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Abstract—This paper analyzes distributed control protocols
for first- and second-order networked dynamical systems. We
propose a class of nonlinear consensus controllers where the input
of each agent can be written as a product of a nonlinear gain,
and a sum of nonlinear interaction functions. By using integral
Lyapunov functions, we prove the stability of the proposed
control protocols, and explicitly characterize the equilibrium
set. We also propose a distributed proportional-integral (PI)
controller for networked dynamical systems. The PI controllers
successfully attenuate constant disturbances in the network. We
prove that agents with single-integrator dynamics are stable for
any integral gain, and give an explicit tight upper bound on
the integral gain for when the system is stable for agents with
double-integrator dynamics. Throughout the paper we highlight
some possible applications of the proposed controllers by realistic
simulations of autonomous satellites, power systems and building
temperature control.

Index Terms—Agents and autonomous systems, cooperative con-
trol, electrical power systems, PI control

I. INTRODUCTION

A. General motivation

Distributed or decentralized control is in many large-scale
systems the only feasible control strategy, when sensing and
actuation communication is limited. In this paper we distin-
guish between decentralized control strategies where agents
only have access to local measurements, from distributed
control strategies where agents have access to local mea-
surements and the measurements from neighboring agents.
To attenuate unknown disturbances as well as to stabilize
systems in the presence of model imperfections, proportional-
integral (PI) controllers are commonly employed in such
plants. However, it is still an open problem under which
conditions distributed PI-controllers can stabilize a plant in
general [19]. One important class of systems that require
integral action to attenuate disturbances are electric power
systems [18]. Due to sudden load and generation changes
as well as model imperfections, a proportional frequency
controller cannot reach the desired reference frequency in gen-
eral. To attenuate such static errors, integrators are commonly
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employed. Due to the inherent difficulties with distributed
PI control, automatic frequency control of power systems is
typically carried out at two levels, an inner and an outer level.
In the inner control loop, the frequency is controlled with a
proportional controller against a dynamic reference frequency.
In the outer loop, the reference frequency is controlled with a
centralized PI controller to eliminate static errors. While this
control architecture works satisfactorily in most of today’s
power systems, future power system developments might
render it unsuitable. For instance, large-scale penetration of
renewable power generation increases generation fluctuations,
creating a need for fast as well as local disturbance attenuation.
Decentralized control of power systems might also provide
efficient control under islanding and self-healing features, even
when communication between subsystems is limited or even
unavailable [25]. Distributed integral action for power system
frequency control, as well as numerous other physical systems
such as mobile robotic systems, can often be well modeled
by consensus-like protocols for double-integrator dynamics.
Motivated by this fact, we develop in this paper a more general
framework for consensus protocols with integral action for
agents with double-integrator dynamics and velocity damping.

Static feedback controllers, in contrast to integrators, have
been used in a variety of distributed control problems. For
example they are commonly used in the consensus problem.
The consensus problem has applications in formation control
[12], flocking [17] and rendezvous [7], amongst others. While
static linear feedback controllers can solve the basic problems,
nonlinear feedback controllers are of great importance when,
e.g., dealing with connectivity constraints and collision avoid-
ance [10]. Furthermore, some distributed control problems
have inherent nonlinear dynamics, e.g., heat diffusion where
heat capacities are nonlinear. Much attention has been devoted
to nonlinear consensus protocols in recent years. However,
to the best of our knowledge, none of the previous work
characterizes the convergence point of nonlinear consensus
protocols explicitly. In this paper we introduce a nonlinear
consensus protocol for single and double-integrator dynamics.
We prove the asymptotic stability of the dynamics induced by
the protocol, and explicitly characterize its equilibrium set.

B. Related work

Nonlinear interaction functions for consensus problems are
well-studied [22], [20], in applications to, e.g., consensus
with preserving connectedness [10] and collision avoidance
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[10]. Sufficient conditions for the convergence of nonlinear
protocols for first-order integrator dynamics are given in [2].
Consensus on a general nonlinear function value, referred to
as χ-consensus, was studied in [9], by the use of nonlinear
gain functions. The literature on χ-consensus has been focused
on agents with single-integrator dynamics. However, as we
show later, our results can be generalized to hold also for
double-integrator dynamics. Consensus protocols where the
input of an agent can be separated into a product of a
positive function of the agents own state were studied in [6]
for single integrator dynamics. In [21], position consensus
for agents with double-integrator dynamics under a class of
nonlinear interaction functions and nonlinear velocity-damping
is studied. In contrast to [21], we study undamped consensus
protocols for single- and double-integrator dynamics using in-
tegral Lyapunov functions. In [29] double-integrator consensus
problems with linear non-homogeneous damping coefficients
are considered. We generalize these results to also hold for a
class of nonlinear damping coefficients.

Multi-agent systems, as all control processes, are in general
sensitive to disturbances. When only relative measurements
are available, disturbances may spread through the network.
It has for example been shown by [5] that vehicular string
formations with only relative measurements cannot maintain
coherency under disturbances, as the size of the formation
increases. In [30] the robustness of consensus-protocols under
disturbances is studied, but limited to the relative states of
the agents. However, none of the aforementioned references
consider disturbance rejection. In [28] however, the steady-
state error for first-order consensus dynamics is minimized
by convex optimization over the edge-weights. A similar
approach is taken in [16], where the application is vehicle-
platooning. In [33], an optimal sensor placement problem for
consensus problems is formulated, minimizing the H2 gain of
the system. However, these approaches eliminate output errors
if the disturbances are constant only in special cases, as no no
integral control is employed.

Consensus with integral action is studied in [13] for agents
with single-integrator dynamics. It was shown that the pro-
posed controller attenuates constant disturbances. In [31], the
authors take a similar approach to attenuate unknown distur-
bances. In both references the analysis is limited to agents
with single-integrator dynamics. Our proposed PI controller
is related to the consensus controllers in [8], [14]. However,
these references do not consider the influence of disturbances.

C. Main contributions
The main contributions of this paper are threefold. Firstly,

we propose a class of nonlinear consensus protocols where the
input of an agent can be decoupled into a product of a positive
gain function of the agents own state, and a sum of interaction
functions of its neighbors’ relative states. Nonlinear consensus
protocols with double-integrator dynamics and state-dependent
damping are also considered. The equilibria are characterized
for both the first- and second-order nonlinear consensus proto-
col. Secondly, we propose a distributed PI controller for multi-
agent systems with single integrator dynamics and a corre-
sponding controller for agents with damped double-integrator

dynamics. Necessary and sufficient conditions for stability are
derived, given that the controller gains are uniform. Lastly,
we demonstrate some applications of our theoretical results to
satellite control, mobile robots, green buildings and frequency
control of power systems.

D. Outline

The remainder of this paper is organized as follows. In
Section II we introduce four motivating examples, which
illustrate the theoretical results developed later in the paper.
In Section III we define a mathematical model for a class
of distributed control systems, and the considered problem is
stated. In Section IV we analyze the problem of distributed
control for a class of nonlinear control problems. We explicitly
characterize the equilibria by integral equations, and provide
sufficient stability criteria by integral Lyapunov functions. In
section V we analyze the problem of distributed control by
integral action, where we give necessary and sufficient stability
criteria. In Section VI we show the feasibility of the results by
applying them to the examples in Section II. The paper ends
by concluding remarks in Section VII.

II. MOTIVATING APPLICATIONS

A. Thermal energy storage in smart buildings

Thermal energy storage has emerged as a possible method
for energy-efficient temperature regulation in buildings, as
discussed in [32]. By using substances which undergoes a
phase transition near the desired maximum temperature in the
building, the temperature may be kept below the maximal
desired temperature. While the heat capacity of the air in
a building is approximately constant, the total heat capacity
of the room is highly nonlinear due to the thermal energy
storage. The endothermic and exothermic processes of the
phase transitions may be modeled by nonlinear heat capacities,
which take the form of a continuous approximation of a Dirac
delta function at the temperature of the phase transition. The
model fits well with a consensus protocol for agents with
single-integrator dynamics with nonlinear gain and interaction
functions. By a nonlinear extension of Fourier’s law [15], the
room temperatures are thus well-described by the following
nonlinear differential equation

Ṫi = −γi(Ti)
∑
j∈Ni

aij(Ti − Tj), (1)

where Ti is the temperature of room i, aij(Ti − Tj) is
the heat conductivity between room i and j. Here aij(·)
is a nonlinear function ∀(i, j) ∈ E , and 1/γi(Ti) is the
temperature-dependent heat capacity of room i, capturing the
dynamics of the energy storage. It is of interest to determine
the asymptotic temperature in the rooms given their initial
temperatures.

B. Autonomous space satellites

Groups of autonomous space satellites may solve tasks in
space that require coordination. E.g., for a solar power plant
in space, this could involve formation control of mirrors,
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reflecting the sunlight to a solar panel. If the agents are far
away from any fixed reference frame, it may be assumed that
the satellites only have access to their distance and velocity
relative to their neighboring satellites. It is however often
important to analyze the dynamical behavior of the satellites
from a common reference frame, e.g., from the earth. Even
if the control laws are linear in the relative velocities in the
satellites reference frame, they are in general nonlinear in
another reference frame. More specifically, the dynamics of a
group of N satellites are assumed to be governed by Newton’s
second law of motion, resulting in a set of second-order
dynamical systems. The control signal is the power applied
by each agent’s engine, Pi. However, the acceleration in an
inertial reference frame is ai = Pi/|vi| due to Pi = 〈Fi, vi〉,
and the force Fi being parallel to vi, where vi is agent
i’s velocity. We assume that the agents only have access to
relative measurements. The following dynamics describe the
interactions of the satellites
ẋi = vi

v̇i = − 1

|vi|+ c

∑
j∈Ni

[
aij
(
xi − xj

)
+ bij

(
vi − vj

)]
, (2)

where aij(·) and bij(·) are nonlinear interaction functions,
i = 1, . . . n and Ni denotes the neighbor set of satellite i,
and where c is an arbitrarily small constant which ensures the
boundedness of v̇i when vi = 0. Here xi and vi denote the
position and velocity of satellite i. This motivates the anal-
ysis of consensus protocols for agents with double-integrator
dynamics and nonlinear gain and interaction functions.

C. Mobile robot coordination under disturbances
As all control systems, mobile robot systems are susceptible

to disturbances. In general, even constant disturbances cause
a robot formation with only relative position and velocity
measurements to drift. We will consider the particular con-
trol objective of reaching position-consensus. To address the
issues caused by disturbances to the robots, a distributed PI
controller is proposed. We consider robots with the second-
order dynamics and the following controller:

ẋi = vi

v̇i = ui − γvi + di

ui = −
∑
j∈Ni

(
b(xi − xj) + a

∫ t

0

(xi(τ)− xj(τ)) dτ

)
,

(3)

where xi is the position, vi is the velocity. The constants
a, b > 0 are controller parameters, while γ > 0 is a
damping coefficient, and di is a constant disturbance. We will
investigate when distributed PI controllers can attenuate static
disturbances in mobile-robot networks. Furthermore, given the
system-specific damping coefficient γ, we will characterize
under which conditions on a and b asymptotic consensus is
reached.

D. Frequency control of power systems
Power systems are among the largest and most complex

dynamical systems created by mankind [18]. The interconnec-
tivity of power systems poses many challenges when designing

controllers. We model the power system as interconnected
second-order systems, known as the swing equation. The
swing equation has been used, e.g., in studying transient angle
stability of power systems [11] and fault detection in power
systems [26], and is given by

miδ̈i + diδ̇i = −
∑
j∈Ni

kij(δi − δj) + pmi + ui, (4)

where δi is the phase angle of bus i, mi and di are the inertia
and damping coefficient respectively, pmi is the electrical
power load at bus i and ui is the mechanical input power.
The coefficient kij = |Vi||Vj |bij , where |Vi| is the absolute
value of the voltage of bus i, and bij is the susceptance of
the line (i, j). The frequency of the power system is denoted
ωi = δ̇i. Maintaining a steady frequency is one of the major
control problems in power systems. If the frequency is not
kept close to the nominal operational frequency, generation
and utilization equipment may cease to function properly. The
frequency is maintained primarily by automatic generation
control (AGC), which is carried out at different levels. In the
first level, which is carried out locally at each bus, the power
generation is controlled by the deviation from a dynamic
reference frequency. At the second level, which is carried
out by a centralized controller, the reference frequency is
controlled based on the deviation of the frequency from a
reference frequency at a specific location. When communi-
cation is unavailable or limited, a decentralized controller is a
possible alternative. A simple decentralized frequency control
with integral action would take the form:

ui = a(ωref − ωi(t)) + b

∫ t

0

(ωref − ωi(t′)) dt′, (5)

where ωref is the reference frequency. The control objective
is to ensure that the system frequency reaches the nominal
operational frequency, i.e., limt→∞ ωi = ωref ∀i ∈ V.

III. PROBLEM FORMULATION

In this section we formalize the previously mentioned
problems. We introduce a unified mathematical notation which
includes all problems previously described.

A. Notation

Let G be a graph. Denote by V = {1, . . . , n} the vertex
set, and by E = {1, . . . ,m} the edge set of G. Let Ni be the
set of neighboring nodes of node i. Denote by B the vertex-
edge adjacency matrix of G, and let L be its Laplacian matrix.
For undirected graphs it holds that L = BBT . Throughout
this paper we will assume that G is connected, as motivated
by the applications considered. We denote by R−/R+ the
open negative/positive real axis, and by R̄−/R̄+ its closure.
Let C−/C+ denote the open left/right half complex plane,
and C̄−/C̄+ its closure. We will denote the scalar position
of agent i as xi, and its velocity as vi, and collect them
into column vectors x = (x1, . . . , xn)T , v = (v1, . . . , vn)T .
We denote by cn×m a vector or matrix of dimension n ×m
whose elements are all equal to c. In denotes the identity
matrix of dimension n. A function f(·) with domain X



4

is said to be globally Lipschitz (continuous) if there exists
K ∈ R+ : ∀x, y ∈ X :

∥∥f(x)− f(y)
∥∥ ≤ K‖x− y‖.

B. System model

We consider agents endowed with either single-integrator
dynamics

ẋi = di + ui, (6)

or double-integrator dynamics

ẋi = vi

v̇i = di + ui,
(7)

where di is a constant disturbance.

C. Objective

The main objectives of this paper are twofold. Our first
objective is to characterize the stability of nonlinear feedback
protocols, and to determine under which nonlinear feedback
protocols the consensus point of the agents may be determined
a priori, in the absence of disturbances. The second objective
is the design of consensus protocols robust to disturbances.
We will focus on constant but unknown disturbances. In both
cases, the overall objective will be for all agents to converge
to a common state, i.e. limt→∞ xi(t) = x∗ ∀i ∈ V for single-
integrator dynamics, and limt→∞ vi(t) = v∗ ∀i ∈ V for
double-integrator dynamics.

IV. DISTRIBUTED CONTROL WITH STATIC NONLINEAR
FEEDBACK

Although the consensus problem has received tremendous
amounts of attention in the last decade, the vast majority of
the studied consensus protocols are linear. In this section we
define a class of nonlinear consensus algorithms where the
input of each agent can be decoupled into a product of a
nonlinear gain function and a nonlinear interaction function.
We show that several interesting properties of the system arise
due to this coupling. We first study consensus for single-
integrator dynamics by nonlinear protocols in Section IV-A.
In Section IV-B we consider a nonlinear consensus proto-
col for agents with double-integrator dynamics. Finally, in
Section IV-C a nonlinear consensus protocol with nonlinear,
state-dependent damping for agents with double-integrator
dynamics is considered.

A. Consensus for single-integrator dynamics

Consider agents with dynamics (6), where di = 0 ∀i ∈ V ,
and where ui is given by:

ui = −γi(xi)
∑
j∈Ni

aij(xi − xj). (8)

Assumption 1. The gain γi is continuous and 0 < γ ≤
γi(x) ≤ γ̄ ∀i ∈ V, ∀x ∈ R.

Assumption 2. The interaction function aij(·) is Lipschitz
continuous ∀(i, j) ∈ E , and:

1) aij(−y) = −aji(y) ∀(i, j) ∈ E , ∀y ∈ R

2) aij(−y) = −aij(y) ∀(i, j) ∈ E , ∀y ∈ R
3) aij(y) > 0 ∀(i, j) ∈ E , ∀y > 0,

Remark 1. Assumption 2 guarantees that the agents move
in the direction of their neighbors, as well as symmetry in
the flow. A consequence of Assumption 2 is that αij(0) =
0 ∀(i, j) ∈ E , ensuring that any consensus point where xi =
xj ∀i, j ∈ V is an equilibrium.

We are now ready to state the main result of this section.

Theorem 1. Given n agents with dynamics (6) with di =
0 ∀i ∈ V , and ui given by (8), where γi(·) and aij(·) satisfy
Assumptions 1 and 2, respectively, for all i ∈ V and for
all (i, j) ∈ E . Then the agents converge asymptotically to
an agreement point limt→∞ xi(t) = x∗ ∀ i ∈ V , where
x∗ is uniquely determined by the integral equation for any
xi(0) = x0

i , i = 1, . . . , n,∑
i∈V

∫ x0
i

0

1

γi(y)
dy =

∫ x∗

0

∑
i∈V

1

γi(y)
dy, (9)

Proof. The proof is Lyapunov based, and requires finding an
appropriate Lyapunov function, which guarantees convergence
to an equilibrium set. This equilibrium set is then characterized
by a time-invariant function. Such a function is given by
E(x) =

∑
i∈V

∫ xi
0

1/γi(y) dy. Differentiating E(x) with
respect to time yields

Ė(x(t)) = −
[

1

γ1(x1)
, . . . ,

1

γn(xn)

]
Γ(x)Ba(BTx)

= −11×nBa(BTx) = 0,

where Γ(x) = diag([γ1(x1), . . . , γn(xn)]), and a(·) is
taken component-wise. Hence E(x) is time-invariant and the
agreement point x∗, if existing, is given by (9). By Assumption
1, E(x∗1n×1) is strictly increasing in x∗, and hence (9) admits
a unique solution. Now consider the following candidate
Lyapunov function:

V (x) =
∑
i∈V

∫ xi

x∗

y − x∗
γi(y)

dy, (10)

where x∗ is the agreement point given by (9). It can
easily be verified that V (x∗1n×1) = 0. To show that
V (x) > 0 for x 6= x∗1n×1, it suffices to show that∫ xi
x∗

(y − x∗)/γi(y) dy > 0 ∀i ∈ V, ∀x 6= x∗1n×1. Consider
first the case when xi > x∗, where

∫ xi
x∗

(y − x∗)/γi(y) dy =∫ xi−x∗
0

z/γi(z + x∗) dz > 0, by the change of variable
z = y − x∗. The case when xi < x∗ is treated analogously,
where

∫ xi
x∗

(y − x∗)/γi(y) dy =
∫ x∗−xi

0
z/γi(x

∗ − z) dz > 0,
by the change of variable z = x∗ − y. This also implies that
V (x) = 0⇒ x = x∗1n×1. Now consider V̇ (x):

V̇ (x) = −
∑
i∈V

xi − x∗
γi(xi)

γi(xi)
∑
j∈Ni

aij(xi − xj)

= −
∑
i∈V

xi
∑
j∈Ni

aij(xi − xj) +
∑
i∈V

x∗
∑
j∈Ni

aij(xi − xj).

(11)

Due to the symmetry property in Assumption 2, the first
term of (11) may be rewritten as

∑
i∈V xi

∑
j∈Ni aij(xi −
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xj) =
∑
i∈V

∑
j∈Ni xiaij(xi − xj) = 1

2

∑
i∈V

∑
j∈Ni(xi −

xj)aij(xi − xj). Clearly the second term of (11) sat-
isfies

∑
i∈V x

∗∑
j∈Ni aij(xi − xj) = 0 due to As-

sumption 2. Hence, V̇ (x) may be rewritten as V̇ (x) =
− 1

2

∑
i∈V

∑
j∈Ni(xi − xj)aij(xi − xj) < 0, unless xi =

xj ∀i, j ∈ V . Therefore the agents converge to xi = x∗ ∀i ∈
V .

Remark 2. The agreement protocol (8) has a physical in-
terpretation. If we consider the smart building problem in
Section II-A, and let xi be the temperature of the rooms,
1/γi(xi) is the temperature-dependent heat capacity of the
nodes. Analogously, aij(·) is the thermal conductivity of the
walls between rooms i and j, being dependent on the tem-
perature gradient between the rooms. The invariant quantity
E(x) =

∑
i∈V

∫ xi
0

1/γi(y) dy is the total stored thermal
energy.

Remark 3. The convergence of the dynamics (6), and the
control (8) were proven in [27]. However, as opposed to that
reference, we characterize here explicitly the equilibrium set.
This gives a priori knowledge about the point of convergence.
Furthermore, in [27], the convergence was studied with a
Lyapunov function consisting of the difference of the maximal
and minimal state, as opposed to the Lyapunov function
consisting of integral equations used in our proof. This new
Lyapunov function facilitates the proof by not relying on non-
smooth analysis.

B. Consensus for double-integrator dynamics

Consider agents with double-integrator dynamics (7), where
di = 0 ∀i ∈ V , with ui given by

ui = −γi(vi)
∑
j∈Ni

[
aij
(
xi − xj

)
+ bij

(
vi − vj

)]
. (12)

We show that under mild conditions, the controller (12)
achieves asymptotic consensus. The following Theorem gen-
eralizes the literature on linear second-order consensus as in
[24], by extending the analysis of linear gains and interaction
functions to nonlinear ones. The nonlinear analysis covers a
much richer class of control inputs than the corresponding
linear analysis, and we are again able to explicitly characterize
the equilibrium set. By using an integral Lyapunov function,
we are thus able to prove that the agents reach consensus for
the nonlinear consensus protocol also in the case of double-
integrator dynamics.

Theorem 2. Consider agents with dynamics (7), with di =
0 ∀i ∈ V , and ui given by (12), where aij(·) and γi(·)
satisfy Assumptions 1 and 2, and bij(·) satisfies Assumption
2, replacing aij with bij , for all i ∈ V and for all (i, j) ∈ E ,
respectively. The agents achieve consensus with respect to x
and v, i.e., |xi−xj | → 0, |vi−vj | → 0 ∀i, j ∈ G as t→∞ for
any initial condition (x(0), v(0)). Furthermore, the velocities
converge to limt→∞ vi(t) = v∗ ∀ i ∈ V , uniquely determined
by ∑

i∈V

∫ v0i

0

1

γi(y)
dy =

∫ v∗

0

∑
i∈V

1

γi(y)
dy. (13)

Proof. The convergence analysis relies on Lyapunov tech-
niques. For characterizing the equilibrium set, a time-invariant
function is introduced. We write (12) in vector form as

ẋ = v

v̇ = −Γ(v)
[
Ba(x̄) + Bb(BT v)

]
,

where x̄ = BTx, and a(·) and b(·) are taken component-wise,
and
Γ(x) = diag([γ1(x1), . . . , γn(xn)]). Consider now the follow-
ing candidate Lyapunov function, also used in [21], however
in another context,

V (x̄, v) =
∑
i∈V

(∫ vi

v∗

(y−v∗)
γi(y)

dy

)
+
∑

(i,j)∈E

∫ x̄ij

0

aij(y) dy.

Here v∗ is the common velocity of the agents at the equilib-
rium, which we will show is given by (13). It is straightforward
to verify that V ([01×m, v∗11×n]T ) = 0. By following the
proof of the positive semi-definiteness of V (x) in the proof of
Theorem 1, replacing xi and x∗ with vi and v∗, respectively,
the positive semi-definiteness of

∑
i∈V(

∫ vi
v∗

(y−v∗)/γi(y) dy)
follows. For showing the positive semi-definiteness of the sec-
ond term of V (x̄, v), it suffices to show that

∫ x̄ij
0

aij(y) dy >
0 ∀(i, j) ∈ E . For x̄ij > 0, this inequality clearly holds.
When x̄ij < 0 we have

∫ x̄ij
0

aij(y) dy = −
∫ 0

x̄ij
aij(y) dy =∫ 0

x̄ij
aji(−y) dy > 0. We may write V (x̄, v) in vector form as

V (x̄, v) =
∫ x̄

0
11×nBTa(y) dy +

∫ v
v∗1n×1

ỹTΓ−1(y)1n×1 dy,

where ỹ = [y1−v∗, . . ., yn−v∗]T . Differentiating V (x̄, v) with
respect to time yields:

V̇ = a(x̄)TBT v−(v − v∗1n×1)TB
[
a(x̄) + b(BT v)

]
= −vTBb(BT v) + v∗11×nBb(BT v) = −vTBb(BT v) ≤ 0

due to Assumption 2, with equality if and only if BT v =
0. We now invoke LaSalle’s invariance principle to show
that the agreement point satisfies v̇ = 0. The subspace
where V̇ (x̄, v) = 0 is given by S1 =

{
(x̄, v)|v = c1n×1

}
.

We note that on S1, v̇ = −Γ(v)
[
Ba(x̄) + Bb(BT v)

]
=

−Γ(v)Ba(x̄) 6= k(t)1n×1. To see this, suppose that v̇(t) =
−Γ(v)Ba(x̄) = k(t)1n×1 ⇔ Ba(x̄) = Γ−1(v)k(t)1n×1,
where k(t) 6= 0∀t. Premultiplying the above equation with
11×n yields 0 = 11×nBa(x̄) = k(t)11×nΓ−1(v)1n×1 6= 0,
which is a contradiction since k(t) 6= 0∀t by assumption.
Hence the only trajectories contained in S1 are those where
v = v∗1n×1, v̇ = 0. It can also be shown that no trajectories
where x̄ 6= 0 are contained in S1. Assume for the sake of
contradiction that x̄ 6= 0 in S1. Let i− = minj∈V xj s.t. ∃k ∈
Ni− : xk > xi− . It is clear that such an i− exists, since
otherwise x̄ = 0. Consequently

v̇i− = −γi−(vi−)
∑
j∈Ni−

[
ai−j

(
xi− − xj

)
+ bij

(
vi− − vj

)]
= −γi−(vi−)

∑
j∈Ni−

[
ai−j

(
xi− − xj

)]
> −γi−(vi−)ai−k (xi− − xk) > 0,

by the assumption that xk > xi− . Thus, any trajectory
in S1 where x̄ 6= 0 cannot remain in S1, implying that



6

|xi−xj | → 0, |vi−vj | → 0 ∀i, j ∈ G as t → ∞ and
furthermore v̇(t) = 0n×1. Next we show that p(v) =∑
i∈V

∫ vi
0

1/γi(y) dy =
∫ v

0
11×nΓ−1(v)1n×1 dy is invariant

under (12). Consider:

ṗ(v(t)) = −11×nΓ−1(v)Γ(v)
[
Ba(x̄) + Bb(BT v)

]
= −11×nBa(x̄)− 11×nBb(BT v) = 0.

Thus we conclude that limt→∞ x(t) = x∗(t)1n×1 and
limt→∞ v(t) = v∗1n×1 with v∗ given by (13). The existence
and uniqueness of the solution to (13) follows from Assump-
tion 1, and by the proof of Theorem 1, replacing xi and x∗

with vi and v∗, respectively.

Remark 4. Theorem 2 has a physical interpretation. If we
regard 1/γi(vi) as the velocity-dependent mass of agent i,
e.g., due to the agents’ masses scaling with the Lorentz
factor 1/

√
1− v2

i /v
2
c , where vc is the speed of light, then the

invariant quantity p(v) =
∑
i∈V

∫ vi
0

1/γi(y) dy is the total
(relativistic) momentum of the mechanical system.

C. Consensus for double-integrator dynamics with state-
dependent damping

Consider agents with double-integrator dynamics (7), where
di = 0 ∀i ∈ V , with ui given by:

ui = −κi(xi)vi −
∑
j∈Ni

aij(xi − xj). (14)

The following theorem generalizes the results in [29] to
also include nonlinear state-dependent damping, as well as
nonlinear interaction functions. With this framework, we are
able to generalize the simple average consensus to a much
broader class of consensus functions.

Theorem 3. Consider agents with dynamics (7) and ui given
by (14), where κi(·) satisfies Assumption 1, replacing γi with
κi , and aij(·) satisfies Assumption 2 for all i ∈ V and
for all (i, j) ∈ E , respectively. Furthermore, the interaction
functions aij(·) satisfy limx→∞

∫ x
0
aij(y)dy = ∞ ∀(i, j) ∈ E

1. Then the agents converge to a common point for any initial
position xi(0). Furthermore, the consensus point is uniquely
determined by∑

i∈V

(∫ x0
i

0

κi(y) dy + vi(0)
)

=

∫ x∗

0

∑
i∈V

κi(y) dy. (15)

Proof. The proof of convergence also relies on Lyapunov tech-
niques, and LaSalle’s invariance principle. A time-invariant
function is introduced to characterize the equilibrium set. This
function is given by E(x, v) =

∑
i∈V

(∫ xi
0
κi(y) dy + vi

)
.

Differentiating E(x, v) along trajectories of (14) yields
Ė(x, v) = −∑i∈V

∑
j∈Ni aij(xi − xj) = 0, by Assumption

2. We first note that by Assumptions 1 and 2, a unique
continuous solution of (7) with ui given by (14) exists for all
t ≥ 0. Consider the candidate Lyapunov function V (x, v) =

1We would like to thank the anonymous reviewer for pointing out the
necessity of this condition.

∑
i∈V [v2

i /2 +
∑
j∈Ni

∫ xi−xj
0

aij(y)dy] ≥ 0. Differentiating
V (x, v) along trajectories of (14) yields

V̇ (x, v) =
∑
i∈V

vi
(
−κi(xi)vi−

∑
j∈Ni

aij(xi−xj)
)

+
∑
i∈V

( ∑
j∈Ni

aij(xi−xj)
)
vi = −

∑
i∈V

κi(xi)v
2
i ≤ 0.

Since V (x, v) is non-increasing under the dynamics (14),
it is clear that for Ω = {[x(t), v(t)] : V (x, v) ≤ V (x0, v0)},
it holds that [x̄(t), v(t)] ∈ Ω ∀t ≥ 0, where x̄ = BTx and
x0 = x(0), v0 = v(0). Clearly Ω is compact. The following
lemma is needed to use LaSalle’s invariance principle.

Lemma 4. Given the requirements in Theorem 3, [x(t), v(t)]
evolve in a compact set, denoted Ω′.

Proof. See Appendix.

Now let H = {(x, y)|V̇ (x, v) = 0} = {(x, y)|v = 0}.
Consider any trajectory of (14) with x 6= x∗(t)1n×1. By
(14) and the assumption that G is connected, v̇i 6= 0 for at
least one index i. Thus the largest invariant manifold of E is
{(x, v)|x = x∗1n×1, v = 0}. Since Ω′ by Lemma 4 is compact
and positively invariant, then by LaSalle’s invariance principle,
the agents converge to a common point xi = x∗ ∀i ∈ G, with
vi = 0 ∀i ∈ G.

It remains to show that the common point to which the
agents converge to is the point given by (15), and that the
solution is unique. Indeed, consider again the function E(x, v).
Since Ė(x, v) = 0, and the agents converge to a point x∗ with
vi = 0 ∀i ∈ V . It follows that x∗ is given by (15). Since
κi(y) > 0 by assumption, (15) admits a unique solution.

The following corollary follows directly from Theorem 3.

Corollary 5. Given n agents starting from rest, i.e., vi(0) =
0 ∀i ∈ V , with dynamics (7), where ui is given by (14), the
agents converge to a common point x∗ for any initial position
xi(0), which is uniquely determined by∑

i∈V

∫ x0
i

0

κi(y) dy =

∫ x∗

0

∑
i∈V

κi(y) dy. (16)

Remark 5. In Theorem 1, x∗ is given by∑
i∈V

∫ x0
i

0
1/γi(y) dy =

∫ x∗
0

∑
i∈V 1/γi(y) dy, as opposed to

(16) in Corollary 5. The intuition behind this is that in (8),
γi(xi) acts as a gain of agent i, where an increased γi(xi)
will increase the speed of agent i. In (14) however, κi(xi)
acts as damping of agent i, where an increased κi(xi) will
decrease the speed of agent i.

V. DISTRIBUTED CONTROL WITH INTEGRAL ACTION

Multi-agent systems are, like most control processes, sensi-
tive to disturbances. Generally, static distributed control pro-
tocols, such as e.g., P-controllers, cannot reject even constant
disturbances. In this section we propose a control protocol
for single- and double-integrator dynamics that drives the
agents to a common state under static disturbances. By using
distributed integral action, we are able to compensate for
the disturbances in a distributed setting. Moreover, with the
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proposed control algorithm, the agents reach the average of
their initial positions for arbitrary initial velocities in the
absence of disturbances. We study the properties of the control
protocols and derive necessary and sufficient conditions under
which the multi-agent system is stable.

A. Consensus by distributed integral action for single-
integrator dynamics with damping

Consider agents with single-integrator dynamics (6), with
ui given by:

ui = −
∑
j∈Ni

(
b(xi − xj) + a

∫ t

0

(xi(τ)−xj(τ)) dτ

)
− δ(xi − xi(0))

(17)

where a ∈ R+, b ∈ R+, δ ∈ R̄+ are fixed parameters, and
di ∈ R is an unknown disturbance.

Theorem 6. Under the dynamics (17), with ui given by (17),
the agents converge to a common value x∗ for any constant
disturbance di and any initial condition. If di = 0 ∀i ∈ V , the
agents converge to x∗ = 1

n

∑
i∈V xi(0) given vi(0) ∀i ∈ V .

If absolute position measurements are not present, i.e., δ = 0,
it still holds that limt→∞ |xi(t) − xj(t)| = 0 ∀i, j ∈ V for
any di ∈ R, a, b ∈ R+, while the absolute states diverge, i.e.,
limt→∞ |xi(t)| =∞ ∀i ∈ V , unless 11×nd = 0.

Proof. First consider the case when δ = 0 and di = 0 ∀i ∈ V .
By introducing the integral states z = [z1, . . . , zn]T we may
rewrite the dynamics (17) in vector form as[

ż
ẋ

]
=
[

0n×n In
−aL −bL

]
︸ ︷︷ ︸

,A

[ zx ] , (18)

together with the initial condition z(0) = 0n×1. By elementary
column operations we note that the characteristic equation of
A is given by 0 = det

(
(a+ bs)L+ s2In

)
. By comparing

the characteristic polynomial with the characteristic equation
of L, being 0 = det (L − κIn), with solutions κ = λi ≥ 0,
we obtain the equation 0 = s2 + λibs + λia. This equation
has a double root s = 0 if λi = 0, and the remaining
solutions s ∈ C− if λi > 0. Since the above equation has
exactly two solutions for every λi, it follows that the algebraic
multiplicity of the eigenvalue 0 must be equal to two. It is
well-known that for connected graphs G, λ1 is the only zero-
eigenvalue of the Laplacian L. By straightforward calculations
we obtain that e1 = [11×n, 01×n]T is an eigenvector and
e2 = [01×n, 11×n]T is a generalized eigenvector of A
corresponding to the eigenvalue 0. It can also be verified
that v1 = 1

n [11×n, 01×n] and v2 = 1
n [01×n, 11×n] are

a left eigenvector and a generalized left eigenvector of A,
respectively, corresponding to the eigenvalue 0. It is easily
verified that v1e1 = 1, v2e2 = 1 and v2e1 = 0, v1e2 = 0. If
we let P be a matrix consisting of the normalized eigenvectors
of A, we can chose the first columns of P to be e1 and e2,
and the first rows of P−1 to be v1 and v2, respectively. Since
all remaining eigenvalues of A have strictly negative real part

we obtain

lim
t→∞

eAt= lim
t→∞

PeJtP−1

= P lim
t→∞

[
1 t 01×(2n−2)

0 1 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 eJ
′t

]
P−1

= lim
t→∞

1

n

[
1n×n t1n×n
0n×n 1n×n

]
,

where J is a Jordan matrix. Thus, given an initial position
x(0) = x0, we obtain limt→∞ xi(t) = 1

n

∑
i∈V x0,i ∀ i ∈ V ,

i.e., the agents converge to the average of their initial positions.
We now consider the case where δ = 0 and di 6= 0 for at

least one i ∈ V . Define the output

[ yx ] = [ 0m×n BT ] [ zx ] ,

and consider the linear coordinate change:

x = [ 1√
n

1n×1 S ]u u =
[

1√
n

11×n

ST

]
x

z = [ 1√
n

1n×1 S ]w w =
[

1√
n

11×n

ST

]
z

(19)

where S is a matrix such that [ 1√
n

1n×1, S] is an orthonormal
matrix. In the new coordinates, the system dynamics become:

ẇ = u

u̇ =
[

0 01×(n−1)

0(n−1)×1 −aSTLS

]
w +

[
0 01×(n−1)

0(n−1)×1 −bSTLS

]
u (20)

+
[

1√
n

11×n

ST

]
d.

We note that the states u1 and w1 are both unobservable and
uncontrollable. We thus omit these states to obtain a minimal
realization by defining the new coordinates u′ = [u2, . . . , un]T

and w′ = [w2, . . . , wn]T , thus obtaining the system dynamics[
ẇ′

u̇′

]
=
[

0(n−1)×(n−1) I(n−1)

−aSTLS −bSTLS

] [
w′

u′

]
+
[

0(n−1)×1

ST d

]
.

Clearly xTSTLSx ≥ 0, with equality only if Sx = k1n×1.
However, since [ 1√

n
1n×1, S] is orthonormal, 11×nSx =

01×nx = 0 = k11×n1n×1 = kn, which implies k = 0. Hence
STLS is positive definite and thus invertible, and we may
define [

w′′

u′′

]
=
[
w′

u′

]
−
[

1
a (STLS)−1ST d

0(n−1)×1

]
.

It is easily verified that the origin is the only equilibrium of
the system dynamics, which in the new coordinates are given
by [

ẇ′′

u̇′′

]
=
[

0(n−1)×(n−1) I(n−1)

−aSTLS −bSTLS

]
︸ ︷︷ ︸

,A

[
w′′

u′′

]
.

By elementary column operations, the characteristic polyno-
mial in κ of A is given by det(κ2I(n−1) +(bκ+a)STLS). By
comparing this polynomial with the characteristic polynomial
det(sI + STLS), which since STLS is positive definite has
solutions −si < 0, we know that the eigenvalues of A
must satisfy κ2 + sibκ + sia = 0, with solutions κ ∈ C−.
Thus A is Hurwitz. From the dynamics (20), it is clear
that u̇1 = 1√

n
11×nd. Hence limt→∞ u1(t) = ±∞ unless

11×nd = 0. Since u′ is bounded, by the coordinate change
(19), x is bounded iff 11×nd = 0.
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Now consider the case where δ > 0 and di = 0 ∀i ∈ V .
The dynamics can be written as:[

ż
ẋ

]
=
[

0n×n In
−aL −bL−δI

]
[ zx ] +

[
0n×1

δx(0)

]
. (21)

Define the output of the system

[ yx ] = [ 0m×n BT ] [ zx ] ,

and consider the linear coordinate change:

z = [ 1√
n

1n×1 S ]w w =
[

1√
n

11×n

ST

]
z, (22)

where S is a matrix such that [ 1√
n

1n×1, S] is an orthonormal
matrix. In the new coordinates, the system dynamics (21)
become:

[
ẇ
ẋ

]
=

[
0n×n

[
1√
n

11×n

ST

]
[ 0n×1 −aLS ] −bL−δI

]
[wx ] +

[
0n×1

δx(0)

]
.

We note that the state w1 is unobservable and uncontrollable.
We thus omit this state to obtain a minimal realization by
defining the new coordinates w′ = [w2, . . . , wn]T , thus ob-
taining the system dynamics[

ẇ′

ẋ

]
=
[

0(n−1)×(n−1) ST

−aLS −bL−δIn

]
︸ ︷︷ ︸

,A

[
w′

x

]
+
[

0n×1

δx(0)

]
. (23)

By elementary column operations, the char-
acteristic polynomial of A may be written as
0 = det

(
s2In + s(bL+ δIn) + aLSST

)
, det(Q(s)).

For a given s ∈ C, the previous equation has a solution
only if xTQ(s)x = 0 for some x satisfying xTx = 1. This
equation becomes

0 = s2 xTx︸︷︷︸
a2

+s xT (bL+ δIn)x︸ ︷︷ ︸
a1

+ axTLSSTx︸ ︷︷ ︸
a0

.

By the Routh-Hurwitz stability criterion, the above equation
has all its solutions s ∈ C− if and only if ai > 0 for
i = 0, 1, 2. Clearly a2 = 1 by definition, while a1 > 0 by
the positive definiteness of L + δIn. It is easily shown that
SST = In−1/n1n×n, by the orthonormality of [ 1√

n
1n×1, S].

This implies that LSST = L, implying that a0 ≥ 0.
If a0 > 0, all solutions are stable, whereas if a0 = 0,
s = 0 is also a solution. Thus, any eigenvalue of A must
be either zero, or have negative real part. However, it is easily
verified that A is full rank. Thus 0 cannot be an eigenvalue
of A, implying that A is Hurwitz. The first n − 1 rows
of the equilibrium of (23) imply STx = 0(n−1)×1, which
implies x = x∗1n×1. Finally, the last n rows of (23) imply
11×n

(
−aLSw′ − bLx∗1n×1 − δx∗1n×1 + δx(0)

)
= 0, so

nx∗ =
∑
i∈V xi(0)

The case when δ > 0 and di 6= 0 for at least one i ∈ V is
analogous to the case when δ = 0 and di 6= 0, and the proof
is thus omitted.

B. Consensus by distributed integral action for double-
integrator dynamics with damping

Consider agents with double-integrator dynamics (7), with
input given by the velocity-damped PI-controller:

ui = −
∑
j∈Ni

(
b(xi−xj) + a

∫ t

0

(xi(τ)−xj(τ)) dτ

)
− γvi − δ(xi−x0

i )

(24)

where a ∈ R+, b ∈ R+, γ ∈ R+, δ ∈ R+ and di ∈ R
is an unknown scalar disturbance. The above protocol does
not require communication of the integral state between the
agents, as it suffices for each agent to measure its neighbors’
states and integrate the relative differences.

Theorem 7. Under the dynamics (7) with ui given by (24),
the agents converge to a common value x∗ for any constant
disturbance di, provided that a < bγ. If di = 0 ∀i ∈ V , the
agents converge to x∗ = 1

n

∑
i∈V xi(0) for arbitrary vi(0). If

absolute position measurements are not present, i.e., δ = 0,
it still holds that limt→∞ |xi(t) − xj(t)| = 0 ∀i, j ∈ V for
any set of disturbances di. However the absolute states are in
general unbounded, i.e., limt→∞ |xi(t)| = ∞ ∀i ∈ V , unless
11×nd = 0. Also, in this case the system is stable if and only
if a < bγ.

Proof. The proof follows the same principle ideas as the
proof of Theorem 6. However, as second-order dynamics are
considered, the problem is inherently different from first-
order dynamics. First consider the case where δ = 0. Let
also di = 0 ∀i ∈ V . By introducing the state vector
z = [z1, . . . , zn]T we may rewrite the dynamics as:[

ż
ẋ
v̇

]
=

[
0n×n In 0n×n
0n×n 0n×n In
−aL −bL −γIn

]
︸ ︷︷ ︸

,A

[
z
x
v

]
,

together with the additional initial condition z(0) = 0n×1.
By elementary column operations it is easily shown that
the characteristic polynomial of A can be written as 0 =
det((a + bs)L + s2(s + γ)I), where I is the identity matrix
of appropriate dimensions. Comparing the above equation
with the characteristic polynomial of L, we get that 0 =
s3 + γs2 + λibs + λia, where λi is an eigenvalue of L. If
λi > 0, the above equation has all its solutions s ∈ C− if and
only if a < bγ, and a, b, γ > 0 by the Routh-Hurwitz stability
criterion. Since G by assumption is connected, λ1 = 0 and
λi > 0 ∀i = 2, . . . , n. For λ1 = 0, the above equation has
the solutions s = 0, s = −γ. By straightforward calculations
it can be shown that e1

1 = [11×n, 01×n, 01×n]T and e2
1 =

[01×n, 11×n, 01×n]T are an eigenvector and a generalized
eigenvector of A, respectively, corresponding to the eigenvalue
0. Furthermore v1 = 1/(γ2n)[γ211×n, 01×n, −11×n] and
v2 = 1/(γn)[01×n, γ11×n, 11×n] are a generalized left
eigenvector and a left eigenvector of A corresponding to
the eigenvalue 0. Furthermore v1e

1
1 = 1, v2e

2
1 = 1 and

v2e
1
1 = 0, v1e

2
1 = 0. Hence the first columns of P can be

chosen as e1
1 and e2

1, and the first rows of P−1 can be chosen
to be v1 and v2. Since all other eigenvalues of A have strictly
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negative real part we obtain

lim
t→∞

eAt = lim
t→∞

PeJtP−1

= P lim
t→∞

[
1 t 01×(3n−2)

0 1 01×(3n−2)

0(3n−2)×1 0(3n−2)×1 eJ
′t

]
P−1

= lim
t→∞

P

[
1 t 01×(3n−2)

0 1 01×(3n−2)

0(3n−2)×1 0(3n−2)×1 0(3n−2)×(3n−2)

]
P−1

= lim
t→∞

1

n

[
1n×n t1n×n

tγ−1

γ2
1n×n

0n×n 1n×n
1
γ 1n×n

0n×n 0n×n 0n×n

]
where J is a Jordan matrix. Given any initial position x(0) =
x0, z(0) = 0n×1, v(0) = v0, we obtain limt→∞ xi(t) =
1
n

∑
i∈V x0,i + 1

γn

∑
i∈V v0,i ∀ i ∈ V .

Now let us turn our attention to the case where δ > 0 and
di 6= 0 for at least one i ∈ V . We define the output of the
system as [ yx

yv

]
=

[
0m×n BT 0m×n

0m×n 0m×n BT

] [
z
x
v

]
,

and consider the same linear coordinate change of z, x and v
as applied to z and x in the proof of Theorem 6. In the new
coordinates the system dynamics are

ż′ = x′

ẋ′ = v′

v̇′ =
[

0 01×(n−1)

0(n−1)×1 −aSTLS

]
z′ +

[
0 01×(n−1)

0(n−1)×1 −bSTLS

]
x′

− γv′ +
[

1
n 11×(n)

ST

]
d.

(25)

We note that the states z′1, x′1 and v′1 are unobservable
and uncontrollable. We thus omit these states to obtain a
minimal realization by defining the new coordinates z′′ =
[z′2, . . . , z

′
n]T , x′′ = [x′2, . . . , x

′
n]T and v′′ = [v′2, . . . , v

′
n]T

we obtain the system dynamics[
ż′′

ẋ′′

v̇′′

]
=

[
0(n−1)2 I(n−1)2 0(n−1)2

0(n−1)2 0(n−1)2 I(n−1)2

−aSTLS −bSTLS −γI(n−1)2

]
︸ ︷︷ ︸

,A′

[
z′′

x′′

v′′

]
+

[
0(n−1)×1

0(n−1)×1

ST d

]
.

We now shift the state space by defining[
z(3)

x(3)

v(3)

]
=

[
z′′

x′′

v′′

]
−
[

1
a (STLS)−1ST d

0(n−1)×1

0(n−1)×1

]
.

It is easily verified that the origin is the only equilibrium
of the system dynamics, and that the stability in the new
coordinates is characterized by the matrix A′. By a similar
argument used when showing that A has eigenvalues with
non-positive real part, we may show that A′ has eigenvalues
with non-positive real part. But since STLS is full-rank,
A′ must also be full-rank, and hence A′ is Hurwitz. Thus
limt→∞ x(3) = limt→∞ x′′ = 0(n−1)×1, which implies that
limt→∞ |xi(t) − xj(t)| = 0 ∀i, j ∈ V , even in the presence
of disturbances di. It is also clear that whenever a ≥ bγ,
at least one eigenvalue will have non-negative real part, and
that its (generalized) eigenvector will be distinct from e1 and
e2. From the dynamics (25), it is clear that ẋ′1 = 1

n11×nd.
Hence limt→∞ x′1(t) = ±∞ unless 11×nd = 0. Since x′′ is

bounded, by the coordinate change (19), x is bounded if and
only if 11×nd = 0.

The stability analysis of the case when δ > 0 is analogous
to the corresponding part of the proof of Theorem 6, and hence
omitted. If di = 0 ∀i ∈ V , stationarity of v(t) implies:
limt→∞ 11×n

(
−aLz − bLx− δx+ δx(0)− γv

)
= 0, so

nx∗ =
∑
i∈V xi(0).

VI. MOTIVATING APPLICATIONS REVISITED

A. Thermal energy storage in smart buildings

We here return to the example of thermal energy storage
in smart buildings, introduced in Section II-A. Recall that the
temperatures dynamics in the rooms can be described by (1).

The heat conductivity a is assumed to be constant and
uniform, implying aij(x) = ax ∀(i, j) ∈ E , where
a = 0.5W/◦C. Consider the floor topology in Figure 1.
Let the desired maximum temperature be given by tb =
23◦C. The heat capacity is assumed to be given by Fig-
ure 2 for i ∈ {Room 2,Room 5} due to thermal en-
ergy storage installations, and 1/γi(T ) = 50kJ/◦C for
i ∈ {Room 1,Room 3,Room 4,Room 6,Corridor} where no
thermal energy storage is installed. The initial temperatures
was assumed to be 29◦C for room 6, 24◦C for room 1,
22◦C for the corridor and 20◦C for the other rooms. The
temperatures as a function of time are shown in Figure 2
for given initial temperatures. We note that the temperature in
room 2 and 5 never exceeds the desired maximum temperature
tb = 23◦C due to the thermal energy storage, and that the
temperatures converge to a temperature below tb in all rooms,
in accordance with Theorem 1.

B. Autonomous space satellites

Consider a group of autonomous space satellites with uni-
tary masses. The satellites are denoted as 1, . . . , 5, and their
communication topology is given by the undirected graph in
Figure 1. The objective is to reach consensus in one dimension
by a distributed control law using only relative position and
velocity measurements. The raw control signal is the power
applied to the agent’s engine, Pi. However, the acceleration in
an inertial reference frame is ai = Pi/|vi| due to Pi = 〈Fi, vi〉
and Pi being parallel to the agent’s velocity vi. We assume
that the agents only have access to relative measurements, and
hence are unaware of their absolute positions. Assuming that
ai = Pi/(|vi|+ c), c > 0, to ensure that the accelerations
remain bounded, this scenario can be modelled by (12). This
is clearly a special case of the dynamics (7) with ui given by
(12). The interaction functions in this example are chosen to be
aij(y) = 2bij(y) = 20(e|y| − 1) sgn (y) ∀(i, j) ∈ E , which
satisfies Assumption 2. It is clear that this situation cannot
be modelled by any previously proposed linear consensus
protocols. Figure 3 shows the state trajectories for different
initial conditions. As predicted by Theorem 2, consensus is
reached, and the final consensus velocity, as seen from an
observer, can be calculated by (15).
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Figure 1. The leftmost figure illustrates the floor topology. The rightmost figure shows the communication topology of the space satellites.
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Figure 3. The leftmost figure shows the positions of the satellites for the initial conditions x(0) = [−4, 0, 3,−1,−5]T , v(0) = [−3,−7, 3,−1, 0]T , while
their velocities.

22 23 24 25
0

500

1,000

1,500

T [◦C]

1/
γ
i(
T
)

[K
J/

◦ C
]

0 100 200 300 400 500
20

22

24

26

28

t

x
(t
)

Room 1
Room 2
Room 3
Room 4
Room 5
Room 6
Corridor

Figure 2. The top figure shows the heat capacities of Room 2 and 5. The
bottom figure shows the temperatures in the building floor.

C. Mobile robot coordination under disturbances

In this section we revisit the example of mobile robots from
Section II-C. The dynamics of the robots are given by (3). Let
the damping coefficient be given by γ = 3, and the static gain
b = 5. We consider the system with a constant disturbance

d = [1, 0, 0, 0, 0]T , and for the different integral gains a =
0, a = 1, and a = 15. The initial conditions are given by
x(0) = [5,−6, 8, 4, 5]T , v(0) = [0, 0, 0, 0, 0]T . The setup we
will consider consists of a string of 5 mobile robots, whose
communication topology is a string graph.

By Theorem 7 stability is guaranteed if and only if a < bγ.
In Figure 4, the state trajectories are shown for different
choices of a. We observe that asymptotic consensus amongst
the mobile robots is only reached for a = 1. For a = 0,
consensus is not reached due to the presence of a static
disturbance. When a = 1, the disturbance is attenuated by the
integrators, and asymptotic consensus is reached. However, as
a is increased to 15 = bγ, the system becomes marginally
stable, i.e., stable but not asymptotically stable. By increasing
a further to 20, the system becomes unstable, in accordance
with Theorem 7.

D. Frequency control of power systems

In this section we demonstrate that a similar protocol to the
one proposed in Section V-B, can be employed for frequency
control of power systems. Let us consider a power system,
whose topology modeled by a graph G = (V, E). Each node,
here referred to as a bus, is assumed to obey the linearized
swing equation (4). By defining δ = [δ1 . . . , δn]T , we may
rewrite (4) as:[

δ̇
ω̇

]
=
[

0n×n In
−MLk −MD

] [
δ
ω

]
+
[

0n×1

Mpm

]
+
[

0n×1

Mu

]
, (26)

where M = diag(1/m1, . . . , 1/mn), D = diag(d1, . . . , dn),
Lk is the weighted Laplacian with edge weights kij , pm =
[pm1 , . . . , p

m
n ]T and u = [ui, . . . , un]T .

1) Centralized PI control: We will here present a a central-
ized frequency control protocol for power systems and analyze
its stability properties. Traditionally, frequency control of a
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Figure 4. The upper left figure shows the state trajectories of (3) when a = 0, the upper right figure shows the state trajectories when a = 1, the lower left
figure shows the state trajectories when a = 15, and the lower right figure shows the state trajectories when a = 20.

power systems is carried out at two levels, see e.g., [18]. In
the first level, the frequency is controlled with a proportional
controller against a dynamic reference frequency. At the sec-
ond level, the dynamic reference frequency is controlled with
a proportional controller to eliminate static errors. We model
the first level, proportional controller of an arbitrary bus i as:

ui = a(ω̂ − ωi) (27)

The second level proportional controller, regulating ω̂ is as-
sumed to be given by:

˙̂ω = b

(
ωref − 1

n

∑
i∈V

ωi

)
, (28)

where we have assumed that the average frequency of the
buses is measured by the central controller2. Note that the
second level controller integrates ω̂, thus acting as an integral
controller. The centralized controller architecture is illustrated
in Figure 5.

Proposition 1. The power system described by (26) where ui
is given by (27)–(28) satisfies limt→∞ ωi(t) = ωref for any set
of initial conditions, given that a, b > 0.

Proof. We may write (26) with u given by (27)–(28) as:[
˙̂ω
δ̇
ω̇

]
=

[
0 01×n − b

n 11×n
0n×1 0n×n In

aM1n×1 −MLk −MD−aM

] [
ω̂
δ
ω

]
+

[
bωref

0n×1

Mpm

]
. (29)

Define the output of the system as

[ yω ] = [ 0n×1 0n×n In ]
[
ω̂
δ
ω

]
,

2In reality the frequency is often measured at a specific bus. This will
typically lead to longer delays, since disturbances need to propagate through
the system before control action can be taken.

and consider the linear coordinate change:

δ = [ 1√
n

1n×1 S ] δ′ δ′ =
[

1√
n

11×n

ST

]
δ (30)

where S is a matrix such that [ 1√
n

1n×1, S] is an orthonormal
matrix. In the new coordinates, the system dynamics (29)
become:[

˙̂ω
δ̇′

ω̇

]
=

 0 01×n − b
n 11×n

0n×1 0n×n

[
1√
n

11×n

ST

]
aM1n×1 [ 0n×1 −MLkS ] −MD−aM

[ ω̂δ′
ω

]
+

[
bωref

0n×1

Mpm

]
.

We note that δ′1 is unobservable, and hence omit this state by
defining δ′′ = [δ′2, . . . , δ

′
n]T . In these coordinates the system

dynamics (29) become:[
˙̂ω
δ̇′′

ω̇

]
=

[
0 01×(n−1) − b

n 11×n

0(n−1)×1 0(n−1)×(n−1) ST

aM1n×1 −MLkS −MD−aM

]
︸ ︷︷ ︸

,A

[
ω̂
δ′′

ω

]
+

[
bωref

0n×1

Mpm

]
.

(31)

By elementary row and column operations, we
may rewrite the characteristic equation of A as
det
(
MLkSST + ab

nM1n×n + s(MD + aM) + s2In

)
= 0.

This equation is equivalent to

det

(
LkSST +

ab

n
1n×n + s(D + aIn) + s2M−1

)
= 0.

(32)

For a given s, this equation has one solution only if
xT (LkSST + ab

n 1n×n + s(D + aIn) + s2M−1)x = 0 has a
solution for some ‖x‖ = 1. Hence, if the previous equation
has all its solutions in C− for all ‖x‖ = 1, then (32) has all
its solutions in C−. By similar arguments used in the proof
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Figure 5. The left figure illustrates the centralized controller, while the right figure illustrates the decentralized controller.

of Theorem 6, we can show that LkSST = Lk. Thus, if the
equation

xT (Lk +
ab

n
1n×n)x︸ ︷︷ ︸

a0

+s xT (D + aIn)x︸ ︷︷ ︸
a1

+s2 xTM−1x︸ ︷︷ ︸
a2

= 0

has all its solutions in C−, then A has only one zero eigen-
value, and all other eigenvalues in C−. By the Routh-Hurwitz
stability criterion, the above equation has all its solutions in
C− iff ai > 0, i = 0, 1, 2. Clearly a0 > 0 since xTLx > 0
for x 6= c1n×1, where c ∈ R, and 1n×n1n×1 6= 0n×1. Also
a1, a2 > 0 since D+aIn and M−1 are diagonal with positive
elements. We conclude thus that A is Hurwitz. Stationarity of
(31) implies ω = ωref1n×1.

2) Decentralized PI control: In this section we analyze a
decentralized frequency controller, where each bus controls
its own frequency based only on local phase and frequency
measurements. Thus, there is no need to send control signals
or reference values to the buses. This controller architecture
might be favorable due to security concerns when sending
unencrypted data over large areas. Another benefit is improved
performance when the tripping of one or several power lines
causes the network to be split up into two or more sub-
networks, so called islanding. The controller of node i is
assumed to be given by (5), here written as

żi = ωi − ωref (33)

ui = a(ωref − ωi)− bzi. (34)

The controller architecture is illustrated in Figure 5. The
decentralized controller (33)–(34) is typically not practically
feasible with only frequency measurements available at the
generation buses. Even the slightest measurement error will be
integrated and cause instability, see, e.g., [18]. However, with
recent advances in phasor measurement unit (PMU) technol-
ogy however, phase measurements are becoming increasingly
available [23]. By integrating (33) we obtain zi = ωreft − δi.
This implies that in order to accurately estimate the integral
state zi, each generator bus needs access only to time and
phase measurements, both provided by PMU’s with high
accuracy.

Proposition 2. The power system described by (26) where ui
is given by (33)–(34) satisfies limt→∞ ωi(t) = ωref for any set
of initial conditions, given that a, b > 0.

Proof. If we consider [BT δ, ω] to be the output, the dynamics
of (26) may be modified as long as the dynamics of [BT δ, ω]
are left unchanged. We thus may rewrite (26) with u given by
(33)–(34) as:[
ż
ω̇

]
=
[

0n×n In
−MLk−bM −MD−aM

]
︸ ︷︷ ︸

,A

[ zω ] +

[
−ωref1n×1

M(pm+aωref1n×1)

]
,

since δ̇− ż = ωref1n×1, implying that δ− z = δ0− tωref1n×1.
Since Lk1n×1 = 0n×1, the output dynamics of the above
equation is equivalent to that of (26) with respect to the output
[BT δ, ω]. By elementary column operations, we may rewrite
the characteristic equation of A as

det
(
s2In + sMD +ML+ bIn

)
= 0⇔

det
(
s2M−1 + sD + L+ bM−1

)
= 0.

(35)

For a given s, the above equation has a solution only if
xT
(
s2M−1 + sD + L+ bM−1

)
x = 0 has a solution. Hence,

if the previous equation has all its solutions in C− for all
‖x‖ = 1, then (35) has all its solutions in C−. Thus, if the
equation

xT (L+ bM−1)x︸ ︷︷ ︸
a0

+s xTDx︸ ︷︷ ︸
a1

+s2 xTM−1x︸ ︷︷ ︸
a2

= 0

has all its solutions in C−, then A is stable. By the Routh-
Hurwitz stability criterion, the above equation has all its
solutions in C− iff ai > 0, i = 0, 1, 2. Clearly a0 > 0
since xTLx > 0 for x 6= c1n×1 for any c ∈ R, and
M−11n×1 6= 0n×1. Also a1, a2 > 0 since D and M−1 are
diagonal with positive elements. We conclude thus that A is
Hurwitz. Now consider the coordinate shift[

z′

ω′

]
= [ zω ]−

[
zo
ωo

]
where

z0 = (bIn + Lk)−1(Dωref1n×1 − pm), ω0 = ωref1n×1.

In the translated coordinates, the origin is the only equilibrium
of the system. Hence limt→∞ ωi(t) = ωref ∀i ∈ V .
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Figure 6. The upper left figure shows the bus frequencies with centralized frequency control, while the lower left figure shows the control signals at all buses.
The upper right figure shows the bus frequencies with decentralized frequency control, while the lower right figure shows the control signals at all buses. The
controller parameters were a = 0.8, b = 0.04, for both the centralized and the decentralized controller.

3) Simulations: The centralized and decentralized fre-
quency controllers were tested on the IEEE 30 bus test system
[1]. The line admittances were extracted from [1] and the
voltages were assumed to be 132 kV for all buses. The values
of M and D were assumed to be given by mi = 105 kg m2

and di = 1 s−1, respectively, ∀i ∈ V . The power system
was assumed to be initially in an operational equilibrium,
until the power load is increased by a step of 200 kW in the
buses 2, 3 and 7. This will immediately result in decreased
frequencies at these buses. The frequency controllers at the
buses will then control the frequencies towards the reference
frequency of ωref = 50 Hz. The controller parameters were
set to a = 0.8, b = 0.04, for both the centralized and the
decentralized controller. The step responses of the frequencies
are plotted in figure 6. We note that for the centralized
PI controller, the generation is increased uniformly among
the generators. If however the integral action is distributed
amongst the generators, some generators will increase their
generation more than others. Figure 7 shows the step response
under the significantly larger integral action, β = 0.8 for both
the centralized and the decentralized controller. We notice that
the step response of the decentralized controller shows better
performance compared to the centralized controller. This is due
to that the centralized controller can only measure the average
frequency in the power system, as opposed to the individual
frequencies which the decentralized controller can measure.

Note that the controller parameters are assumed to be iden-
tical for both the centralized and the decentralized controller.
This might not be restrictive when the generators are homo-
geneous. However, when generators are more heterogeneous,
this might be restrictive.

VII. CONCLUSIONS

In this paper we have studied a class of nonlinear con-
sensus protocols for single and double-integrator dynamics.
Necessary and sufficient conditions for consensus were derived
for static communication topologies under single and double-
integrator dynamics. In all cases, expressions for the con-
vergence points were given. We have also studied consensus
controllers with integral action for agents with single integrator
dynamics and agents with damped double-integrator dynamics.
We proved that with the proposed consensus controllers, the
agents reach asymptotic consensus even in the presence of
constant disturbances. If we allow for absolute position mea-
surements the agents in addition converge asymptotically to a
common state. In the absence of disturbances, the proposed
consensus protocols asymptotically solve the initial average
consensus problem. We have demonstrated by simulations that
the proposed controllers have applications in controlling au-
tonomous satellites in space, control of mobile robots, building
temperature control and frequency control of electrical power
systems.
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APPENDIX

Proof of Lemma 4. Since Ω is compact, the relative states x̄
are bounded. Then clearly x is bounded if and only if the
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average x′ = 1
n

∑
i∈V xi is also bounded, as seen by the

following inequalities

‖x‖∞ < n‖x̄‖∞ + |x′|

|x′| =

∣∣∣∣∣∣ 1n
∑
i∈V

xi

∣∣∣∣∣∣ < 1

n
‖x‖∞ .

Let E0 = E(x0, v0) =
∑
i∈V

(∫ xi
0
κi(y) dy + vi

)
, where

[x0, v0] denotes the initial condition. Since [x̄(t), v(t)] evolve
in the compact set Ω, vi(t) is also bounded. Hence ∀i ∈ V
∃M ∈ R+ : |vi(t)| ≤ M ∀t ≥ 0, ∀i ∈ V . By Assumption 1
κi(x) ≥ κ > 0 ∀i ∈ V, ∀x ∈ R. Using these inequalities
we obtain ∣∣∣∣∣∑

i∈V

∫ xi

0

κi(y) dy

∣∣∣∣∣ ≤ nM + |E0|. (36)

Assume for the sake of contradiction that x′(t) is un-
bounded. Let us consider the case when x′(t) → +∞.
Since x̄ is bounded by say M ′ > 0 in the ∞-norm, and
G is connected, |xi(t)−xj(t)| is bounded by (n − 1)M ′

∀i, j ∈ V . Thus xi(t) > 0 ∀i ∈ V whenever x′(t) >
(n − 1)M ′. Thus, if x′(t) > (n − 1)M ′, we obtain that∑
i∈V

∫ xi
0
κi(y) dy ≥ ∑

i∈V κxi. By assumption, x′(t) is
unbounded, implying that also

∑
i∈V xi(t) is unbounded. Thus

∃t1 :
∑
i∈V xi(t1) > max{1/κ

(
nM + |E0|

)
,M ′}. But this

contradicts (36). Hence x′(t) must be bounded. The cases
when x′(t) → −∞ as well as the case when no limit of
x′(t) exists are treated analogously. We conclude that x must
be bounded, and thus Ω′ is compact by the Heine-Borel
Theorem.
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