FEL3330 Networked and Multi-Agent Control

Systems
Lecture 5: Formation control

e Position-Based formations
e Formation infeasibility
e Distance-Based formation elements

e Flocking
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Formation Control

e Convergence to desired relative states with respect to

neighbors

e Can be distinguished between position based and distance
based

e Other relative states can be considered such as relative

orientation
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Position-based formations
e Goal: Convergence to desired relative position vectors in
R2.

e A vector ¢;; € R? is associated to each edge (i,5) € E,
representing the desired relative position of agents 1, j.

e The formation configuration is called feasible if the set
o 2 {q e R*™ |g; — q; = ¢i5, V(i,7) € E} of feasible

formation configurations is nonempty.
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Control law

® Ui = _ggj»% - % ;V lai —a; — Cij”2
J i
. B 0 T
¢ g=| -n . -ox | =—(Lg+a)

® C;y — — Z Cij €l — [(311,...,CNN]T, L:£®]2

JEN;

e Use V =) ~; as a candidate Lyapunov function.
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Results

e Assume that the formation configuration is feasible and
that the formation graph is connected. Then, the agents
converge to the desired formation configuration.

e |f the formation graph is connected, the system reaches a
configuration in which all agents have the same velocity

vector, i.e., ¢; = ¢* for all ¢ € N which is given by
q" = —% ZCm
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Distance-based formations

e Goal: Convergence to desired relative distance in R.

e A scalar weight d;; > 0 Is associated to each edge
(z,7) € E representing the desired relative distance of

agents 1, J.

e The formation configuration is called feasible if the set
® 2 {geRN|||g—ql| = dij, V(i,7) € E} of feasible

formation configurations is nonempty.
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Control law

e Formation potential: v(8;;) € C* : RT — R* U {0}, with
v(d;) = 0 and v(5;;) > 0 for all 3;; # d7;, where
2
Bii(a) = lla — a ™

A 0v(Bi )

® ;i = 9B Note that Pij = Pgjir for all Z,] < V,Z # ]
0(Bij
o u;=— Y FED — — 3 2, (g — gj)
JEN; JEN;
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Analysis
o u=—2(R® Iy)q where R is given by R;; = —p;;, for
j - ./\/;;, Rij = 0, fOI’j §é ./\/;;, and Rm = Z Pij, fOI’ all
JEN;
e V.
o Use Vi(q) =>_ > 7v(Bii(q)) as a candidate Lyapunov

1 JEN;
function.
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Results

o Assume ® £ (). If the communication graph is a tree,
then there exists a v such that the agents are driven to

the desired formation, i.e., lim;_,, q(t) = ¢* € P.

e The tree condition is necessary for formation stabilization

from all initial conditions.
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Flocking Motion
e Represents Reynolds’ model for cohesion, collision
avoidance and velocity alignment

e A celebrated application of bioinspired models in

multi-agent systems
e Model based on double integrator dynamics

e We focus on the velocity alighnment element here
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Flocking Motion

e Model: qz — UJZ,UJZ = V;

e Control law: sum of two terms, one representing position

specs and one representing velocity specs

e Control of the form: v; = — > 87(2”@) — > (u; —uy)
jen, O jEN;

e ~ can represent any kind of position based spec, such as

distance based formation
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Analysis

o Use V=155 ~(B;) + 3> llui]|” as a candidate
i JEN; i
Lyapunov function

e Main result: For a connected graph, agents converge to a

configuration where they share a common velocity
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Next Lecture
Network Controllability-Leader Follower Networks
e Containement control
e Controllability

e Number of Leaders for Network Connectivity

Lecture 5 13 May 20, 2013



