FEL3330 Networked and Multi-agent Control Systems
 Lecture 2: Graphs and Matrices

September 5, 2016

Graph theoretic approach

- Limitations in communication/sensing do now allow each agent to communicate with everyone else
- Modelling of limitations through graphs
- Graph based abstractions: do not include exact information of what is shared or communication protocol
- Give high level description of how agents (vertices) interact through edges (pairs of vertices)

Graph theoretic approach

- Finite, undirected and simple graphs (abbr. "graphs")

$$
G=(V, E)
$$

- Agents are the vertices $V=V(G)=\{1, \ldots, N\}$
- Alternative notation: $V=V(G)=\left\{v_{1}, \ldots, v_{N}\right\}$
- Edges $E=E(G) \subset V \times V$ are pairs of agents that can communicate (are adjacent)
- Notation: $(i, j) \in E \Leftrightarrow i \sim j$
- Undirected: $(i, j) \in E \Leftrightarrow(j, i) \in E$

Paths and cycles

- Neighboring set: $N_{i}(=N(i))=\{j \in V \mid(i, j) \in E\}$
- Path of length m in G : sequence of distinct vertices $i_{0}, i_{1}, \ldots, i_{m}$ s.t. $\left(i_{k}, i_{k+1}\right) \in E, \forall k=0,1, \ldots, m-1$.
- A path is a cycle when $i_{0}=i_{m}$ and all other vertices are distinct.
- Forest: a graph with no cycles

Connectedness

- G is connected when there is a path between any pair of its vertices.
- Otherwise it is called disconnected.
- Connected components: elements of minimal partitioning of a graph s.t. each element is connected.
- Connected graphs have one connected component. Disconnected have more than one.
- Connected forest is called a tree.
- Interesting cases: path graphs, complete graphs, cycle graphs, star graphs.

Weighted graphs and path length

- Weighted graphs: $w: E \rightarrow \mathbb{R}$ associates a weight to each edge. Notation: $G=(V, E, w)$.
- Length of a path: sum of all weights of edges through the path.
- Can use shortest path algorithms for each pair of agents.

Directed graphs

- Assigns orientation to edge set E. Is also called digraph.
- $\left(v_{i}, v_{j}\right) \in E$ is now an ordered pair with v_{i} being the head and v_{j} the tail.
- Previous notions can be extended this case.
- Strong connectedness: there exists a directed path between any pair of vertices.
- Weak connectedness: it is connected when viewed as disoriented graph, ie, without assigning orientations to edges.
- Show examples of digraphs that are weakly but not strongly connected.

The adjacency matrix and the degree matrix

- We want to associate matrices with (undirected) graphs.
- Neighboring set: $N_{i}=\{j \in V \mid(i, j) \in E\}$
- $d_{i}(=d(i))$ denotes the number of adjancent vertices to i, ie, cardinality $\left|N_{i}\right|$ of the set N_{i}.
- Adjacency matrix (undirected, simple graph)

$$
A=A(G)=\left[a_{i j}\right], a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

- Degree matrix

$$
\Delta=\Delta(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right), d_{i}=\sum_{j} a_{i j}=\left|N_{i}\right|
$$

The incidence matrix

- Orientation of G : assignment of direction to each edge.
- Incidence matrix of oriented graph with $M=|E|$ edges, labeled as $E=\left\{e_{1}, \ldots, e_{M}\right\}$:

$$
D(=D(G))=\left[d_{i j}\right], d_{i j}= \begin{cases}1 & \text { if } i \text { is the head of } e_{j} \\ -1 & \text { if } i \text { is the tail of } e_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- Incidence matrix of digraph defined based on the given orientation.

The Laplacian matrix and its eigenvalues

- $L=L(G)=\Delta(G)-A(G)$.
- Alternative definition: $L=D D^{T}$, independent of orientation.
- Symmetric and positive semi-definite matrix.
- Eigenvalues $0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{N}(G)$
- For a connected $G, L(G)$ has a simple zero eigenvalue with the corresponding eigenvector $\mathbf{1}=[1, \ldots, 1]^{T}$. Equivalent condition.
- Thus $\lambda_{2}(G)>0$ for a connected graph.

Laplacians for directed and/or weighted graphs

- Weighted graphs: $W=\operatorname{diag}\left(w\left(e_{1}\right), \ldots, w\left(e_{M}\right)\right)$.
- Weighted graph Laplacian: $L_{w}(G)=D(G) W D(G)^{T}$. Equivalent to starting from weighted versions of adjacency and degree matrix.
- Directed weighted graphs. Need to cope with asymmetric features.
- Weighted in-degree of vertex $i: d_{i n}\left(v_{i}\right)=\sum_{\{j \mid(j, i) \in E\}} w(j, i)$. How much agent i is influenced by its neighbors.
- Adjanceny matrix:

$$
A=A(G)=\left[a_{i j}\right], a_{i j}= \begin{cases}w(j, i) & \text { if }(j, i) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Laplacians for directed and/or weighted graphs, ctd.

- Degree matrix:

$$
\Delta=\Delta(G)=\operatorname{diag}\left(d_{i n}\left(v_{1}\right), \ldots, d_{i n}\left(v_{N}\right)\right)
$$

- $L=L(G)=\Delta(G)-A(G)$.
- Again, matrix with zero row sums.
- In all cases $\mathbf{1} \in \mathcal{N}(L)$, where $\mathbf{1}$ is a vector of ones and $\mathcal{N}(L)$ is the null space of L.

Edge Laplacian

- For an undirected graph, $L_{e}=D^{T} D$ is called edge Laplacian.
- If G is a tree, then $D^{T} D$ is positive definite.
- Thus if G is a tree, then $\lambda_{\text {min }}\left(D^{T} D\right)>0$.
- Proven using the cycle space of G, which (can be shown to be) equivalent to the null space of D. See lecture notes for more details.

Eigenvalue bounds 1

Two important relations resulting from the symmetry of L and the variational characterization of the eigenvalues of symmetric matrices are as follows:

$$
\lambda_{2}(G)=\min _{x \perp 1,\|x\|=1} x^{\top} L x
$$

and

$$
\lambda_{N}(G)=\max _{\|x\|=1} x^{T} L x
$$

Eigenvalue bounds 2: Cheeger's inequality

- Let $S \subset V$ and $S^{C}=V \backslash S$.
- $\varepsilon(S)=\operatorname{card}\left\{(i, j) \in E \mid\left(i \in S, j \in S^{C}\right) \vee\left(i \in S^{C}, j \in S\right)\right\}$
- $\varepsilon(S)$ is \# edges needed to be cut to separate S from S^{C}
- $\phi(S)=\frac{\varepsilon(S)}{\min \left\{|S|,\left|S^{C}\right|\right\}}$: represents the "cut-ratio" for the case that the smallest set of agents that is cut is lost from the network
- Isoperimetric number of $G: \phi(G)=\min _{S \in 2^{v}}\{\phi(S)\}$: what is the worst case of number of losing vertices vs. how many edges need to be cut. Measure of network robustness.
- Cheeger's inequality: $\phi(G) \geq \lambda_{2}(G) \geq \frac{\phi(G)^{2}}{2 \max _{i \in V}\left\{d_{i}\right\}}$
- $\phi(G)$ and thus $\lambda_{2}(G)$ are a metric of connectivity of the graph.

Next Lecture

Agreement Protocolls 1

- State agreement definition
- Agreement for static and undirected graphs
- Directed graphs

