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Abstract— In many robot applications, sensor feedback is
needed to reduce uncertainties in environment models. However,
sensor data acquisition also induces costs in terms of the time
elapsed to make the observations and the computations needed
to find new estimates. In this paper, we show how to use
event based sampling to reduce the number of measurements
done, thereby saving time, computational resources and power,
without jeopardizing critical system properties such as safety
and goal convergence. This is done by combining recent
advances in nonlinear estimation with event based control using
artificial potential fields. The results are particularly useful for
real time systems such as high speed vehicles or teleoperated
robots, where the cost of taking measurements is even higher,
in terms of stops or transmission times. We conclude the
paper with a set of simulations to illustrate the effectiveness of
the approach and compare it with a baseline approach using
periodic measurments.

I. INTRODUCTION

The control and sensor systems in a robot are often
designed separately. The sensor system is designed to deliver
information with low uncertainty and high frequency, while
the control system is designed to achieve some control
objectives, preferably taking the sensor system specifications
into account. This separation is often practical, in terms of
system design, but can also have a negative impact on overall
system performance. In particular, there are cases where there
is a significant cost associated with sensing. If the sensor is
active, such as a radar, a sonar, or a laser scanner, power
consumption can be a significant cost (especially for small,
long endurance vehicles). If the computations associated with
sensing are significant and share the same processing unit
with other critical functions (e.g., planning), the performance
of those might improve if sensing computations are reduced.
Finally, if particular actions are needed to enable sensing,
such as stopping, see Fig. 1, mission times might decrease
when sensing is reduced. These improvements are even
more significant in high speed applications where stopping
takes time, or in teleoperated applications where transmission
times add to the seconds lost.

The benefits of designing the combined control and sens-
ing policy can be seen by the following example. If a robot is
far away from an obstacle, the exact location of that obstacle
is often not needed. Furthermore, the uncertainties associated
with the computed estimates often increase with distance, so
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Fig. 1. Streamed data from a humanoid NAO robot during gait (left) and
transmitted data while it stands still (right). As can be seen, stopping is
often necessary to achieve good sensor data. Thus the controller needs to
make a tradeoff between saving time and reducing uncertainty.

any measurement taken is bound to have large uncertainties.
Therefore measurement intervals can be sparse. On the other
hand, if the robot is moving in a cluttered environment, close
to obstacles, lower uncertainties are needed, and can also
be supplied by the sensor system. Thus, fairly short mea-
surement intervals might be sufficient to guarantee collision
avoidance. In this paper, we formalize the situation described
above and compute sensor triggering conditions to satisfy the
real information need of the controller.

The contribution of this paper is the combination of
the recent advances on estimation for nonlinear systems,
the provable collision-free path planning provided by an
artificial potential field and the low computational cost of
the event based control. Doing this, we are able to drastically
reduce the computational demand of the navigation, without
jeopardizing critical requirements such as collision avoidance
and destination convergence.

The outline of the paper is as follows: In Section II, we dis-
cuss the related work. In Section III we present the problem
formulation. Section IV then describes the proposed solution.
The theoretical properties of the solution are analyzed in
Section V. Finally, simulations are presented to illustrate
the approach in Section VI and conclusions are drawn in
Section VII.

II. RELATED WORK

A. Path Planning

Robot navigation has received a lot of attention in the
last decades [1], [2] due to its crucial role in various tasks
as exploration, search and rescue, surveillance, coverage,
cooperative manipulation, etc. Navigation can either be done
giving a strict sequence of movements, so-called open loop
execution, or using continuous feedback to provide robust-



ness in the presence of disturbances and noise, so-called
closed loop execution.

Artificial potential fields are a class of methods introduced
by Khatib [3] to provide robust closed loop execution of
autonomous navigation. By defining a potential field in the
robot’s workspace, and then following the negative gradient
of the potential field, destination convergence is achieved.
However, the artificial potential field approach can suffer
from the presence of local minima, locations where the
robot can get stuck. Therefore, Rimon and Koditschek [4]
extended the potential field approach by demonstrating that
their Navigation Functions (NFs), under some assumptions,
give potentials fields free of local minima. Recently, NFs
found use in different scenarios, including limited sensing
capabilities of non-holonomic systems [5], multi-agent sys-
tems [6], [7], [8], [9], different obstacle shapes [10] and
linear temporal logic specifications [11]. In this paper we
use NFs to provide a robust closed loop execution for the
problem at hand. However, our approach is different from the
above related work in that it is formulated in discrete time.
This enables us to incorporate the event based sampling, and
also avoids the well known problem of having some initial
positions from where the desired destination cannot reached.

B. Event Based Control

The core idea of Event Driven (ED) control is to replace
the periodic sensing and action with a more elaborate timing
choice [12], [13], [14], [15]. ED has found applications in
different field, such as industrial control systems [16], [17],
network control systems [18], power networks [19], sensor
networks [20], [21], estimation and optimization [22], control
of stochastic systems [23], and autonomous navigation [24].
Later works show how the specified performance of the
overall control system is maintained after the introduction
of a ED framework [25], [26], and different comparisons
between time driven and ED control, both highlighting a
better real-time performance of ED, are found in [27], [28].

Finally, experimental evidence supports that ED control
improves the control performances and appears to drasti-
cally reduce the communication and computational demand
required by real-time systems [29], [30], [31].

As stated above, in this paper we combine an ED ap-
proach [29] with NFs [4] and new results on nonlinear
estimation [32] to address the problem of doing navigation
under uncertainties. To the best of our knowledge, this has
not been done before.

III. PROBLEM FORMULATION

Consider a system of a robot moving among N ∈ N
obstacles operating in a workspace W ⊂ Rn with W = {q̃ ∈
Rn ∶ ∣∣q̃−o0∣∣ ≤ ρ0 } and o0 being the center of the workspace
and ρ0 its radius. Let q ∈ W denote the center position of
the robot and r ∈ R+ its radius, oi ∈W the center position of
the obstacle i and ρi ∈ R+ its radius. Furthermore, let d ∈W
be the robot destination and Bd ∈ R+ a margin such that the
destination is successfully reached if ∣∣q−d∣∣ ≤ Bd. The robot
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Fig. 2. Example Scenario

dynamics is described by the discrete-time equations:

q(k + 1) = f(q(k)) +Bu(q(k)) + v(k) (1)
ya(k) = q(k) + ωa(k) (2)

where u ∶ Rn → Rp is the control input, B is a n× p matrix,
f ∶ W → W is a Lipschitz continuous function with Lf as
the Lipschitz constant, v(k) ∈ Rn is an additive disturbance
affecting the robot dynamics and ωa is an additive noise
affecting ya(k), which is the robot’s measurements of its
own position. The dynamics of the i-th obstacle is described
by the discrete-time system:

oi(k + 1) = gi(oi(k)) (3)
yoi(k) = oi(k) + ωi(k) (4)
yρi(k) = ρi + ψi(k) (5)

where gi ∶W →W is a Lipschitz continuous function with
Lg as the Lipschitz constant. To be less restrictive gi(⋅) can
be either known (e.g., for static obstacles gi(oi(k)) = oi(k))
or approximated by a function g̃i(⋅) with L̃g as an upper
bound of the Lipschitz constant such that Lg ≤ L̃g . Moreover,
yoi(k) is the measured position of the i-th obstacle and
yρi(k) is the measured i-th obstacle’s radius at time k. ωi and
ψi with i = {1,2, . . . ,N} are additive measurement noises.
The disturbances and noise are unknown with given upper
bounds: ∣∣ωa(k)∣∣ ≤ ω̄a; ∣∣ωi(k)∣∣ ≤ ω̄i; ∣∣ψi(k)∣∣ ≤ ψ̄i; and
∣∣v(k)∣∣ ≤ v̄ ∀k. Note that the upper bounds are fixed for
clarity of exposition. However, the formulation can be easily
extended to distance-varying bounds, representing the fact
that the uncertainties on the obstacles’ position vary with
their distance with respect to the robot, as depicted in Fig. 2.

Problem 1: Given a system described as above, define a
control input u(q(k)) based on the last measurements at
discrete time τ (i.e., ya(τ), yoi(τ), and yρi(τ)) with k ≥ τ
such that:

● at any time k collision avoidance is guaranteed, i.e.

∣∣q(k + 1) − oi(k + 1)∣∣ > (r + ρi(k)) ∀k.

● at some time T the destination is successfully reached,
i.e.

∣∣q(k) − d∣∣ ≤ Bd ∀k ≥ T.



IV. PROPOSED SOLUTION

We use discrete control inputs u(q(k)) to satisfy Prob-
lem 1. The control inputs are computed upon the robot and
obstacles positions, estimated at each time step based on the
last measurement taken at time step τ . At each time step k
two so called triggering conditions are evaluated to establish
if a new measurement is needed.

A. Filtering and prediction

Since the statistics of the disturbance and noises are
assumed to be unknown, a useful criterion to estimate1

q(k), oi(k), and ρi(k) ∀i = {0,1, . . . ,N} consists in
a least-squares approach. Unfortunately, the exact optimal
estimation requires a large computational effort and the
minimization of a full information cost [33]. A reasonable
approximation is given by using the ε-optimal moving hori-
zon estimator [32] which provides an upper bound for the
estimation error given a optimality gap ε > 0 as follows:

∣∣q(k) − q̂(k∣k)∣∣ ≤
√
ξq(k, ε) (6)

∣∣oi(k) − ôi(k∣k)∣∣ ≤
√
ξoi(k, ε) ∀i = 0,1, . . . ,N (7)

∣ρi(k) − ρ̂i(k∣k)∣ ≤
√
ξρi(k, ε) ∀i = 0,1, . . . ,N (8)

Further details about the derivation of the functions in the
right hand side of (6)-(8) can be found in [32]. In the next
section we present the choice of ε.

Remark 1: In many practical cases the above upper
bounds can also be derived experimentally or found in the
sensors’ characterization given by the manufacturer.
Assuming that τ is the latest measurement time step and
k is the current time step, when the measurements ya(τ),
yoi(τ), and yρi(τ) are used to estimate q(k), oi(k), and
ρi(k) ∀i = 0,1, . . . ,N with k ≥ τ , then q̂(k+1∣τ), ôi(k+1∣τ),
and ρ̂i(k + 1∣τ) are called predictions.

Lemma 1: Let Bq ∶ N ×N→ R+ be a function defined as:

Bq(k, τ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lk−τf

√
ξq(τ, ε) +∑k−τ−1i=0 (Lif v̄)+

+∑k−τ−1i=0 Lif ∣∣B∣∣ū(k − 1 − i)) if k > τ√
ξq(k, ε) if k = τ

0 if k < τ
(9)

where ū ∶ N → R+ such that ū(k) ≥ ∣∣u(q(k)) − u(q̂(k∣τ))∣∣.
Then Bq(k + 1, τ) gives an upper bound of the prediction
error of the robot position ∀k ≥ τ :

∣∣q(k + 1) − q̂(k + 1∣τ)∣∣ ≤ Bq(k + 1, τ). (10)

Proof: From (2) we have:

∣∣q(k + 1) − q̂(k + 1∣τ)∣∣ =
=∣∣f(q(k)) +Bu(q(k)) + v(k) − f(q̂(k∣τ)) −Bu(q̂(k∣τ))∣∣ ≤
≤∣∣f(q(k)) − f(q̂(k∣τ))∣∣ + ∣∣Bu(q(k)) −Bu(q̂(k∣τ))∣∣ + v̄ =
=∣∣f(f(q(k − 1)) +Bu(q(k − 1)) + v(k − 1))
−f(f(q̂(k − 1∣τ)) −Bu(q̂(k − 1∣τ)))∣∣ + ∣∣B∣∣ū(k) + v̄

(11)

1 Throughout the paper we use the notation x̂(k∣k′) to represent the
estimation of x(k) given the measurements at time k′.

from Lipschitz continuity

∣∣f(f(q(k − 1)) +Bu(q(k − 1)) + v(k − 1))
−f(f(q̂(k − 1∣τ)) −Bu(q̂(k − 1∣τ)))∣∣+
+∣∣Bu(q(k)) −Bu(q̂(k∣τ))∣∣ + v̄ ≤
≤Lf ∣∣f(q(k − 1)) +Bu(q(k − 1)) − f(q̂(k − 1∣τ))+
−Bu(q̂(k − 1∣τ))∣∣ +Lf v̄ + v̄+
+∣∣Bu(q(k)) −Bu(q̂(k∣τ))∣∣ ≤
≤Lf ∣∣f(q(k − 1)) +Bu(q(k − 1)) − f(q̂(k − 1∣τ))+
−Bu(q̂(k − 1∣τ))∣∣ +Lf v̄ + v̄+
+∣∣Bu(q(k)) −Bu(q̂(k∣τ))∣∣+
+Lf ∣∣Bu(q(k − 1)) −Bu(q̂(k − 1∣τ))∣∣

(12)

continuing the Lipschitz argument until we get in the right
hand side ∣∣q(τ) − q̂(τ ∣τ)∣∣, for which we have the bound√
ξq(τ, ε), the following holds:

∣∣q(k + 1) − q̂(k + 1∣τ)∣∣ ≤ Lk−τ+1f ∣∣q(τ) − q̂(τ ∣τ)∣∣+
+(1 +Lf +L2

f + . . . +Lk−τ−1f )v̄+
+∣∣B∣∣ū(k − 1) + . . . +Lk−τ−1f ∣∣B∣∣ū(τ) = Bq(k + 1, τ)

(13)

Lemma 2: Let Boi ∶ N×N→ R+ be a function defined as:

Boi(k, τ) ≜ L̃k−τg

√
ξoi(τ, ε). (14)

Then Boi(k+1, τ) gives upper bound of the prediction error
of the the i-th obstacle positions ∀k ≥ τ .
Proof: The proof is very similar to the one of Lemma 1

Lemma 3: Let Bρi ∶ N→ R+ be a function defined as:

Bρi(τ) =
√
ξρi(τ, ε). (15)

Bρi(τ) gives an upper bound of the prediction error of the
the i-th obstacles’ radius.
Proof: The proof is very similar to the one of Lemma 1
We use these upper bounds to define a triggering condition
in the next section.

Remark 2: Note that Bq(τ, τ) =
√
ξq(τ, ε) and

Boi(τ, τ) =
√
ξoi(τ, ε) and Bρi(τ) does not depend

on k. For clarity of exposition, we use Bq(τ, τ), Boi(τ, τ),
Bρi(τ) in place of

√
ξq(τ, ε),

√
ξoi(τ, ε) and

√
ξρi(τ, ε)

respectively throughout the paper.
Remark 3: L̃g can be a conservative approximation of

the Lipschitz constant of the function gi(⋅) to cover the
uncertainties of the obstacle dynamics to a satisfying extent.

B. Triggering Conditions

The use of estimated robot and obstacle positions must
ensure collision avoidance and destination convergence. At
time k, the measurements ya(τ), yoi(τ), and yρi(τ) can
be used as long as we guarantee that at time k + 1 no
collision will occur. An example of this scenario is depicted
in Fig. 3. If collision avoidance cannot be guaranteed, a new
measurement is needed. An illustration of these sporadic
measurements is shown in Fig. 4 where the uncertainty
bounds Bq(k, τ) and Boi(k, τ) increase over time with
each step without measurements. The bounds increase until



Fig. 3. Example scenario. The blue solid circle is the agent, the red solid
circles are the obstacles and the black curve is the collision free path
computed. Dashed circles represent the uncertainty in the predicted position
at the next time step.

(a) Screenshot I, τ = 1, k = 1 (b) Screenshot II, τ = 1, k = 5

Possible collision
at the next time

step

(c) Screenshot III, τ = 1, k = 10 (d) Screenshot IV, τ = 10, k = 11

Fig. 4. Triggers during navigation. The cyan solid circle represents the
agent where the red solid circles represent the obstacle. The dashed circles
represent the uncertainty in the measure (i.e., those circles are bounding
boxes of the predicted obstacle and robot positions at the next time step)

Fig. 4(c) where a new measurement is needed to guarantee
collision avoidance. Here we note that there is an overlap of
the uncertainties of the next robot position and of the obstacle
positions, which means that at the next time step (i.e, k + 1)
there are chances of a collision. Then a new measurement is
taken in Fig. 4(d) and the uncertainties are reduced.

The condition for when a new measurement is needed to
ensure collision avoidance is:

∣∣q̂(k + 1∣τ) − ôi(k + 1∣τ)∣∣ − (r + ρ̂i(k + 1∣τ))+
−Bq(k + 1, τ) −Boi(k + 1, τ) −Bρi(τ) ≤ 0

(16)

with i = {1,2, . . . ,N}.

Fig. 5. Example of a navigation function with two spherical obstacles and
a spherical workspace.

The condition for when a new measurement is needed to
satisfy destination convergence is:

∣∣q̂(k∣τ) − d∣∣ −Bq(τ, τ) ≤ 0. (17)

We use these triggering conditions to reduce the computa-
tional cost of the overall system.

C. Collision Free Navigation

As mentioned earlier, in this paper the collision free
navigation is carried out using a NF. This is a continuous
function ϕ ∶ W → Φ with Φ = [0 1] reaching a unique and
therefore global minimum only at the destination point d
and it reaches its maximum on the edges of the obstacles.
An example NF in two dimensions is depicted in Fig. 5,
but note that the approach holds for arbitrary dimensions
and different obstacle shapes [10]. Intuitively, starting from
a collision free position, to guarantee destination convergence
it is sufficient to decrease the value of the NF at each time
step. The chosen NF is defined as follows

ϕ(q̂(k∣τ)) ≜ ( γd(k, τ)h
γd(k, τ)h + β(k, τ)

)
1
h

(18)

where the obstacle avoidance is taken into account through
an obstacle function β(k, τ) accounting for the uncertainties
at time k defined as follows:

β(k, τ) ≜
N

∏
i=0

∣∣q̂(k∣τ) − ôi(τ ∣τ)∣∣2 − (r + ρ̂i(τ ∣τ)+

+Bq(τ, τ) +Boi(τ, τ) +Bρi(τ))2
(19)

and the destination convergence is taken into account through
a destination function γd accounting for the uncertainties at
time k defined as follows:

γd(k, τ) ≜ ∣∣q̂(k∣τ) − d∣∣2 (20)



and h is a shaping parameter that modifies how close to an
obstacle the robot moves.

We use ϕ to ensure convergence of the estimated robot’s
position.

D. Control Synthesis

Exploiting the properties of NFs, we derive a control
input that decreases the value of (18) at each time step.
In this case we can ensure that the robot does not hit an
obstacle and its final estimated position converges to the
desired destination which, under weak assumptions, satisfies
the goals of Problem 1. The control input is:

u(q(k)) = −B†(f(q̂(k∣τ)) − q̄(k + 1∣τ)) (21)

where q̄(k∣τ) = argmin
∣∣q̂(k∣τ)−q̂′(k∣τ)∣∣≤Bq(k+1,τ)

ϕ̄(q̂′(k∣τ)),

ϕ̄ = max
∣∣q̂(k∣τ)−q̂′(k∣τ)∣∣≤Bq(k+1,τ)

(ϕ(q̂′(k∣τ)))

and B† is the Moore-Penrose matrix pseudo-inverse of B.
Under controllability assumptions, this pseudo-inverse exits.

Remark 4: Note that (21) has only known elements.
Remark 5: The value of ū(k) used in (9) is:

ū(k) = (1 +Lf)
√
ξq(k, ε)

V. CONVERGENCE ANALYSIS

In this section, we show that the controller (21) provides
a solution to Problem 1. The main result is presented in
Proposition 1 and proved using Lemmas 4-6. Before intro-
ducing the lemmas, we state the following assumptions on
the workspace:

Assumption 1: The values of ε, v̄, ω̄i, and ψ̄i are such that
Bq(τ, τ),Boi(τ, τ),Bρi(τ) are small enough so that for each
pair of obstacles i, j the following condition holds:

∣∣oi(τ) − oj(τ)∣∣ >
>(ρi + ρj +Boi(τ, τ) +Bρi(τ) +Boj(τ, τ) +Bρj(τ, τ)+
+Bq(τ + 1, τ)).

Under this assumption the NF (18) is free of local min-
ima [4].

Assumption 2: The values of ε, v̄, ω̄i, and ψ̄i are such
that Bq(τ, τ) ≤ Bd. That is, the estimated final position can
be used to satisfy the goals of Problem 1.

Assumption 3: The values of ε, v̄, ω̄i, ψ̄i and the initial
robot position is such that ∣∣q̂(0∣0) − ôi(0∣0)∣∣ ≥ (r + ρj +
Boi(0,0)+Bρi(0)+Bq(0,0)) ∀i = {0,1, . . . ,N}. That is the
estimated position can ensure that the robot is in a collision
free situation at its initial position.

Assumption 4: The values of ε, v̄, ω̄i, ψ̄i are such that
Bq(τ, τ),Boi(τ, τ),Bρi(τ) are small enough and the desti-
nation point d is such that

∃ T ∈ N ∶ ∣∣oi(t) − d∣∣ ≥ r + ρj +Boi(t, τ) +Bρi(τ)+
+Bq(t, τ) ∀t ≥ T ∀i = {0,1, . . . ,N}

that is, from T onward, the region that an obstacle could
potentially occupy never intersects the destination d. The
convergence is then possible.

Lemma 4: The triggering condition (17) at time k ensures
the collision avoidance at time k + 1.
Proof: One of the following situations occurs:
The triggering condition is satisfied: Then a new mea-
surement takes place, setting τ = k. By Assumptions 1
and 3, using the control input (21) the collision avoidance is
guaranteed.
The triggering condition is not satisfied: Then the collision
avoidance is guaranteed for the next time step k + 1 (i.e.,
∣∣q(k+1)−oi(k+1)∣∣ > (r+ρi(k)) ). if the triggering condition
not is satisfied, then

∣∣q̂(k + 1∣τ) − ôi(k + 1∣τ)∣∣ − (r + ρ̂i(k + 1∣τ))+
−Bq(k + 1, τ) −Boi(k + 1, τ) −Bρi(τ) > 0.

(22)

Now adding and subtracting q(k + 1)+ oi(k + 1) on the first
member and ρi(k + 1) on the second of the left hand side
of (22) we get

∣∣q̂(k + 1∣τ) − q(k + 1) − ôi(k + 1∣τ) + oi(k + 1) + q(k + 1)+
− oi(k + 1)∣∣ − (r + ρi(k + 1) − ρi(k + 1) + ρ̂i(k + 1∣τ))+
−Bq(k + 1, τ) −Boi(k + 1, τ) −Bρi(τ) > 0.

using the triangle inequality:

∣∣q̂(k + 1∣τ) − q(k + 1)∣∣ + ∣∣ − ôi(k + 1∣τ) + oi(k + 1)∣∣+
+∣∣q(k + 1) − oi(k + 1)∣∣ − (r + ρi(k + 1)) + (−ρi(k + 1)+
+ρ̂i(k + 1∣τ)) −Bq(k + 1, τ) −Boi(k + 1, τ)+
−Bρi(τ) > ∣∣q̂(k + 1∣τ) − q(k + 1) − ôi(k + 1∣τ)+
+oi(k + 1) + q(k + 1) − oi(k + 1)∣∣ − (r + ρi(k + 1)
−ρi(k + 1) + ρ̂i(k + 1∣τ))+
−Bq(k + 1, τ) −Boi(k + 1, τ) −Bρi(τ) > 0.

from (9)-(15)

∣∣q(k + 1) − oi(k + 1)∣∣ − (r + ρi(k + 1)) − 2Bρi(τ) >
>∣∣q̂(k + 1∣τ) − q(k + 1)∣∣ + ∣∣ − ôi(k + 1∣τ) + oi(k + 1)∣∣+
+∣∣q(k + 1) − oi(k + 1)∣∣ − (r + ρi(k + 1)) + (−ρi(k + 1)+
+ρ̂i(k + 1∣τ)) −Bq(k + 1, τ) −Boi(k + 1, τ)+
−Bρi(τ) > 0.

which yields

∣∣q(k + 1) − oi(k + 1)∣∣ > (r + ρi(k + 1)) (23)

Lemma 5: If the triggering condition (17) is satisfied then
destination convergence is maintained.
Proof: When ∣∣q̂(k∣τ)−d∣∣−Bq(τ, τ) ≤ 0 holds, then a trigger
takes place. After the trigger, k = τ and one of the following
situations occurs:
The estimated robot’s position has reached the destination:
∣∣q̂(k∣τ) − d∣∣ = 0 then q̂(k∣τ) = d. Since Bq(τ, τ) ≤ Bd by
Assumption 2, ∣∣q(k)−d∣∣ = ∣∣q(k)−q̂(k∣τ)∣∣ ≤ Bq(τ, τ) ≤ Bd.
The estimated robot’s position has not reached the destination
and ∣∣q̄(k∣τ) − q̂(k∣τ)∣∣ = Bq(k + 1, τ): Since Bq(k + 1, τ) >
Bq(τ, τ) the control input is such that ∣∣u(q(k))∣∣ = Bq(k +
1, τ) and it will counteract the effects of disturbance and
noises, accounted in Bq(τ, τ).



Bq(k+1,τ)

Fig. 6. Illustration of Lemma 6. Solid circles represent the robot (right)
and an obstacle (left), dashed circles represent the respective bounding boxes
of the predicted next positions.

The estimated robot’s position has not reached the destination
and ∣∣q̄(k∣τ)− q̂(k∣τ)∣∣ < Bq(k+1, τ): Then the direction that
decreases ϕ̄ is not on the direction of d hence the robot is
close to an obstacle and, by Assumption 2 this cannot be in
a Bd-neighborhood of d.

Lemma 6: q̄ is always collision free.
Proof: Applying the control input (21) at time k, q̂(k+

1∣τ) = q̄(k∣τ) and one of the following cases occurs: The
triggering conditions are satisfied: Then a new trigger takes
place and τ = k, so Bq(k, τ) = Bq(τ, τ) then the new control
input computed according to the new measurements, i.e.

q̄(k∣τ) = argmin
∣∣q̂(k∣τ)−q̂′(k∣τ)∣∣≤Bq(τ+1,τ)

ϕ̄(q̂′(k∣τ))

and by Assumptions 1 and 2 a solution exists.
The triggering conditions are not satisfied: Then the collision
avoidance is guaranteed by Lemma 4.
Lemma 6 is illustrated in Fig. 6. The triggering condi-
tion (17) ensures that the areas where robot and any obstacle
can be do not overlap, hence each point within Bq(k+1, τ)+r
from the robot’s estimated position, included q̄, is collision
free.

Proposition 1: If the robot is controlled by (21), then
for initial condition satisfying Assumption 3, Problem 1 is
solved.

Proof: Let V (k) = ϕ̄(q̂(k∣τ)) be a candidate Lyapunov
function. If a trigger takes place, Bq(τ, τ) ≤ Bq(k + 1, τ),
then ϕ̄(q̂(k + 1∣τ)) ≤ ϕ̄(q̂(τ ∣τ)). If a trigger does not take
place then the controller (21) ensures that q̄(k∣τ) = q̂(k+1∣τ),
thus ϕ̄(q̂(k + 1∣τ)) = ϕ̄(q̄(k∣τ)). In both cases the following
holds:

ϕ̄(q̂(k + 1∣τ)) = ϕ̄(q̄(k∣τ)) ≤ ϕ̄(q̂(k∣τ)) (24)

and q̂(k∣τ) is always collision free due to Lemma 6. The
inequality of (24) ensures that ϕ̄(q̂(k+1∣τ)) is not increasing.
Then, under Assumption 3, V (k+1) ≤ V (k) and V (k+1) =
V (k) ⇐⇒ ∣∣q̂(k) − d∣∣ = 0.

From (24) and due to the properties of (18), the set Φ is
a positively invariant set of V (k) which is also closed and
bounded. By LaSalle’s invariance principle [34], the system
converges to the largest invariant subset of Φ. The control
design implies that V (k + 1) = V (k) ⇐⇒ ∣∣q̂(k) − d∣∣ = 0
since ϕ̄ cannot decrease any further. Thus the destination
point d is the largest invariant set of Φ and q̂ converges
to d. The triggering conditions do not affect destination
convergence and collision avoidance due to Lemmas 4 and 5.

Under Assumption 2, when ∣∣q̂(k∣τ)−d∣∣ = 0 then ∣∣q(k)−d∣∣ ≤
Bd and the robot is inside the desired margin.

VI. SIMULATIONS

To illustrate the convergence and stability of our approach,
alongside the proofs presented in Section IV, two numerical
solution in a static environment and one in a dynamic
environment are shown. The simulations are carried out using
MATLAB scripts with an optimizer algorithm to compute
the argmin function. The algorithm chosen is the active-set
due to its high computational performance in box constrained
problems. For each simulation, a comparison of our approach
is made with a traditional one which uses the same NF
whereas the feedback measurements are made in a periodic
manner. Table I contains some key parameters for each sim-
ulation. Figs. 7-9 show the paths executed in each simulation
using our approach (solid black line) and the traditional
approach (dashed gray line), where the obstacles are depicted
as red spheres in their final position, note that they are drawn
according to estimated positions to resemble a real scenario.
The magenta squares represent positions where a trigger
took place and the destination margin Bd is depicted as a
semi-transparent green sphere. For completeness, Figs. 10-
12 shows the projections of the paths executed on the x-z
and x-y axis. Fig. 13 compares the number of feedback
measurements executed by our approach and the traditional
approach for each simulation. A comparison in dynamic
environments is not possible since the traditional approach
does not make use of the prediction proposed in Section IV.

In Simulation I the obstacles are far apart which results
in a few measurements needed to ensure a collision free
navigation. Simulation II presents more measurements than
the previous case, since the robot navigates closer to the
obstacles due to a higher parameter h used in (18) and
described at the end of Section IV-C. Simulation III presents
an example of a dynamic environment. One of the obstacles
is moving and its trajectory is depicted as a straight red
line in Fig. 9. We note how new measurements take place
when the obstacle is moving near the robot and its trajectory
changes accordingly. Then, further measurements are no
longer needed to avoid the collision with the moving obstacle
since it drifts away from the robot. We note that the control
system does not require a dynamic model of the obstacle, but
only a conservative approximation of its Lipschitz constant.

A video showing some other simulations can be found
online2.

Parameter Simulation I Simulation II Simulation III
h 20 80 80
Lf 1.2 1.2 1.2

L̃g 1 1 1.8
ξq(τ, ε) 2 ⋅ 10−3 2 ⋅ 10−3 2 ⋅ 10−3

ξoi(τ, ε) 10−2 10−2 10−2

ξρi(τ, ε) 10−3 10−3 10−3

TABLE I. Table collecting keys parameters of the simulations.

2 YouTube video title: Robot Navigation Under Uncertainties.
YouTube video link: http://youtu.be/XA8igLnohSY .



Fig. 7. Path executed in Simulation I. The solid line represents the
estimated path, the dashed line represents the real path. The dark red spheres
represent the obstacles, the bright sphere represent the destination area.
Magenta squares are the position where a sample takes place

Fig. 8. Path executed in Simulation II. The solid line represents the
estimated path, the dashed line represents the real path. The dark red spheres
represent the obstacles, the bright sphere represent the destination area.
Magenta squares are the position where a sample takes place

Fig. 9. Path executed in Simulation III. The solid line represents the
estimated path, the dashed line represents the real path, the straight line
represents an obstacle’s path. The dark red spheres represent the obstacles,
the bright sphere represent the destination area. Magenta squares are the
position where a sample takes place.

(a) Projection on the x-y axis. (b) Projection on the x-z axis.

Fig. 10. Projections of the path executed in Simulation I.

(a) Projection on the x-y axis. (b) Projection on the x-z axis.

Fig. 11. Projections of the path executed in Simulation II.

(a) Projection on the x-y axis. (b) Projection on the x-z axis.

Fig. 12. Projections of the path executed in Simulation III.
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Fig. 13. Comparison of the proposed approach with a traditional one. It
is clear how the number of feedback measurements is reduced.



VII. CONCLUSIONS

Combining a potential field approach with event driven
control, we have shown how to reduce the computational
cost of the overall control system, proving properties in terms
of goal convergence and collision avoidance. Due to the
fact that the calculation of the triggering condition is less
demanding than the acquisition, filtering and computation
of the sensors’ data, the proposed approach is suitable for,
among others, real-time systems; high speed vehicles; and
tele-operated robots.
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