
Decomposition of Multi-Agent Planning under Distributed Motion and
Task LTL Specifications

Jana Tumova and Dimos V. Dimarogonas

Abstract— The aim of this work is to introduce an effi-
cient procedure for discrete multi-agent planning under local
complex temporal logic behavior specifications. While the first
part of an agent’s behavior specification constraints the agent’s
trace and is independent, the second part of the specification
expresses the agent’s tasks in terms of the services to be
provided along the trace and may impose requests for the
other agents’ collaborations. To fight the extreme computational
complexity of centralized multi-agent planning, we propose a
two-phase automata-based solution, where we systematically
decouple the planning procedure for the two types of speci-
fications. At first, we only consider the former specifications
in a fully decentralized way and we compactly represent each
agents’ admissible traces by abstracting away the states that
are insignificant for the satisfaction of their latter specifica-
tions. Second, the synchronized planning procedure uses only
the compact representations. The satisfaction of the overall
specification is guaranteed by construction for each agent.

I. INTRODUCTION
Automated synthesis of correct-by-design controllers com-

plying with complex behavior specifications has recently
found a wide support in formal verification methods and
temporal logics. A number of the suggested solutions build
on a hierarchical approach [2], [9], [11], [17], where the
dynamics of the system is abstracted into a finite, discrete
transition system, a discrete plan that meets the specification
is synthesized and next translated into a controller for the
original system. This work focuses on a multi-agent version
of the above problem, and particularly on the second step of
the hierarchical approach. We consider a heterogeneous team
of agents (e.g., robots), that are assigned a behavior specifica-
tion each, comprising of the requirements on the sequence of
states they go through (e.g., the robots’ trajectories) and the
services they provide (e.g., loading an object). The agents’
tasks are though not completely independent; in order to
achieve their task a collaboration of the other agents might
be required (e.g., helping to load a heavy object). Our aim
in this paper is to efficiently synthesize a strategy for each
agent, such that all requirements are met. As a specification
language, we use Linear Temporal Logic (LTL), for its
resemblance to natural language [7], and expressive power.
The goal is viewed from the bottom-up perspective, where
we introduce the notion of local specification satisfaction
based on the individual agents’ own viewpoints.

This work was supported by EU STREP RECONFIG, European Unions
Horizon 2020 Research and Innovation Programme under the Grant Agree-
ment No.644128 (AEROWORKS), Swedish Research Council (VR), and
European Reasearch Council (ERC). The authors are with the ACCESS
Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of
Technology, Stockholm, Sweden and with the KTH Centre for Autonomous
Systems. Email: tumova@kth.se, dimos@kth.se.

Multi-agent planning from temporal logic specification has
been explored in several recent works. Planning for a team
of robots from a global LTL specification was addressed,
e.g., in [10], [12]. The authors in [8] considered LTL for
vehicle routing and in [16] for search and rescue missions.
A decentralized control of a robotic team from local LTL
specification with communication constraints is proposed
in [4], [6]. In contrast to our work, the agents therein do not
impose any constraints on the other agents’ behavior. In [3],
[15], a top-down approach to LTL planning is investigated;
the team is given a global specification and an effort is
made to decompose the formula into independent local
specifications that can be treated separately. In [5], bottom-
up planning from LTL specifications is considered, and a
partially decentralized solution is proposed that decomposes
the group into clusters of dependent agents. To cope with
the state space explosion, in [13], [14] we have proposed a
receding horizon approach to multi-agent planning.

In this paper, we take into account an extension of the
previous problem, where besides the high-level tasks in
terms of services to be provided, the agents’ behaviors are
limited by additional temporal logic constraints, allowing
to express safety, surveillance, sequencing, or reachability
properties of their traces, which we call motion specifications
for simplicity. We propose to decouple the planning for the
former and the latter parts of the specification. The main idea
is to build local synchronized product automata for each of
the agents’ motion separately and reduce their size before
creating the global product. The contribution of this paper
can thus be summarized as the introduction of an efficient,
bottom-up control strategy synthesis for multi-agent systems
from local LTL motion and task specifications. The designed
strategy allows the agents to execute their finite plans to a
large extent independently, in an asynchronous manner.

The rest of the paper is structured as follows. In Sec. II, we
fix necessary notation. Sec. III formalizes the problem state-
ment. In Sec. IV, the details of the solutions are provided.
An illustrative example is given in Sec. V.

II. NOTATION AND PRELIMINARIES

Given a set S, let 2S, and Sω denote the set of all subsets
of S, and the set of all infinite sequences of elements of S,
respectively. The i-th element of the sequence w is w(i), and
a subsequence of an infinite sequence w = w(1)w(2) . . . is
a finite or infinite sequence w(ι1)w(ι2) . . ., such that 1 ≤
ιj ≤ ιj+1, for all 1 ≤ j. Boolean operator XOR (exclusive
or) is denoted by ⊕, positive integers and non-negative real
numbers are denoted by N and R+

0 , respectively.

A labeled transition system (TS) is a tuple
T = (S, sinit , A, T,Π, L), where S is a finite set of
states; sinit ∈ S is the initial state; A is a finite set of
actions; T ⊆ S ×A→ S is a partial deterministic transition
function; Π is a set of atomic propositions; and L : S → 2Π

is a labeling function. A trace of T is an infinite alternating
sequence of states and actions τ = s1α1s2α2 . . ., such that
s1 = sinit , and for all i ≥ 1, T (si, α) = si+1.

An LTL formula ϕ over the set of atomic propositions Σ is
defined inductively: (i) π ∈ Σ is a formula, and (ii) if ϕ1 and
ϕ2 are formulas, then ϕ1∨ϕ2, ¬ϕ1, Xϕ1, ϕ1 Uϕ2, Fϕ1, and
Gϕ1 are each a formula, where ¬ and ∨ are standard Boolean
connectives, and X (next), U (until), F (eventually), and G
(always) are temporal operators. The semantics of LTL are
defined over infinite words over 2Π (see, e.g., [1]). A trace
τ = s1α1s2α2 . . . of T satisfies an LTL formula ϕ over Π
(τ |= ϕ) iff L(s1)L(s2) . . . satisfies ϕ (L(s1)L(s2) . . . |= ϕ).

A Büchi automaton (BA) is a tuple A = (Q, qinit,Σ, δ, F),
where Q is a finite set of states; qinit ∈ Q is the initial state;
Σ is an input alphabet; δ ⊆ Q×Σ×Q is a non-deterministic
transition relation; F ⊆ Q is an accepting condition. A run
of the BA B from a state q1 ∈ Q over a word w = σ1σ2 . . . ∈
Σω is a sequence ρ = q1q2 . . ., such that (qi, σi, qi+1) ∈ δ,
for all i ≥ 1 and it is accepting if it intersects F infinitely
many times. A word w is accepted by B if there exists an
accepting run over w from the state qinit . Any LTL formula
ϕ over Π can be algorithmically translated into an equivalent
BA B with Σ = 2Π. Any BA can be also viewed as a graph
and the terminology from graph theory applies.

III. PROBLEM FORMULATION
Two general viewpoints can be taken in multi-agent plan-

ning: either the system acts as a team with a common goal,
or the agents have their individual, local specifications. Here,
we adopt the second viewpoint and propose local specifi-
cation satisfaction to determine whether an agent’s task is
fulfilled from its own perspective. Each agent’s temporal
specification comprises of a motion and a task formula.
Loosely speaking, the motion formula can be viewed as the
agent’s safety, reachability, surveillance or sequencing, while
the task one represents its effectiveness, i.e, the motion for-
mula limits the sequence of states the agent’s goes through,
while the task formula corresponds to an accomplishment of
a high-level task composed of simple services that the agent
has the ability to provide. Unlike the motion one, the task
formula may involve collaboration requirements.

A. System Model

Let us consider N agents (e.g., robots in a partitioned
environment). Each agent i ∈ N , where N = {1, . . . , N}
has two different types of capabilities: the ability to execute
an action primitive, and to synchronize with the others.

1) Action Execution Capabilities: The agent i’s action-
execution capabilities are modeled as a finite TS
Ti = (Si, sinit,i, Ai, Ti,Πi, Li). The states of the TS corre-
spond to states of the agents (e.g., the location of the robots in
the regions of the environment). The atomic propositions rep-
resent inherent properties of the system states (e.g., the robot

is in a safe region). The actions represent abstractions of
the agent’s low-level controllers, and the transitions between
the states correspond to the agent’s capabilities to execute
the actions (e.g., the ability of the robots to move between
two regions of the environment). The traces are, roughly
speaking, the abstractions of the agents’ long-term behaviors
(e.g., the robots’ trajectories). Each of the agents’ action
executions takes a certain amount of time. Given a trace
τ = s1α1s2α2 . . . of Ti, we denote by ∆αj

∈ R+
0 the time

duration of the transition sj
αj−→ sj+1. Note that a transition

duration is arbitrary and unknown prior its execution.
2) Synchronization Capabilities: Next to the action-

execution capabilities, the agents have the ability to syn-
chronize, i.e., to wait for each other and to proceed with
the further execution simultaneously. The synchronization is
modeled through the synchronization requests. While being
in a state s, an agent i can send a request synci(I) to a
subset of agents {i} ⊆ I ⊆ N notifying that it is ready to
synchronize. Then, before proceeding with the execution of
any action α ∈ Ai, it has to wait till synci′(I) has been
sent by each agent i′ ∈ I , i.e., till the moment when each
agent i′ ∈ I is ready to synchronize, too. For simplicity,
we assume the perfect propagation of the synchronization
requests. The synchronization is immediate once each of
the agents i′ ∈ I has sent its request synci′(I) and all
agents in I start executing the next action collaboratively,
at the same time. The set of all synchronization requests
of an agent i is Synci = {synci(I) | {i} ⊆ I ⊆ N}.
Note that the synchronization request synci({i}) indicates
that no synchronization with the others is needed, and the
next action of agent i is executed immediately, independently
on the other agents. We assume that each agent sends a
synchronization request instantly once it completes an action
execution and that it starts executing an action instantly once
it synchronizes with the other agents. Instead of allowing for
idling, we include an existence of a special action stay i ∈ Ai
and a so-called self-loop s

stayi−−−→ s for all s ∈ Si, and all
Ti, where i ∈ N . Given a trace τi = si,1αi,1si,2αi,2 . . .
of Ti, we denote by ∆si,j ∈ R+

0 the time duration of the
synchronization that has been requested in the state si,j . Note
that ∆si,j = 0 for synci({i}) in si,j .

3) Services: Each of the agents’ specification is given via
two components: the first one are temporal requirements on
the atomic propositions that need to hold along its trace, and
the second one is a task given in terms of events of interest
associated with their actions, which we call services (e.g.,
an object pick-up). The set of services that can be provided
by an agent i ∈ N is Σi. Services are provided within the
agents’ transitions; each action α ∈ Ai is associated, or in
other words labeled, either with (i) a service set σ ∈ 2Σi

provided by i upon the execution of α, or (ii) a special
silent service set Ei = {εi}, where εi 6∈ Σi indicating
that the action α does not provide any event of interest.
Hence, two additional components of the agent i’s model are
the set of all available services Σi and the action-labeling
function Li : Ai → 2Πi ∪ 2Ei . Note that we specifically
distinguish between a silent service set Ei and an empty

service set {}. The above mentioned self-loops of form
s

stayi−−−→ s that we use to model the agents’ ability of
staying in their respective current states are labeled with the
silent service set Li(stay i) = Ei. Without loss of generality,
we assume that Σi ∩ Σi′ = ∅, for all i, i′ ∈ N , such
that i 6= i′, which is necessary for the final step of our
solution. Finally, we model an agent i ∈ N as the tuple
Mi = (Ti = (Si, sinit,i, Ai, Ti,Πi, Li),Synci,Σi,Li).

4) Behaviors: Behavior of an agent i is defined by its
states, actions, synchronizations with the others, and the time
instants of the action executions and the synchronizations.

Definition 1 (Behavior and strategy). A behavior of an agent
i is a tuple β = (τ, γ,T), where τ = s1α1s2α2 . . . is a trace
of Ti; γ = r1r2 . . . is a synchronization sequence, where rj ∈
Synci is the synchronization request sent at sj; and T =
ts1tα1ts2tα2 . . . is a non-decreasing behavior time sequence,
where tsj is the time instant when the synchronization request
rj was sent, and tαj

is the time instant when the action
αj started being executed. The following properties hold:
ts1 = 0, and for all j ≥ 1, tsj+1

−tαj
= ∆αj

, and tαj
−tsj =

∆sj . A strategy (τ, γ) for an agent i is a trace τ and a
synchronization sequence γ.

The notion of behavior does not reflect the above described
inter-agent synchronization rules. To that end, we define
behaviors induced by strategies admissible by a team of
agents. We denote the behavior of an agent i ∈ N by
βi = (τi, γi,Ti), and we use τi = si,1αi,1si,2αi,2 . . .,
γi = ri,1ri,2 . . ., and Ti = tsi,1tαi,1

tsi,2tαi,2
. . . to denote

its trace, synchronization and time sequence.

Definition 2 (Induced behaviors). The set of behaviors in-
duced by a collection of strategies (τ1, γ1), . . . , (τN , γN) of
agents in N are the subset of the collections of their behav-
iors B ⊆ {B ∈ {β1, . . . , βN | βi is a behavior of agent i}}
satisfying the following condition for all i ∈ N , and j ≥ 1:
Suppose that ri,j = synci(I). Then for all i′ ∈ I there exists
a matching index j′ ≥ 1, such that ri′,j′ = synci′(I), and
tαi,j

= tαi′,j′ . Furthermore, there exists at least one i′ ∈ I ,
such that tsi′,j′ = tαi′,j′ , i.e., such that ∆si′,j′ = 0, for the
matching index j′.

B. Motion and Task Specifications

The individual agents’ tasks are collaborative; on the one
hand, they involve requirements on the agents’ states, i.e.,
the atomic propositions associated with them and on the
other hand, they concern the respective agent’s services as
well as the services of the other agents. Formally, each
of the agents is given (i) an LTL\X formula φi over Πi,
which we call a motion specification and (ii) a collaborative
LTL formula ψi over Σ =

⋃
i′∈N Σi′ , which we call a

task specification. Consider for a moment a single agent
Mi = (Ti,Synci,Σi,Li), and its behavior β = (τ, γ,T),
where τ = s1α1s2α2 . . ., and T = ts1tα1

ts2tα2
. . ..

Definition 3 (Words and time sequences). We denote by
vτ = $1$2 . . . = Li(α1)Li(α2) . . . ∈ (2Σi ∪ 2Ei)ω the ser-
vice set sequence associated with τ . The word wτ produced
by τ is the subsequence of the non-silent elements of vτ ;

wτ = $ι1$ι2 . . . ∈ (2Σi)ω , such that $1, . . . , $ι1−1 = Ei,
and for all j ≥ 1, $ιj 6= Ei and $ιj+1, . . . , $ιj+1−1 = Ei.
With a slight abuse of notation, we use T(vτ) = t1t2 . . . =
tα1tα2 . . . to denote the service time sequence, i.e. the sub-
sequence of T when the services are provided. Furthermore,
T(wτ) = tι1tι2 . . . denotes the word time sequence, i.e. the
subsequence of T(vτ) that corresponds to the time instances
when the non-silent services are provided.

As in this work we are interested in infinite behaviors, we
consider as valid traces only those producing infinite words.
Definition 4 (Service set at a time). Let τ be a trace of Ti
with vτ = $1$2 . . ., and T(vτ) = t1t2 Given t ∈ R+

0 ,
the service set vτ (t) ∈ 2Πi∪2Ei provided at time t is vτ (t) =
$j if t = tj for some j ≥ 1; and vτ (t) = Ei otherwise.

Note that the above definition is designed in a way
accommodating the general asynchronicity of the agents.
Each formula ψi is interpreted locally, from the agent i’s
point of view, based on the word wτi it produces and on
the services of the other agents i′ ∈ N provided at the
time instances T(wτi). In other words, the agent i takes into
consideration the other agents’ services only at times, when
i provides a non-silent service set (even an empty one) itself.
Definition 5 (Local LTL satisfaction). Let B = β1, . . . , βN
be a collection of behaviors, where βi = (τi, γi,Ti) for all
i ∈ N and let T(wτi) = ti,ι1ti,ι2 . . . be the word time
sequence of agent i. The local word produced by B is
wBi

= ωi,ι1ωi,ι2 . . . , where ωi,ιj =
(⋃

i′∈N vτi′ (ti,ιj)
)
∩

Σ, for all j ≥ 1. B locally satisfies the formula ψi for the
agent i, B |=i ψi, iff wBi

|= ψi.

C. Problem Statement

Problem 1. Consider a set of agents N = {1, . . . , N},
and suppose that each agent i ∈ N is modeled as a tuple
Mi = (Ti = (Si, sinit,i, Ai, Ti,Πi, Li),Synci,Σi,Li), and
assigned a task in the form of an LTL\X formula φi over Πi

and ψi over Σ =
⋃
i′∈N Σi′ . For each i ∈ N find a strategy,

i.e., (i) a trace τi = si,1αi,1si,2αi,2 . . . of Ti and (ii) a
synchronization sequence γi over Synci with the property
that the set of induced behaviors B from Def. 2 is nonempty,
and for all B ∈ B and all i ∈ N , it holds that the trace τi
satisfies φiand the word wBi

produced by B locally satisfies
ψi for the agent i in terms of Def. 5.

As each LTL formula can be translated into a BA, from
now on, we pose the problem with the motion specification
of each agent i given as a BA Bφi = (Qφi , q

φ
init,i, δ

φ
i , 2

Π, Fφi),
and the task one as a BA Bψi = (Qψi , q

ψ
init,i, δ

ψ
i , 2

Σ, Fψi).

IV. PROBLEM SOLUTION

Even though the agents’ motion specifications are mutu-
ally independent, each of them is dependent on the agent’s
respective task specification, which is dependent on the task
specifications of the other agents. As a result, the procedures
of synthesizing the desired N strategies cannot be decen-
tralized in an obvious way. However, one can quite easily
obtain a centralized solution when viewing the problem as
a synthesis of a single team strategy. A major drawback of

the centralized solution is the state space explosion, which
makes it practically unusable. We aim to decentralize the
solution as much as possible. Namely, we aim to separate
the synthesis of service plans yielding the local satisfaction
of the task specifications from the syntheses of traces that
guarantee the motion specifications. Our approach is to
pre-compute possible traces and represent them efficiently,
abstracting away the features that are not significant for
the synthesis of action plans. This abstraction serves as a
guidance for the action and synchronization planning, which,
by construction, allows for finding a trace complying with
both the synthesized action and synchronization plans and
and the motion specification.

1) Preprocessing the motion specifications: Consider for
now an agent i ∈ N modeled as Mi = (Ti,Synci,Σi,Li),
where Ti = (Si, sinit,i, Ai, Ti,Πi, Li) and its motion specifi-
cation BA Bφi . We slightly modify the classical construction
of a product automaton of Ti and Bφi to obtain a BA that
represents the traces of Ti accepted by Bφi and furthermore
explicitly captures the services provided along the trace.

Definition 6 (Motion product). The motion product of
a TS Ti = (Si, sinit,i, Ai, Ti,Πi, Li), and a BA Bφi =

(Qφi , q
φ
init,i, δ

φ
i , 2

Πi , Fφi) is a BA Pi = (Qi, qinit,i, δi, 2
Σi ∪

{Ei}, Fi), where Qi = Si × Qφi ; qinit,i = (sinit,i, q
φ
init,i);

((s, q),Li(α), (s′, q′) ∈ δi if and only if (s, α, s′) ∈ Ti, and
(q, Li(s), q

′) ∈ δφi ; and Fi = {(s, q) | q ∈ Fφi }.
Intuitively, we propose to keep only the significant states

that have an outgoing transition labeled with Li(α) 6= Ei
and replace exact sequences of transitions in Pi with single
transitions representing reachability. While doing so, we have
to take into account whether the removed state is accepting
or not to correctly preserve the accepting condition of Pi.
Definition 7 (Insignificant states in Pi). A state p of the
motion product Pi is significant if it is (i) the initial state
p = qinit,i, or (ii) if there exists a transition (p, σ, p′) ∈ δi,
such that σ 6= Ei; and insignificant otherwise.

A reduced motion product P̈i is built from Pi according
to Alg. 1. First, we remove all insignificant non-accepting
states and their incoming and outgoing transitions (lines 3, 4).
We replace each state with a set of transitions leading
directly from the state’s predecessors to its successors, i.e.,
we concatenate the incoming and the outgoing transitions
(line 5). The labels of the new transitions differ: if both labels
of the concatenated incoming and outgoing transition are Ei,
then the new label will be Ei to indicate that the transition
represents a sequence of actions that are not interesting with
respect to the local satisfaction of task specifications. On the
other hand, if the label σ of the incoming transition belongs
to 2Σi , we use the action σ as the label for the new transition.
Each path between two significant states in Pi maps onto a
path between the same states in P̈i and the sequences of
non-silent services read on the labels of the transitions of
the two paths are equal; and vice versa. Second, we handle
the insignificant accepting states (line 7) similarly to the non-
accepting ones, however, we do not remove the states whose
predecessors include a significant state in order to preserve

the accepting condition. There is a correspondence between
the infinite runs of Pi and the infinite runs of P̈i: for each
run of Pi there exists a a run of P̈i, such that the states of the
latter one are a subsequence of the states of the former one,
the sequences of non-silent services read on the labels of the
transitions of the two runs are equal, and that the latter one
is accepting if and only if the former one is accepting; and
vice versa. This correspondence will allow us to reconstruct
a desired run of Pi from a run of P̈i, as we will show in
Sec. IV-.4. From P̈i, we further remove all states from which
none of the states in F̈i is reachable, and we can keep only
one copy of duplicate states that have analogous incomming
and outgoing edges (omitted from Alg. 1).

Algorithm 1 Reduction of the motion product

Input: motion product Pi = (Qi, qinit,i, δi, 2
Σi ∪ 2Ei , Fi)

Output: reduced BA P̈i = (Q̈i, q̈init,i, δ̈i, 2
Σi ∪ 2Ei , F̈i)

1: initialize P̈i := Pi

2: for all insignificant states p ∈ Qi \ Fi do
3: Q̈i := Q̈i \ {p}
4: δ̈i := δ̈i \ {(p′, σ, p), (p, σ, p′)|p′ ∈ Q̈i, σ ∈ 2Σi ∪ 2Ei}
5: δ̈i := δ̈i ∪ {(p′, σ, p′′) | p′, p′′ ∈ Q̈i, σ ∈ 2Σi ∪ 2Ei ,

(p′, σ, p), (p, Ei, p
′′) ∈ δ̈i}

6: end for
7: for all insignificant states p ∈ Fi, such that all predecessors

of p in P̈i are insignificant do
8: if (p, Ei, p) ∈ δ̈i then
9: δ̈i := δ̈i ∪ {(p′, Ei, p

′) | (p′, Ei, p) ∈ δ̈i}
10: end if
11: Q̈i := Q̈i \ {p}
12: δ̈i := δ̈i \ {(p′, σ, p), (p, σ, p′)|p′ ∈ Q̈i, σ ∈ 2Σi ∪ 2Ei}
13: δ̈i := δ̈i ∪ {(p′, Ei, p

′′) | p′, p′′ ∈ Q̈i, (p
′, Ei, p), (p, Ei, p

′′)
∈ δ̈i}

14: end for

2) Preprocessing the task specifications: Next, we build
a local task and motion product automaton for each agent i
separately, to capture the admissible traces of i that comply
both with its motion and task specification. At this stage, the
other agents’ collaboration capabilities are not yet included.

Definition 8 (Task and motion product). The task and
motion product of a reduced motion product automaton
P̈i = (Q̈i, q̈init,i, δ̈i, 2

Σi ∪ 2Ei , F̈i), and the task specifi-
cation BA Bψi = (Qψi , q

ψ
init,i, δ

ψ
i , 2

Σ, Fψi) is a BA P̄i =

(Q̄i, q̄init,i, δ̄i, 2
Σ∪2Ei , F̄i), where Q̄i = Q̈i×Qψi ×{1, 2, 3};

q̄init,i = (qinit,i, q
ψ
init,i, 1); F̄i = {(q1, q2, 2) | q2 ∈ Fψi };

and ((q1, q2, j), σ, (q
′
1, q
′
2, j
′) ∈ δ̄i iff

◦ σ = Ei, (q1, Ei, q′1) ∈ δ̈i, and q2 = q′2; or
◦ σ ∈ 2Σ, (q1, σ ∩ 2Σi , q′1) ∈ δ̈i, and (q2, σ, q

′
2) ∈ δψi ,

and j′ = 2, if j = 1 and q′1 ∈ F̈i, j′ = 3 if j = 2 and
q′2 ∈ F̈

ψ
i , j′ = 1 if j = 3, and j = j′ otherwise.

The above construction leverages ideas from building a
BA that accepts a language intersection of multiple given
BAs. The accepting runs of P̄i map onto accepting runs
of P̈i, and hence to the traces of Ti satisfying the motion
specification φi, and onto accepting runs of Bψi ; and vice
versa. Clearly, some of the transitions of P̄i require a
collaboration of some other agents, while some of them do
not. In order to further reduce the size of P̄i, we introduce

a mapping Depi : δ̄i → 2N to indicate for each transition
t = (p, σ, p′) ∈ δ̄i the set of agents Depi(t) ⊆ N whose
collaboration is required. We formalize Depi through the
notion of assisting services. Moreover, for each agent i, we
find a subset of its services that affect the local satisfaction
of a task specification of another agent through the notion
of globally assisting services.
Definition 9 (Assisting services). Suppose that i 6= i′. A
service ρ ∈ Σi′ is not assisting on a transition (p, σ, p′) ∈ δ̄i
of P̄i if and only if it holds that (p, σ ∪ {ρ}, p′) ∈ δ̄i ⇐⇒
(p, σ \ {ρ}, p′) ∈ δ̄i; it is assisting on (p, σ, p′) otherwise.
Depi(t) = {i} ∪ {i′ | i′ 6= i and ∃ρ ∈ Σi′ assisting on t}.
Definition 10 (Globally assisting services). A service ρ ∈
Σi′ of agent i′ ∈ N is globally assisting if there exists i ∈ N ,
i 6= i′, and a transition t ∈ δ̄i, such that ρ is assisting on t.

Now, similar ideas as in Alg. 1 can be used to reduce
the size of each action and motion product P̄i, with the
following, altered definition of significant states:
Definition 11 (Insignificant states in P̄i). A state p of the
task and motion product P̄i is significant if it is either (i) the
initial state p = q̄init,i, or (ii) if there exists a transition
(p, σ, p′) ∈ δ̄i, such that there exists a globally assisting
service ρ ∈ σ ∩ Σi, or (iii) if there exists a transition
(p, σ, p′) ∈ δ̄i, such that Depi(p, σ, p

′) 6= {i}; the state p
is insignificant otherwise.

Informally, the condition (ii) states that at a significant
state, the agent i has the ability to assist other agents,
whereas the condition (iii) states that at a significant state,
the assistance of the other agents influences the agent i’s
own task specification local satisfaction. With a slight abuse
of notation, we replace all labels of all outgoing transitions
of insignificant states of P̄i with Ei. This time Ei represents
a service set that is completely independent. We can now di-
rectly apply Alg. 1 to remove the insignificant states from P̄i,
with the exception that 2Σi is at all places replaced with 2Σ.
The resulting automaton is P̂i = (Q̂i, q̂init,i, δ̂i, 2

Σ∪2Ei , F̂i).
Similarly as before, there is a correspondence beween the
infinite runs of P̄i and the infinite runs of P̂i: for each run
of P̄i there exists a a run of P̂i, such that the states of the
latter one are a subsequence of the states of the former one,
the sequences of services read on the labels of the transitions
leading from the significant states of the two runs are equal,
and that the latter one is accepting if and only if the former
one is accepting; and vice versa. The number of states of P̂i
is at most twice the number of significant states in P̄i.

3) Global product: From the reduced task and motion
product automata P̂1, . . . , P̂N , we build a single one, that
finally represents the inter-agent collaborations. The con-
struction is a twist to the well-known construction of BA
intersection. We associate the transitions of the BA with the
subsets of agents that are required to make this transition
collaboratively, i.e., with the subsets of agents that need to
synchronize prior this transition.
Definition 12 (Global product). The global product of the
reduced task and motion product automata P̂1, . . . P̂N , where
P̂i = (Q̂i, q̂init,i, δ̂i, 2

Σ ∪ 2Ei , F̂i), for all i ∈ N , is a BA

P = (Q, qinit , δ, 2
Σ∪2E={Ei|i∈N}, F) with a mapping Dep :

δ → 2N , where Q = Q̂1×. . .×Q̂N×{1, . . . , N+1}; qinit =
(q̂init,1, . . . , q̂init,N , 1); F̄i = {(q1, . . . , qN , N) | qN ∈ F̂N};
and t = ((q1, . . . , qN , j), σ, (q

′
1, . . . , q

′
N , j

′)) ∈ δ iff either
◦ ∃i ∈ N , such that σ = Ei, (qi, Ei, q′i) ∈ δ̂i, qi′ = q′i′ ,

for all i′ 6= i, and j′ = j + 1 if j = i and q′i ∈ F̂i,
j′ = 1 if j = N + 1, and j′ = j otherwise. Then we set
Dep(t) = {i}; or

◦ σ ∈ 2Σ, and ∃ I ⊆ N , such that for all i ∈ I it
holds that (qi, σ, q

′
i) ∈ δ̂i while for all i 6∈ I it holds

that qi = q′i. Moreover,
⋃
i∈I Depi(qi, σ, q

′
i) ⊆ I, and

j′ = j + 1 if j ∈ I and q′j ∈ F̂j , j′ = 1 if j = N + 1,
and j′ = j otherwise. Then we set Dep(t) = I.

Each accepting run of the global product P maps directly
on the accepting runs of the reduced task and motion product
automata and vice versa, for each collection of accepting runs
of the reduced task and motion product automata, there exists
an accepting run of the global product P . Note that by this
construction, deadlocks are avoided.

4) Synthesis of the strategies: The final step of our
solution is the generation of the strategy in P and its mapping
onto a trace τi of Ti and a synchronization sequence γi over
Synci, for all i ∈ N . Using standard graph algorithms (see,
e.g., [1]), we find an accepting run q1q2 . . . over a word
σ1σ2 . . . in P , where qj = (q̂1,j , . . . , q̂N,j , k), for all j ≥ 1.
For each agent i ∈ N : (i) Consider the sequence q̂i,1q̂i,2 . . .,
that is obtained by the projection of the accepting run q1q2 . . .
onto the states of P̂i. Let ι1ι2 . . . be the subsequence of all
indexes, such that i ∈ Dep(qιj , σιj , qιj+1). Then q̂i,ι1 q̂i,ι2 . . .
is an accepting run of P̂i over the word σι1σι2 . . . and
γ̂i = r̂i,1r̂i,2 . . . = Dep(qι1σι1qι1+1)Dep(qι2σι2qι2+1) . . .
is a synchronization sequence. (ii) From the construction of
P̂i, we know that there exists an accepting run q̄i,1q̄i,2 . . .
in P̄i over a word σ̄i,1σ̄i,2 . . ., such that q̂i,ι1 q̂i,ι2 . . . is a
subsequence q̄i,`1 q̄i,`2 . . . of q̄i,1q̄i,2 . . . and σι1σι2 . . . is the
corresponding subsequence σ̄i,`1 σ̄i,`2 . . . of σ̄i,1σ̄i,2 The
synchronization sequence γ̄i = r̄i,1r̄i,2 . . . is constructed by
setting r̄i,`j = r̂i,ιj , for all j ≥ 1, and r̄i,j = sync({i})
otherwise. (iii) The mapping from the task and motion
product P̄i onto P̈i is processed as follows: Suppose that
q̄i,j = (q̈i,j , q

ψ
i,j , k), for all j ≥ 1. The accepting run

q̄i,`1 q̄i,`2 . . . then maps onto the accepting run q̈i,`1 q̈i,`2 . . .
over σ̈i,1σ̈i,2 . . ., where σ̈i,j = Ei if σ̄i,j = Ei, and
σ̈i,j = σ̄i,j ∩ 2Σi otherwise. Naturally, γ̈i = γ̄i. (iv) The
accepting run qi,1qi,1 . . . of the motion product Pi over a
word σi,1σi,1 . . . and a synchronization sequence γi is ob-
tained from the reduced motion product P̈i by an analogous
construction as in the case of mapping from the reduced task
and motion product P̂i onto the task and motion product P̄i.
(v) Finally, an accepting run qi,1qi,2 . . . of Pi maps onto a
trace τi of Ti. The desired synchronization sequence is γi.

A. Discussion
Strategy execution and event-based recomputation: In the

above described solution, the strategy for each agent is
constructed in an offline manner, and executed indepen-
dently. However, the solution can be modified to an event-

triggered one, where synchronization is triggered by need
and strategies are periodically recomputed in order to adapt
to different execution speed of different agents and to handle
various optimization criteria. The details of this solution is
one of our future topics of interest. Mutually dependency:
We supposed that all of the considered agents are mutually
dependent through their task specifications, either directly
or transitively. If this is not the case, the team of agents
can be partitioned into dependency classes as suggested
in [5]. Complexity: In the worst case, our solution meets
the complexity of the centralized solution. However, this is
often not the case. Since the size of the global product is
highly dependent on the number of globally assisting services
available in the agents’ workspace, our solution is particu-
larly suitable for systems with complex motion capabilities,
sparsely distributed services of interest, and occasional needs
for collaboration. Its benefits are demonstrated in Sec. V.

V. ILLUSTRATIVE EXAMPLE

An illustrative example with 3 robots is given in Fig. 1.
Their workspace is partitioned into 100 cells, and a robot’s
state is defined by the cell it is present at. Agent 1 (green)
is a ground vehicle and has to avoid the obstacles (in
gray), while agents 2 (orange) and 3 (purple) are UAVs
and their workspace is obstacle-free except for walls (thick).
The cells are each labeled with an atomic proposition from
{R1,R2,R3,R4} indicating the room to which the cell
belongs. Services are available in cell marked with stripes.
Agent 1 can load (green horizontal stripe) and unload (green
vertical). Agent 2 can help (orange horizontal) or inform
(orange vertical). Agent 3 can assist (purple horizontal). The
motion formulas are: For agent 1 to avoid room R1, φ1 =
G¬R1, for agent 2 to avoid R2, φ2 = G¬R2, and for agent 3
to survey R1 and R2, φ3 = GFR1∧GFR2. The task formulas
are: For agent 1 to periodically load collaboratively with
agents 2 and 3 and then to unload, collaboratively with agent
2 or 3: ψ1 = load ∧ help ∧assist ∧G (load ⇒ X (unload ∧
(help ∨ assist)))∧G (unload ⇒ X (load ∧ help ∧ assist)),
for agent 2 to periodically service inform , ψ2 = GF inform ,
for agent 3 ψ3 = assist ∨¬assist , i.e., agent 3 is not assigned
a specific task. An example of as collection of the desired
trajectories and synchronizations is given in Fig. 1.

R4

1

2a 2b

3

R1 R2

R3

Fig. 1: Examples of desired trajectories of 3 robots in a shared workspace.
The synchronization events at the moments of providing nonsilent services
are depicted with stars. First, all agents synchronize in the bottom left corner
and provide load, help, assist; then agent 2 provides inform and then agents
1 and 3 provide unload, assist, or vice versa; finally, all agents synchronize
in the bottom left corner, and start periodically executing the above.

In classical centralized planning, only the synchronous
product of the TSs of the three agents would have ≈ 100
000 states. In our case, the BAs for the given formulas
had 2,2,3,2,2,1 states, respectively, and hence their language
intersection BAs reaches 2 ∗ 2 ∗ 3 ∗ 2 ∗ 2 ∗ 1 ∗ 7 ≈ 330 states.
The overall product automaton has then up to ∼ 30 millions
states. In contrast, in our solution, the individual task and
motion products P̂1, P̂2, P̂3 after all reductions have 27,17,
and 8 states, respectively. Hence the largest structure dealt
with during the overall procedure, i.e., the product automaton
P has only 27 ∗ 17 ∗ 8 ∗ 4 ∼ 15000 states.

REFERENCES

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[2] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi. Motion
planning with complex goals. Robotics Automation Magazine, IEEE,
18(3):55 –64, 2011.

[3] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. Formal approach
to the deployment of distributed robotic teams. IEEE Transactions on
Robotics, 28(1):158–171, 2012.

[4] I. Filippidis, D.V. Dimarogonas, and K.J. Kyriakopoulos. Decentral-
ized multi-agent control from local ltl specifications. In Proceedings
of the IEEE Conference on Decision and Control, pages 6235–6240,
2012.

[5] M. Guo and D. V. Dimarogonas. Multi-agent plan reconfiguration
under local LTL specifications. International Journal of Robotics
Research, pages 218–235, 2015.

[6] M. Guo, J. Tumova, and D. V. Dimarogonas. Cooperative decen-
tralized multi-agent control under local LTL tasks and connectivity
constraints. In Proceedings of the IEEE Conference on Decision and
Control, pages 75–80, 2014.

[7] G. Jing, C. Finucane, V. Raman, and H. Kress-Gazit. Correct high-
level robot control from structured english. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages
3543–3544, 2012.

[8] S. Karaman and E. Frazzoli. Vehicle routing with temporal logic spec-
ifications: Applications to multi-UAV mission planning. International
Journal of Robust and Nonlinear Control, 21:1372–1395, 2011.

[9] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[10] M. Kloetzer, X. C. Ding, and C. Belta. Multi-robot deployment from
LTL specifications with reduced communication. In Proceedings of
the IEEE Conference on Decision and Control and European Control
Conference, pages 4867–4872, 2011.

[11] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal logic-
based reactive mission and motion planning. IEEE Transactions on
Robotics, 25(6):1370–1381, 2009.

[12] S. G. Loizou and K. J. Kyriakopoulos. Automated planning of motion
tasks for multi-robot systems. In Proceedings of the IEEE Conference
on Decision and Control, volume 44, 2005.

[13] J. Tumova and D. Dimarogonas. A receding horizon approach to
multi-agent planning from local LTL specifications. In Proceedings of
the American Control Conference, pages 1775–1780, 2014.

[14] J. Tumova and D. Dimarogonas. Multi-agent planning under local LTL
specifications and event-based synchronization. 2015. Submitted.

[15] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus. Optimality
and robustness in multi-robot path planning with temporal logic
constraints. International Journal of Robotics Research, 32(8):889–
911, 2013.

[16] C. Wiltsche, F. A. Ramponi, and J. Lygeros. Synthesis of an
asynchronous communication protocol for search and rescue robots. In
Proceedings of the European Control Conference, pages 1256–1261,
2013.

[17] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding Horizon
Control for Temporal Logic Specifications. In Hybrid systems:
Computation and Control (HSCC), pages 101–110, 2010.

