel0,R] ) ) 1
= = €(R,R & R<
()= % s<(RA < (31
B SE(R,OO)
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Invariance for a Spherical Domain
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Repulsive Dynamics

e Define the vector field g : B(|R) — R" as

SRR x
g(x) = 03 x| if x € Ne
0, if x € D,
e Regions
NE::{XE]RHZER*6§|X‘<SR} DE::B(SR)\NE

e Control law

ui = g(xi) — Y r(lxi = x1) (6 — %) + vi

JEN;
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Derivative along System Trajectories

e Derivative of (same as before) energy function

extra term
e Focus on the extra term

N
S rllx = (i — ). 80))

i=1 jEN;

= >3 k= %) — %), 8(xi)

{ieNX ENE}JGNDE

+ Y = gD — %), 8(x0)) + (x5 = x1), ()]

{ij}e&Ne
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Sign of the Extra Terms
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Invariance Result

THEOREM
Consider the control law

ui = g(a) = 3 rllx — x)06 — x9) + v

JEN;

where

€

—cé‘”‘x‘_%ﬁ, if x € N.
0, if x € D,

with ¢ > 1 and assume that r(-), the maximum initial distance R and the
bound § on the inputs v; satisfy the conditions in Proposition 1.

Then the solution of the closed loop system remains in D for all t > 0
and the network remains connected for all t > 0.

28 /29



