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Today's lecture

e Position based formations
e Formation infeasibility

e Flocking behavior
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Formation Control

e Convergence to desired relative states with respect to
neighbors

e Can be distinguished between position based and distance
based

e Other relative states can be considered such as relative
orientation
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Position-based formations

Goal: Convergence to desired relative position vectors in R?.

Consider undirected and static graph.

A vector ¢;; € R? is associated to each edge (i, /) € E,
representing the desired relative position of agents i, .

The formation configuration is called feasible if the set
® 2 {geRN g —q=cj, V(i,j) € E} of feasible
formation configurations is nonempty.
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Control law

o 2
cui=—gti=3 llai—q—cl
JEN;
: o O T
o ci=— cj.a=lc,.owm] L=L®b
JEN;

Use V = ) ~; as a candidate Lyapunov function.

1
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Results

e Assume that the formation configuration is feasible and that
the formation graph is connected. Then, the agents converge
to the desired formation configuration.

o If the formation graph is connected, the system reaches a
configuration in which all agents have the same velocity
vector, i.e., g; = g* for all i € N which is given by

g =—4% > Cii.
1
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Using the incidence matrix

e Consider a fictitious global coordinate frame and ¢; the
position of agent / in any formation realization.

e Denote g; = q; — ¢; and @,g. stack vector and corresponding
edge vector.

e Then § = —(Lg+ ¢/) = —L§ = —Dg. and thus
‘ge = —D"Dge

e From previous lecture this implies all g; go to the same value
thus formation is achieved for a connected graph.
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Minimal requirements

e For a connected graph, it suffices to define the formation
specification on (one of) its spanning trees.

e In this case D = DT and the same analysis as before holds.

e In general we can employ linear transformations to move
between equivalent representations of the same formation
specification.
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Distance-based formations: a first take

e Goal: Convergence to desired relative distance in R.

e A scalar weight djj > 0 is associated to each edge (/,j) € E
representing the desired relative distance of agents i/, .

e The formation configuration is called feasible if the set
® 2 {qeRN|||g— qjl| = dj, V(i,j) € E} of feasible
formation configurations is nonempty.
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Control law

e Formation potential: v(8;) € C' : Rt — R U {0}, with
'y(d,-Jz-) =0 and (Bj;) > 0 for all 5;; # d,f where
Bii(a) = llai — gil|*.

pi 2 ‘97(5'1) Note that p; = pj;, for all i,j € V,i # j.

(Bij(q
-u,-:—z%ﬁ—:,, - 3 205 - q)

JEN; JEN;
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Analysis

e u=—-2(R® h)q where R is given by R;j = —pjj, for j € N},
Rjj =0, for j ¢ Nj, and R;jj = Y pjj, forall i € V.
JEN;
e Use V¥(q) = > > ~(Bii(q)) as a candidate Lyapunov
i JEN;
function.
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Results

e Assume ® # (). If the communication graph is a tree, then
there exists a v such that the agents are driven to the desired
formation, i.e., lim;~ q(t) = ¢* € ®.

e The tree condition is necessary for formation stabilization
from all initial conditions.
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Flocking Motion

Represents Reynolds’ model for cohesion, collision avoidance
and velocity alignment

A celebrated application of bioinspired models in multi-agent
systems

Model based on double integrator dynamics

We focus on the velocity alignment element here
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Flocking Motion

Model: g; = u;, i; = v;

Control law: sum of two terms, one representing position

specs and one representing velocity specs

Control of the form: v; = — > %’ij)) — > (ui—u))
JEN; JEN;

e ~ can represent any kind of position based spec, such as

distance based formation
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Analysis

e Use V=3 Z > ov(Bi) + 3 Z |ui||? as a candidate
i jeN;

Lyapunov function

e Main result: For a connected graph, agents converge to a
configuration where they share a common velocity
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Next Lecture

Communication constraints 1

e Connectivity
e Connectivity maintenance

e Quantization
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