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Graph theoretic approach

• Limitations in communication/sensing do now allow each
agent to communicate with everyone else

• Modelling of limitations through graphs

• Graph based abstractions: do not include exact information of
what is shared or communication protocol

• Give high level description of how agents (vertices) interact
through edges (pairs of vertices)
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Graph theoretic approach

• Finite, undirected and simple graphs (abbr. ”graphs”)
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G = (V ,E )

• Agents are the vertices V = V (G ) = {1, . . . ,N}
• Alternative notation: V = V (G ) = {v1, . . . , vN}
• Edges E = E (G ) ⊂ V × V are pairs of agents that can

communicate (are adjacent)

• Notation: (i , j) ∈ E ⇔ i ∼ j

• Undirected: (i , j) ∈ E ⇔ (j , i) ∈ E
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Paths and cycles

• Neighboring set: Ni (= N(i)) = {j ∈ V |(i , j) ∈ E}
• Path of length m in G : sequence of distinct vertices
i0, i1, . . . , im s.t. (ik , ik+1) ∈ E , ∀k = 0, 1, . . . ,m − 1.

• A path is a cycle when i0 = im and all other vertices are
distinct.

• Forest: a graph with no cycles
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Connectedness

• G is connected when there is a path between any pair of its
vertices.

• Otherwise it is called disconnected.

• Connected components: elements of minimal partitioning of a
graph s.t. each element is connected.

• Connected graphs have one connected component.
Disconnected have more than one.

• Connected forest is called a tree.

• Interesting cases: path graphs, complete graphs, cycle graphs,
star graphs.
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Weighted graphs and path length

• Weighted graphs: w : E → R associates a weight to each
edge. Notation: G = (V ,E ,w).

• Length of a path: sum of all weights of edges through the
path.

• Can use shortest path algorithms for each pair of agents.
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Directed graphs

• Assigns orientation to edge set E . Is also called digraph.

• (vi , vj) ∈ E is now an ordered pair with vi being the head and
vj the tail.

• Previous notions can be extended this case.

• Strong connectedness: there exists a directed path between
any pair of vertices.

• Weak connectedness: it is connected when viewed as
disoriented graph, ie, without assigning orientations to edges.

• Show examples of digraphs that are weakly but not strongly
connected.
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The adjacency matrix and the degree matrix

• We want to associate matrices with (undirected) graphs.

• Neighboring set: Ni = {j ∈ V |(i , j) ∈ E}
• di (= d(i)) denotes the number of adjancent vertices to i , ie,

cardinality |Ni | of the set Ni .

• Adjacency matrix (undirected, simple graph)

A = A(G ) = [aij ], aij =

{
1 if (i , j) ∈ E ,

0 otherwise.

• Degree matrix

∆ = ∆(G ) = diag(d1, . . . , dN), di =
∑
j

aij = |Ni |
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The incidence matrix

• Orientation of G : assignment of direction to each edge.

• Incidence matrix of oriented graph with M = |E | edges,
labeled as E = {e1, . . . , eM}:

D(= D(G )) = [dij ], dij =


1 if i is the head of ej ,

−1 if i is the tail of ej ,

0 otherwise.

• Incidence matrix of digraph defined based on the given
orientation.
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The Laplacian matrix and its eigenvalues

• L = L(G ) = ∆(G )− A(G ).

• Alternative definition: L = DDT , independent of orientation.

• Symmetric and positive semi-definite matrix.

• Eigenvalues 0 = λ1(G ) ≤ λ2(G ) ≤ . . . ≤ λN(G )

• For a connected G , L(G ) has a simple zero eigenvalue with
the corresponding eigenvector 1 = [1, . . . , 1]T . Equivalent
condition.

• Thus λ2(G ) > 0 for a connected graph.
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Laplacians for directed and/or weighted graphs

• Weighted graphs: W = diag(w(e1), . . . ,w(eM)).

• Weighted graph Laplacian: Lw (G ) = D(G )WD(G )T .
Equivalent to starting from weighted versions of adjacency
and degree matrix.

• Directed weighted graphs. Need to cope with asymmetric
features.

• Weighted in-degree of vertex i : din(vi ) =
∑

{j |(j ,i)∈E} w(j , i).
How much agent i is influenced by its neighbors.

• Adjanceny matrix:

A = A(G ) = [aij ], aij =

{
w(j , i) if (j , i) ∈ E ,

0 otherwise.
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Laplacians for directed and/or weighted graphs, ctd.

• Degree matrix:

∆ = ∆(G ) = diag(din(v1), . . . , din(vN))

• L = L(G ) = ∆(G )− A(G ).

• Again, matrix with zero row sums.

• In all cases 1 ∈ N (L), where 1 is a vector of ones and N (L)
is the null space of L.
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Edge Laplacian

• For an undirected graph, Le = DTD is called edge Laplacian.

• If G is a tree, then DTD is positive definite.

• Thus if G is a tree, then λmin(DTD) > 0.

• Proven using the cycle space of G , which (can be shown to
be) equivalent to the null space of D. See lecture notes for
more details.
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Eigenvalue bounds 1

Two important relations resulting from the symmetry of L and the
variational characterization of the eigenvalues of symmetric
matrices are as follows:

λ2(G ) = min
x⊥1,||x ||=1

xTLx

and
λN(G ) = max

||x ||=1
xTLx
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Eigenvalue bounds 2: Cheeger’s inequality

• Let S ⊂ V and SC = V \ S .

• ε(S) = card{(i , j) ∈ E |(i ∈ S , j ∈ SC ) ∨ (i ∈ SC , j ∈ S)}
• ε(S) is # edges needed to be cut to separate S from SC

• φ(S) = ε(S)
min{|S |,|SC |} : represents the ”cut-ratio” for the case

that the smallest set of agents that is cut is lost from the
network

• Isoperimetric number of G : φ(G ) = minS∈2V {φ(S)}: what is
the worst case of number of losing vertices vs. how many
edges need to be cut. Measure of network robustness.

• Cheeger’s inequality: φ(G ) ≥ λ2(G ) ≥ φ(G)2

2maxi∈V {di}

• φ(G ) and thus λ2(G ) are a metric of connectivity of the
graph.

15 / 16



Next Lecture

Agreement Protocolls 1

• State agreement definition

• Agreement for static and undirected graphs

• Directed graphs
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