FEL3330 Networked and Multi-Agent Control Systems

Lecture 3: Communication constraints

- Maintaining connectivity
- Quantized Consensus
- Event-triggered multi-agent control

Communication and sensing limitations

- Constraints in the neighboring relations: sensing radius, lossy links
- Constraints in the communication exchange between neighbors: quantization, time-delays, sampled data, packet losses

Background: Metzler matrices

- A real matrix with zero row sums and non-positive off-diagonal elements.
- A symmetric Metzler matrix is a weighted Laplacian.
- If the graph corresponding to a symmetric Metzler matrix is connected, then zero is a simple eigenvalue of the matrix with corresponding eigenvector having its elements equal.

Connectivity maintenance

- A general assumption for the validity of most results: the graph stays connected (a path exists between any two nodes)
- How to render connectivity from an assumption to an invariant property?
- Direct strategies: the control law guarantees that if the initial communication graph is connected, then it remains connected for all time
- How to achieve that? First approach: once an edge, always an edge!

Connectivity maintenance

• From
$$u_i = -\sum_j a_{ij}(x_i - x_j)$$
 to
 $u_i = -\sum_j a_{ij}(||x_i - x_j||)(x_i - x_j)$

- Apply attraction force that is strong enough whenever an edge between the agents tends to be lost
- Edge definition: $||x_i x_j|| \le d \Leftrightarrow (i, j) \in E$

Connectivity maintenance potential

• Define W_{ij} between i and $j \in N_i$

•
$$W_{ij} = W_{ij} \left(\|x_i - x_j\|^2 \right) = W_{ij} \left(\beta_{ij} \right)$$
,

•
$$W_{ij}$$
 is defined on $\beta_{ij} \in [0, d^2)$,

•
$$W_{ij}
ightarrow \infty$$
 whenever $eta_{ij}
ightarrow d^2$,

• it is C^1 for $\beta_{ij} \in [0, d^2)$ and

• the term
$$p_{ij} \stackrel{\Delta}{=} \frac{\partial W_{ij}}{\partial \beta_{ij}}$$
 satisfies $p_{ij} > 0$ for $0 \le \beta_{ij} < d^2$.

Lecture 3

Connectivity maintenance control law

•
$$\dot{x}_i = u_i = -\sum_{j \in N_i} \frac{\partial W_{ij}}{\partial x_i} = 2 \sum_{j \in N_i} p_{ij} \left(x_i - x_j \right)$$

•
$$\dot{x} = -2Px$$
, P Metzler matrix

- Use $V = \sum_{i} \sum_{j \in N_i} W_{ij}$ as a candidate Lyapunov function
- It can be shown that $\nabla V = 4Px$
- What are the dynamics in the \bar{x} space?

Results

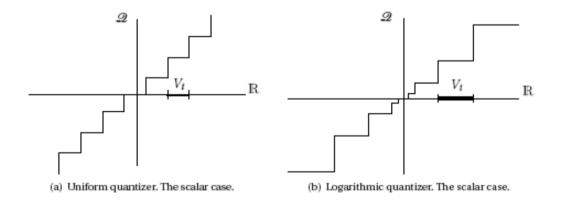
- All agents converge to the initial (invariant) average
- All initial edges are invariant
- Extension: can be extended to consider dynamic addition of edges

Quantized consensus

- Each agent has quantized measurements of the form $q(x_i x_j)$, q(.) quantization function
- Can be extended to multiple dimensions as in the previous cases
- Uniform and logarithmic quantizers

Quantizer types

- Uniform quantizer: $|q_u(a) a| \leq \delta_u, \forall a \in \mathbb{R}$
- Logarithmic quantizer: $|q_{l}(a) a| \leq \delta_{l} |a|, \forall a \in \mathbb{R}$



Closed-loop system

•
$$\dot{x}_i = u_i = -\sum_{j \in \mathcal{N}_i} q \left(x_i - x_j \right)$$

• Stack vector form:
$$\dot{\bar{x}} = -B^T B q(\bar{x})$$

• We use the positive definiteness of $B^T B$ when G is a tree graph

Results

Theorem: Assume G is a tree.

- In the case of a uniform quantizer, the system converges to a ball of radius $\frac{\|B^T B\| \delta_u \sqrt{m}}{\lambda_{\min} (B^T B)}$ around $\bar{x} = 0$ in finite time.
- In the case of a logarithmic quantizer, the system is exponentially stabilized to $\bar{x} = 0$, provided that satisfies $\delta_l < \frac{\lambda_{\min}(B^T B)}{\|B^T B\|}$ Use $V = \frac{1}{2} \bar{x}^T \bar{x}$ as a candidate Lyapunov function

Use $V = \frac{1}{2} \bar{x}^T \bar{x}$ as a candidate Lyapunov function

Lecture 3

Event-triggered sampling

- Time-triggered sampling at pre-specified instants: does not take into account optimal resource usage
- A strategy considering better resource usage: event-triggered control
- Actuation updates in asynchronous manner
- Application to multi-agent systems

Event-triggered sampling

- Each agent i broadcast their state at discrete time instants t_0^i, t_1^i, \ldots
- $\hat{x}_i(t) = x_i(t_k^i)$: latest update for agent i

• Event-triggered control law: $u_i(t) = -\sum_{j \in N_i} (\hat{x}_i(t) - \hat{x}_j(t)))$

• Measurement error:

$$e_i(t) = \hat{x}_i(t) - x_i(t) = x_i(t_k^i) - x_i(t), t \in [t_k^i, t_{k+1}^i)$$

Centralized case

•
$$t_k^i = t_k$$
 for all agents i

- Event-based design: how to choose t_k ?
- Control: $u(t) = -Lx(t_k), t \in [t_k, t_{k+1})$
- Closed loop system: $\dot{x}(t) = -Lx(t_k) = -L(x(t) + e(t))$
- The initial average remains invariant!

Centralized case

• Use
$$V = \frac{1}{2}x^T L x$$

- \dot{V} is negative definite with respect to the desired equilibria provided that $||e|| \leq \sigma \frac{||Lx||}{||L||}$, $0 < \sigma < 1$.
- Triggering rule: $||e|| \le \sigma \frac{||Lx||}{||L||}$, $0 < \sigma < 1$
- Everyone measures and broadcasts its state whenever this condition is violated.

Decentralized case

• In this case $t_k^i \neq t_k^j$ for $i \neq j$ in general

•
$$u_i(t) = -\sum_{j \in N_i} (\hat{x}_i(t) - \hat{x}_j(t))) =$$

- $\sum_{j \in N_i} (x_i(t) - x_j(t)) - \sum_{j \in N_i} (e_i(t) - e_j(t))$

- Closed loop system: $\dot{x}(t) = -L(x(t) + e(t))$
- The initial average remains invariant in this case as well!
- Event-based design: how to choose t_k^i ?

Decentralized case

- Use $V = \frac{1}{2}x^T L x$
- \dot{V} is negative definite with respect to the desired equilibria provided that $e_i^2 \leq \frac{\sigma_i a(1-a|N_i|)}{|N_i|} (Lx)_i^2$, with $0 < a < \frac{1}{|N_i|}$ and $0 < \sigma_i < 1$
- Triggering rule: $e_i^2 \leq \frac{\sigma_i a(1-a|N_i|)}{|N_i|} (Lx)_i^2$
- Agent *i* broadcasts its state whenever this condition is violated.

Brooadcast periods

- Strictly positive lower bounds in the centralized case
- Strictly positive lower bounds for at least one agent in the decentralized case

Next Lecture

Formation control 1

- Position-Based formations
- Formation infeasibility
- Connectivity maintenance in formation control
- Flocking
- Distance-Based formation elements