FEL3330 Networked and Multi-Agent Control

Systems
Lecture 4: Communication constraints

e Maintaining connectivity
e Quantized Consensus

e Event-triggered multi-agent control
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Communication and sensing limitations
e Constraints in the neighboring relations: sensing radius,
lossy links

e Constraints in the communication exchange between
neighbors: quantization, time-delays, sampled data,
packet losses
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Background: Metzler matrices

e A real matrix with zero row sums and non-positive
off-diagonal elements.

e A symmetric Metzler matrix is a weighted Laplacian.

e |f the graph corresponding to a symmetric Metzler matrix
Is connected, then zero is a simple eigenvalue of the

matrix with corresponding eigenvector having its elements
equal.
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Connectivity maintenance

e A general assumption for the validity of most results: the
graph stays connected (a path exists between any two
nodes)

e How to render connectivity from an assumption to an
invariant property?

e Direct strategies: the control law guarantees that if the
initial communication graph is connected, then it remains
connected for all time

e How to achieve that? First approach: once an edge,
always an edge!
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Connectivity maintenance
e From U; = — Zaij(xi — Zlfj) to
j
wp = — > aij([|lzi — z;]) (2 — )
J

e Apply attraction force that is strong enough whenever an
edge between the agents tends to be lost

e Edge definition: ||z; — z4|| < d & (i,5) € E
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Connectivity maintenance potential

e Define W;; between 7 and 5 € N;

o Wiy =Wy (|l —25]%) = Wi (By),
e 1V, is defined on §;; € [0,d?),

e W,; — oo whenever f3;; — d,

e itis C*' for 3;; € [0,d*) and

A OW;: .. .
e the term p;; = %‘gz? satisfies p;; > 0 for 0 < f5;; < d*.
ij
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Connectivity maintenance control law

o b= =— Y, FHU =23 pyla— 1))
JEN; JEN;

o r = —2Px, P Metzler matrix

e Use V =) > W, as a candidate Lyapunov function

1 JEN;
e It can be shown that VV = 4Pz

e What are the dynamics in the T space?
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Results

e All agents converge to the initial (invariant) average
e All initial edges are invariant

e Extension: can be extended to consider dynamic addition
of edges
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Quantized consensus
e Each agent has quantized measurements of the form
q(z; — x;), q(.) quantization function

e Can be extended to multiple dimensions as in the

previous cases

e Uniform and logarithmic quantizers
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Quantizer types

e Uniform quantizer: |q, (a) —a|] < 6,,Va € R

e Logarithmic quantizer: |¢q; (a) —a| < d;|a|,Va € R

AT

{a) Uniform quantizer. The scalar case. (b} Logarithmic quantizer. The scalar case.
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Closed-loop system

o & =u;=— ), q(x — ;)
JEN;
e Stack vector form: * = —B? Bq (T)

e We use the positive definiteness of B! B when G is a tree
graph
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Results

Theorem: Assume (G is a tree.

e |n the case of a uniform quantizer, the system converges
|BYB|| 6,/m

to a ball of radius o (BT D)

around & = 0 in finite

time.

e In the case of a logarithmic quantizer, the system is
exponentially stabilized to x = 0, provided that satisfies

Amin( BT B e _
0; < IIB(TBII ) Use V = %:E T as a candidate Lyapunov
function
Use V = 1777 as a candidate Lyapunov function
o yap

Lecture 4 12 May 16, 2013



Quantized consensus

e Conditions only sufficient
e Use the V = %5T5 as a candidate Lyapunov function

e Results extended to undirected graphs of general
topology (Guo and DVD, Automatica 2013).
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Event-triggered sampling
e Time-triggered sampling at pre-specified instants: does
not take into account optimal resource usage

e A strategy considering better resource usage:

event-triggered control
e Actuation updates in asynchronous manner

e Application to multi-agent systems
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Event-triggered sampling

e Each agent 7 broadcast their state at discrete time

instants ¢}, 1%, . ..
o 1;(t) = x;(tt): latest update for agent i

e Event-triggered control law:

wilt) = — > (&(t) — 5(t)))

JEN;
e Measurement error:

e Next slides ack to Georg Seyboth
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Event-based scheduling of measurement broadcasts:

( agent i N _
2;(t), j € Ni »{microprocessor } - _j?i(_t_}} Event-based I:I)rnadcasltln‘g
1cg{f)¢ T T,(t #i(t) = xy(th), t € [t 11,
dynamics 0 < ta < til < t% < ...
x J

m Consensus protocol
wi(t) = — Y (&a(t) — &5(t)
JEN;

| Measurement errors

ei(t) = Ti(t) —4(t)
m Closed-loop
#(t) = —Lx(t) = —L(xz(t) + e(t))

m Disagreement

5(t) = z(t) — al, 175(t) =0



Trigger mechanism: Define trigger functions f;(-) and trigger when
fi [ toaat), 240, | @50 ) >0
JEN;
Defines sequence of events:  t , =inf{t: t >}, fi(t) > 0}

Problem statement: Find suitable f;(:) such that
m no Zeno behavior
m desired convergence properties

m as few inter-agent communications as possible

Intuition:

filei(t)) = lei(t)| —co = Vt=0: |ei(t)] < co



(1) = u(t), u(t) = —La(t) (1)

Theorem (constant thresholds)

Consider system (1) with undirected connected graph G. Suppose that

filei(t)) = |ei(t)| — co.

with ¢cg > 0. Then, for all zo € RN, the system does not exhibit Zeno
behavior and for t — o0,

~(L)
(L)

o) <

Proof ideas:
m Analytical solution of disagreement dynamics yields

t
[6()] < =B 5(0)| + /\N(L)/D e 7B e(s) | ds

m Compute lower bound 7 on the inter-event intervals



Can we achieve asymptotic convergence?

Theorem (exponentially decreasing thresholds)

Consider system (1) with undirected connected graph G. Suppose that

fi(t,ei(t)) =

with c1 > 0 and 0 < «« < Aa(L). Then, for all xq € RY, the system does
not exhibit Zeno behavior and as t — o0,

ot

e;(t)] — cre”

16@)][ — 0.

Intuition:

m \o(L) is the rate of convergence for d(t) in cont. time

m o < \o(L) means that the threshold ¢;¢~%" decreases slower!
Remark:

— Vanishing thresholds cause problems (measurement noise, numerics)



Combine the advantages:

Theorem (exponentially decreasing thresholds with offset)

Consider system (1) with undirected connected graph G. Suppose that

filt,ei(t)) =

with ¢y, c1 > 0, at least one positive, and 0 < « < \o(L). Then, for all
xg € RY, the system does not exhibit Zeno behavior and for t — oo,

ei(t)] — (co + cre™ ),

sl < VNG,

Remarks:
+ Size of the final region is tunable
+ Larger thresholds for small t increase inter-event time

+ Problems due to noise or numerics are avoided



Lower bound 7 on the inter-event intervals:

For ¢q > 0:
T = 0
k1 + ko + ks
For cg = 0:
(k1 +ko)T = cre™™
with

kv = An (L)[[8(0)]
ko = Av(L)VNey (1 + )“”(L),)

ks = A (L)VNeo (1 " /\N(Lj)




Next Lecture
Formation control 1
e Position-Based formations
e Formation infeasibility
e Connectivity maintenance in formation control
e Flocking

e Distance-Based formation elements
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