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Today's lecture

e Lyapunov approaches to agreement
e Directed and switching topologies

e Using the Edge Laplacian
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Lyapunov approaches to agreement

e Reveal further structural issues of the network with respect to
convergence

e Can handle time-variation, more general dynamics, robustness
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Agreement over undirected graphs

N agents with x; = uj,i € V ={1,..., N}

e Agreement algorithm: u; = — > (x; — x;)
JEN;
e X = —Lx, where L is the Laplacian matrix of the graph
G=(V,E)

e Agreement set: subspace spanned by 1

Recall that if G is undirected connected then
x = A= {xeR|x = x;,Vi,j},

and the agreement point is equal to the initial average of the
agents.
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Proof 3

e Use V= 2x Tx as a candidate Lyapunov function.

e Then from V = —xT Lx and LaSalle’s invariance principle
convergence to A follows.
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Proof 4: using the Edge Laplacian

e Convergence proof using the DT D matrix
e Denote the vector x, as the vector of edge differences given
the prescribed orientation for D.
e We have Lx = Dx, and x. = D' x.
° The proof is based on the fact that x = —Lx implies
—DT Dx,, and using V = x " xe as a Lyapunov function
candldate
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Lyapunov analysis for balanced graphs

e Define §; = x; — aforeachiec V.

e Decomposition of x: x(t) = al + 6(t) as in the undirected

case.
o Disagreement dynamics: § = —L§
e Mirror graph (G, E, W) : E= E|J E where E same edges with
reversed order and Ww;; = Ww;; = W
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Lyapunov analysis for balanced graphs

o Ls = 1L is a valid weighted Laplacian for G, ie, Ly = L(G)
iff G is balanced.

e Then we have x"Lx = xT Lyx for all x.

e Using V = %5T6 as a Lyapunov function candidate it can be
shown that R

16()]] < 115(0)||e=(%)®

e Natural extension to switching between all possible weakly

connected and balanced graphs.
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General directed graphs

e We have seen that an iff condition for consensus is that G
contains a rooted out-branching.

e Lyapunov arguments rely on properties of stochastic matrices:
non-negative matrices with row sums equal to one.

e For all directed graphs G and § > 0, e =L is stochastic and
(e‘“),y > 0 if and only if i = j or there is a directed path
from j to i in G.

e Corollary: G has a rooted out-branching if and only if, for any
§ > 0, e %L has at least one column with all positive elements.
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Lyapunov function for general directed graphs

e Examine sampled-data version of closed loop system:
z(k +1) = e %t z(k), where z(k) = x(ké), k € N,

e Pick V(z) = max; z; — min; z;.

e Since (for the case of rooted out-branching) there exists one
column with strictly positive elements, V is strictly decreasing
as long as all states are not equal.

e V is thus a strong discrete-time Lyapunov function and
vanishes at the agreement subspace.
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Extension to switching graphs

e Loss of connectivity
e If there exists a T = md < oo, m € N such that on every
interval of the form {r,7+ T},7 =14, VI € N, the union

t=74+T

U 6

contains a rooted out-branching then convergence to
agreement is achieved.
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Edge agreement

e Recall . = =D Dx. = —Lexe: edge dynamics.
e Desired equilibrium is the origin x, = 0.

e Recall also the property associating tree structure with
positive definiteness of DT D. What is the role of cycles?

12/15



Role of cycles in edge agreement

e Any connected graph G contains a spanning tree.

Consider D = [ Dy D¢ ]| where Dt corresponds to edges of
the spanning tree and D¢ to the rest (edges completing its
cycles).

Then L =DD" = DyDI + DcD[ and

T D
D'D=| JF [ Dr Dc |
C
_ DIDr DIDc
DDy D[IDc

— kT 5IT
The edges are also decomposed as xe = [x1 x|’ .
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Role of cycles in edge agreement

o There exists a matrix R such that DD = RTDID+R. Can
be shown that R={[/ T]where T = (DID7t)"*DIDc.

e Then xe = —D"Dxe = —Lexe is equivalent to
RTxr = —RTDID7RR xt.
e Edge agreement is described by

xr = —DIDrRRT x1

and
Xe = TTXT
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Next Lecture

Formation Control 1

e Position based formations
e Formation infeasibility

e Flocking behavior

15/15



