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Distributed Event-Triggered Control for Multi-Agent
Systems

Dimos V. Dimarogonas, Emilio Frazzoli and Karl H. Johansson

Abstract—Event-driven strategies for multi-agent systems are moti-
vated by the future use of embedded microprocessors with limited
resources that will gather information and actuate the individual agent
controller updates. The controller updates considered here are event-
driven, depending on the ratio of a certain measurement error with
respect to the norm of a function of the state, and are applied to a first
order agreement problem. A centralized formulation is considered first
and then its distributed counterpart, in which agents require knowledge
only of their neighbors’ states for the controller implementation. The
results are then extended to a self-triggered set-up, where each agent
computes its next update time at the previous one, without having to
keep track of the state error that triggers the actuation between two
consecutive update instants. The results are illustrated through simulation
examples.

I. INTRODUCTION

Distributed control of large scale multi-agent systems is cur-
rently facilitated by recent technological advances on computing
and communication resources. Several results concerning multi-agent
cooperative control have appeared in the recent literature involving
agreement or consensus algorithms [20], [12],[23], formation control
[5], [4], [8], [2] and distributed estimation [21],[25].

An important aspect in the implementation of distributed algo-
rithms is the communication and controller actuation schemes. A
future design may equip each agent with an embedded micro-
processor, which will be responsible for collecting information from
neighboring nodes and actuating the controller updates according to
some rules. The goal of this paper is to provide rules in order to
reduce the number of the actuator updates when this is preferable
for the application in hand. This might be suitable, e.g., in the case
of micro-processors with attached sensors. The scheduling of the
actuator updates can be done in a time- or an event-driven fashion.
The first case involves sampling at pre-specified time instances,
usually separated by a fixed period. When the limited resources of
embedded processors are considered, an event-triggered approach
seems more favorable. In addition, a proper design should also
preserve desired properties of the nominal system, such as stability
and convergence. A comparison of time- and event-driven control
for stochastic systems favoring the latter is found in [3]. Stochastic
event-driven strategies have appeared in [22],[13]. In this paper,
we use the deterministic event-triggered strategy introduced in [26].
Related results on deterministic event-triggered feedback control have
appeared in [29],[28],[11],[18],[1],[15],[10].

In [26], the control actuation is triggered whenever a certain error
becomes large enough with respect to the norm of the state. It is
assumed that the nominal system is Input-to-State stable [24] with
respect to measurement errors. We first show that this framework is
suitable for a class of cooperative control algorithms, namely those
that can be reduced to a first order agreement problem [20], which
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was shown to be ISS [14]. Both the centralized and distributed
cases are considered. We then consider a self-triggered solution to
the multi-agent agreement problem. In particular, each agent now
computes its next update time at the previous one, without having
to keep track of the error measurement that triggers the actuation
between two consecutive updates. The approach is first presented in
a centralized fashion, and then in a distributed one. Self-triggered
control is a natural extension of the event-triggered approach and
has been considered in [1],[29],[18]. In addition, the self-triggered
analysis provides further results regarding the calculation of the inter-
execution times in the distributed event-triggered case.

The resulting model of the system can be transformed to a time-
delay system with varying delays which are different between the
agent and its neighbors. This is in contrast to the first order agreement
time-delayed models with constant delays [19],[16] and the first
order agreement models with varying delays that do not consider
self delay in the agents’ state or consider equal delays between
each agent and its neighbors [17]. Note that in the absence of self-
delays, convergence is guaranteed even for the case of heterogeneous
delays and asynchronous updates [27]. However, self delays are
present in our model. In essence the delayed model resulting from
the decentralized event triggered setup is more general than the
first order agreement models with delays found in literature. On an
equally important sidenote, it should be emphasized that a design
that provides piecewise constant control laws with an event-triggered
mechanism that is the decision maker of when the control law is
updated, seems more applicable to networked multi-agent systems
than an approach that assumes delayed information with continuously
varying control laws and that provides no decision mechanism on
when the sampling should take place.

The remainder is organized as follows: Section II presents some
background and discusses the system model treated in the paper.
The centralized event-triggered control design is discussed in Section
III while Section IV presents the distributed counterpart. The self-
triggered formulation of the frameworks of Sections III and IV is
presented in Section V. Some examples are given in Section VI while
Section VII includes a summary of the results of this paper and
indicates further research directions.

II. BACKGROUND AND SYSTEM MODEL

A. Algebraic Graph Theory

For an undirected graph G with N vertices, the adjacency matrix
A = A(G) = (aij) is the N×N matrix given by aij = 1, if (i, j) ∈
E, where E is the set of edges, and aij = 0, otherwise. If there is an
edge (i, j) ∈ E, then i, j are called adjacent. A path of length r from
a vertex i to a vertex j is a sequence of r+1 distinct vertices starting
with i and ending with j such that consecutive vertices are adjacent.
For i = j, this path is called a cycle. If there is a path between any
two vertices of the graph G, then G is called connected. A connected
graph is called a tree if it contains no cycles. The degree di of vertex i
is defined as the number of its neighboring vertices, i.e. di = card{j :
(i, j) ∈ E}. Let ∆ be the n × n diagonal matrix of di’s. Then ∆
is called the degree matrix of G. The (combinatorial) Laplacian of
G is the symmetric positive semidefinite matrix L = ∆ − A. For
a connected graph, the Laplacian has a single zero eigenvalue and
the corresponding eigenvector is the vector of ones, 1. We denote by
0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λN (G) the eigenvalues of L. If G is
connected, then λ2(G) > 0.

B. System Model

The system considered consists of N agents, with xi ∈ R denoting
the state of agent i. Note that the results of the paper are extendable
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to arbitrary dimensions. We assume that the agents’ dynamics obey
a single integrator model:

ẋi = ui, i ∈ N = {1, . . . , N} (1)

where ui denotes the control input for each agent.
Each agent is assigned a subset Ni ⊂ {1, . . . , N} of the other

agents, called agent i’s communication set, that includes the agents
with which it can communicate. The undirected communication graph
G = {V,E} of the multi-agent team consists of a set of vertices
V = {1, ..., N} indexed by the team members, and a set of edges,
E = {(i, j) ∈ V × V |i ∈ Nj} containing pairs of vertices that
correspond to communicating agents.

The agreement control laws in [9], [20] were given by

ui = −
∑
j∈Ni

(xi − xj) (2)

and the closed-loop equations of the nominal system were ẋi =
−
∑
j∈Ni

(xi − xj), i ∈ {1, . . . , N}, so that ẋ = −Lx, where

x = [x1, . . . , xN ]T is the stack vector of agents’ states and L
is the Laplacian of the communication graph. We also denote by
u = [u1, . . . , uN ]T the stack vector of control inputs. For a connected
graph, all agents’ states converge to a common point, called the
“agreement point”, which coincides with the average 1

N

∑
i

xi(0) of

the initial states.
Note that the model (1),(2) has been shown to capture the behavior

of other multi-agent control problems as well. For example, it was
shown in [8] that a class of formation control problems can be
reduced to a first order agreement one with an appropriate trans-
formation.

The above control formulation is redefined here to integrate event-
triggered strategies. Considering the system (1), both centralized and
distributed event-triggered cooperative control are treated. The control
formulation for each case is described in the following sections.

III. CENTRALIZED APPROACH

We first consider the centralized event-triggered control scheme in
the following paragraphs. The distributed case is treated in the next
section.

For each agent i, and t ≥ 0, introduce a time-varying error
ei(t). Denote the vector e(t) = [e1(t), . . . , eN (t)]T . The sequence
of event-triggered executions is denoted by: t0, t1, . . .. To the se-
quence of events t0, t1, . . . corresponds a sequence of control updates
u(t0), u(t1), . . .. Between control updates the value of the input u
is held constant in a zero-order hold fashion, and is equal to the last
control update, i.e.,:

u(t) = u(ti),∀t ∈ [ti, ti+1) (3)

and thus the control law is piecewise constant between the event
times t0, t1, . . ..

Following the above notation, the state measurement error is
defined by

e(t) = x(ti)− x(t), i = 0, 1, . . . (4)

for t ∈ [ti, ti+1). The event-triggered design involves the choice of
appropriate ti. The proposed control law in the centralized case has
the form (3) and is defined as the event-triggered analog of the ideal
control law (2):

u(t) = −Lx(ti), t ∈ [ti, ti+1) (5)

The closed loop system is then given by ẋ(t) = −Lx(ti) =
−L(x(t) + e(t)). Denote by x̄(t) = 1

N

∑
i

xi(t) the aver-

age of the agents’ states. Given that the graph is undirected,

we have ˙̄x = 1
N

∑
i

ẋi = − 1
N

∑
i

∑
j∈Ni

(xi(t)− xj(t)) −

1
N

∑
i

∑
j∈Ni

(ei(t)− ej(t)) = 0 so that x̄(t) = x̄(0) =
1

N

∑
i

xi(0) ≡

x̄, i.e., the initial average remains constant. A candidate ISS Lyapunov
function for the closed-loop system is: V = 1

2
xTLx. We have

V̇ = xTLẋ = −xTLL(x + e) = −‖Lx‖2 − xTLLe, so that
V̇ ≤ −‖Lx‖2 + ‖Lx‖‖L‖‖e‖. Enforcing e to satisfy

‖e‖ ≤ σ ‖Lx‖‖L‖ (6)

with σ ∈ (0, 1), we get V̇ ≤ (σ − 1) ‖Lx‖2 which is negative for
σ < 1 and ‖Lx‖ 6= 0.

Thus, the events are triggered when:

‖e‖ = σ
‖Lx‖
‖L‖ (7)

The event times are thus defined by ‖e(ti)‖ = σ ‖Lx(ti)‖
‖L‖ = 0, for

i = 0, 1, . . .. At each ti, the control law is updated according to (5):
u(ti) = −Lx(ti), and remains constant, i.e., u(t) = −Lx(ti) for all
t ∈ [ti, ti+1). Once the control task is executed the error is reset to
zero, since at that point we have e(ti) = x(ti) − x(ti) = 0 for the
specific event time so that (6) is enforced.

The following result regarding the convergence of the closed-loop
system is now evident:

Theorem 1: Consider system ẋ = u with the control law (5),(7)
and assume that the communication graph G is connected. Suppose
that 0 < σ < 1. Then all agents are asymptotically stabilized to their
initial average, i.e., limt→∞ xi(t) = x̄ = 1

N

∑
i

xi(0) for all i ∈ N .

Proof : Similarly to [26], since V̇ ≤ (σ − 1) ‖Lx‖2, we have that
limt→∞ Lx(t) = 0. Since G is connected, the latter corresponds
to the fact that all elements of x are equal at steady state, i.e.,
limt→∞ xi(t) = x∗. Since the initial average remains constant we
have x∗ = x̄ = 1

N

∑
i

xi(0) at steady state. ♦

Under the proposed control policy, the inter-event times are lower
bounded away from zero. This is proven in the following theorem:

Theorem 2: Consider system ẋ = u with the control law (5),(7)
and assume that the communication graph G is connected. Suppose
that 0 < σ < 1. Then for any initial condition in RN the inter-event
times {ti+1−ti} implicitly defined by the rule (7) are lower bounded
by a strictly positive time τ which is given by τ =

σ

‖L‖ (1 + σ)
.

Proof : Similarly to [26], we can show that the time derivative of
||e||
||Lx|| satisfies d

dt
‖e‖
‖Lx‖ ≤

(
1 + ‖L‖‖e‖

‖Lx‖

)2

. Denoting y = ‖e‖
‖Lx‖ , we

have ẏ ≤ (1 + ‖L‖y)2, so that y satisfies the bound y(t) ≤ φ (t, φ0)
where φ (t, φ0) is the solution of φ̇ = (1 + ‖L‖φ)2 , φ (0, φ0) = φ0.
Hence the inter-event times are bounded from below by the time τ
that satisfies φ (τ, 0) = σ

‖L‖ . The solution of the above differential
equation is φ (τ, 0) = τ

1−τ‖L‖ , so that τ = σ
‖L‖(1+σ)

, and the proof
is complete. ♦

IV. DISTRIBUTED APPROACH

In the centralized case, all agents have to be aware of the global
measurement error e in order to enforce the condition (6). In this
section, we consider the distributed counterpart. In particular, each
agent now updates its own control input at event times it decides
based on information from its neighboring agents. The event times
for each agent i ∈ N are denoted by ti0, t

i
1, . . .. The measurement

error for agent i is defined as

ei(t) = xi(t
i
k)− xi(t), t ∈ [tik, t

i
k+1) (8)
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The distributed control strategy for agent i is now given by:

ui(t) = −
∑
j∈Ni

(
xi(t

i
k)− xj(tjk′(t))

)
(9)

where k′(t) ∆
= arg min

l∈N:t≥tj
l

{
t− tjl

}
. Thus for each t ∈ [tik, t

i
k+1),

tjk′(t) is the last event time of agent j. Hence, each agent takes into
account the last update value of each of its neighbors in its control
law. The control law for i is updated both at its own event times
ti0, t

i
1, . . ., as well as at the event times of its neighbors tj0, t

j
1, . . . , j ∈

Ni.
Note that this definition of k′ implies xj(t

j
k′(t)) = xj(t) +

ej(t). We thus have ẋi(t) = −
∑
j∈Ni

(
xi(t

i
k)− xj(tjk′(t))

)
=

−
∑
j∈Ni

(xi(t)− xj(t)) −
∑
j∈Ni

(ei(t)− ej(t)), so that ẋ(t) =

−L(x(t) + e(t)) in stack vector form. Hence in this case we also
have ˙̄x = 0 for the agents’ initial average.

Denote now Lx , z = [z1, . . . , zN ]T . Note that each element of
Lx contains exactly the relative state information that is available to
each agent from its neighbors, that is

zi(t) =
∑
j∈Ni

(xi(t)− xj(t)), i = 1, . . . , N

Consider again V = 1
2
xTLx. Then

V̇ = xTLẋ = −xTL(Lx+ Le) = −zT z − zTLe

From the definition of the Laplacian matrix we get V̇ = −
∑
i

z2
i −∑

i

∑
j∈Ni

zi (ei − ej) = −
∑
i

z2
i −

∑
i

|Ni|ziei +
∑
i

∑
j∈Ni

ziej . Using

now the inequality |xy| ≤ a
2
x2 + 1

2a
y2, for a > 0, we can bound V̇

as

V̇ ≤ −
∑
i

z2
i +

∑
i

a|Ni|z2
i +

∑
i

1

2a
|Ni|e2

i +
∑
i

∑
j∈Ni

1

2a
e2
j

where a > 0.
Since the graph is symmetric, by interchanging the indices of the

last term we get
∑
i

∑
j∈Ni

1
2a
e2
j =

∑
i

∑
j∈Ni

1
2a
e2
i =

∑
i

1
2a
|Ni|e2

i so

that V̇ ≤ −
∑
i

(1− a|Ni|)z2
i +

∑
i

1
a
|Ni|e2

i . Assume that a satisfies

0 < a < 1
|Ni|

for all i ∈ N . Then, enforcing the condition

e2
i ≤

σia(1− a|Ni|)
|Ni|

z2
i (10)

for all i ∈ N , we get

V̇ ≤
∑
i

(σi − 1)(1− a|Ni|)z2
i

which is negative definite for 0 < σi < 1.
Thus for each i, an event is triggered when

e2
i =

σia(1− a|Ni|)
|Ni|

z2
i (11)

where zi =
∑
j∈Ni

(xi − xj). The update rule (11) holds at the event

times tik corresponding to agent i: e2
i (t

i
k) =

σia(1− a|Ni|)
|Ni|

z2
i (tik),

with k = 0, 1, . . . and i ∈ N . At an event time tik, we have ei(tik) =
xi(t

i
k)− xi(tik) = 0 and thus, condition (10) is enforced.

It should be emphasized that the condition (11) is verified by agent
i only based on information of each own and neighboring agents’
information, which is encoded by the vector zi =

∑
j∈Ni

(xi − xj),

which includes only the relative state information of agent i’s
neighbors, as is the case in multi-agent control designs.

The following convergence result regarding the convergence of the
agents thus holds:

Theorem 3: Consider system ẋ = u with the control law (9),(11)
and assume that the communication graph G is connected. Then
all agents are asymptotically stabilized to their initial average, i.e.,
limt→∞ xi(t) = x̄ = 1

N

∑
i

xi(0) for all i ∈ N .

A related result regarding the inter-event times holds in the
distributed case as well:

Theorem 4: Consider system ẋi = ui, i ∈ N = {1, . . . , N} with
the control law (9) and update ruling (11), and assume that G is
connected. Suppose that 0 < a < 1

|Ni|
and 0 < σi < 1 for all

i ∈ N . Then for any initial condition in RN , and any time t ≥ 0
there exists at least one agent k ∈ N for which the next inter-event
interval is strictly positive.
Proof : Assume that (11) holds for all i ∈ N at time t. If it doesn’t
hold, then continuous evolution is possible since at least one agent
can still let its absolute measurement error increase without resetting
(8). Hence assume that at t all errors are reset to zero. We will show
that there exists at least one k ∈ N such that its next inter-event
interval is bounded from below by a certain time τD > 0. Denoting
k = arg max

i
|zi|, and considering that |ei| ≤ ‖e‖ holds for all i,

we have
|ek|
N |zk|

≤ ‖e‖‖z‖ so that
|ek|
|zk|
≤ N ‖e‖‖z‖ = N

‖e‖
‖Lx‖ . From the

proof of Theorem 2 and the control update rule (11), we deduce that
the next inter-event interval of agent k is bounded from below by

a time τD that satisfies N
τD

1− τD ‖L‖
=

σka(1− a|Nk|)
|Nk|

so that

τD =
σka(1− a|Nk|)

N |Nk|+ ‖L‖σka(1− a|Nk|)
and the proof is complete. ♦

Theorem 4 provides a lower bound on the inter-execution times
of at least one agent. An analysis of the inter-execution times for all
agents is provided at the end of the next section.

V. SELF-TRIGGERED MULTI-AGENT CONTROL

A. Self-triggered Control-centralized formulation

We now present a self-triggered control design for the agreement
problem. In the event-triggered formulation, it becomes apparent that
continuous monitoring of the measurement error norm is required
to check condition (7). In the context of self-triggered control, this
requirement is relaxed. Specifically, the next time ti+1 at which
control law is updated is predetermined at the previous event time
ti and no state or error measurement is required in between the
control updates. Such a self-triggered control design is presented in
the following.

For t ∈ [ti, ti+1), ẋ(t) = −L(x(t) + e(t)). yields
x(t) = −Lx(ti)(t − ti) + x(ti). Thus (6) can be rewritten

as ‖x(t) − x(ti)‖ ≤ σ
‖Lx(t)‖
‖L‖ , or ‖ − Lx(ti)(t − ti)‖ ≤

σ
‖ − L2x(ti)(t− ti) + Lx(ti)‖

‖L‖ or, equivalently ‖Lx(ti)‖(t−ti) ≤
σ

‖L‖‖(−(t−ti)L+I)Lx(ti)‖. An upper bound on the next execution

time ti+1 is thus given by the solution t of ‖Lx(ti)‖(t − ti) =
σ
‖L‖‖(−(t − ti)L + I)Lx(ti)‖. Using the notation ξ = t − ti,
the latter is rewritten as ‖Lx(ti)‖2‖L‖2ξ2 = σ2(‖L2x(ti)‖2ξ2 +
‖L2x(ti)‖2 − 2(Lx(ti))

TLLx(ti)ξ), or equivalently,

(‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2)ξ2+2σ2(Lx(ti))
TLLx(ti)ξ

− σ2‖L2x(ti)‖2 = 0.

Note that (‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2) > (1 −
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σ2)‖Lx(ti)‖2‖L‖2 > 0 and

∆ =4σ4‖(Lx(ti))
TLLx(ti)‖2

+ 4σ2‖L2x(ti)‖2 · (‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2) > 0.

An upper bound is then given by

t = ti +
−2σ2(Lx(ti))

TLLx(ti) +
√

∆

2(‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2)
. (12)

Note that as long as Lx(ti) 6= 0, i.e., agreement has not been reached,
t−ti is strictly positive, i.e., the inter-execution times are non-trivial.
The preceding analysis, along with Theorem 1, yield the following
result:

Theorem 5: Consider system ẋ = u with the control law (5) and
assume that the communication graph G is connected. Suppose that
0 < σ < 1. Assume that for each i = 1, 2, . . . the next update time
is chosen such that the bound

ti+1 − ti ≤
−2σ2(Lx(ti))

TLLx(ti) +
√

∆

2(‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2)
(13)

holds. Then for any initial condition in RN all agents asymptoti-
cally converge to their initial average, i.e., limt→∞ xi(t) = x̄ =
1
N

∑
i

xi(0), ∀i ∈ N .

B. Distributed Self-triggered Control

Similarly to the centralized case, continuous monitoring of the
measurement error norm is required to check condition (11) in the
distributed case. In the self-triggered setup, the next time tik+1 at
which control law is updated is predetermined at the previous event
time tik and no state or error measurement is required in between
the control updates. Such a distributed self-triggered control design
is presented below.

Define βi =
σia(1− a|Ni|)

|Ni|
. Then, (10) is rewritten as |xi(tik)−

xi(t)|2 ≤ βiz
2
i (t). Since ẋi(t) = −

∑
j∈Ni

(
xi(t

i
k)− xj(tjk′)

)
, we

get xi(t) = −
∑
j∈Ni

(xi(t
i
k) − xj(t

j
k′))(t − tik) + xi(t

i
k) for t ∈

[tik,min{tik+1,minj∈Ni t
j
k′′}), where k′′ ∆

= arg min
l∈N:ti

k
≤tj

l

{
tjl − t

i
k

}
,

and hence min{tik+1,minj∈Ni t
j
k′′} is the next time when the control

ui is updated. Thus (10) is equivalent to∣∣∣∣∣∣
∑
j∈Ni

(xi(t
i
k)− xj(tjk′))(t− t

i
k)

∣∣∣∣∣∣
2

≤ βiz2
i (t). (14)

Recalling zi(t) =
∑
j∈Ni

(xi(t) − xj(t)), we also have xj(t) =

−
∑
l∈Nj

(xj(t
j
k′)−xl(t

l
k′′′))(t−t

j
k′)+xj(t

j
k′), where k′′′ = k′′′(t)

∆
=

arg min
m∈N:t≥tlm

{
t− tlm

}
. Denote now

∑
j∈Ni

(xi(t
i
k)− xj(tjk′)) = ρi,∑

l∈Nj

(xj(t
j
k′) − xl(t

l
k′′′)) = ρj , and ξi = ξi(t) = t − tik, t ≥ tik.

Thus ρi, ρj are constants whereas ξi is a function of time t. We can
now compute

zi(t) =
∑
j∈Ni

(xi(t)− xj(t))

=
∑
j∈Ni

(−ρiξi + xi(t
i
k))−

∑
j∈Ni

(−ρj(t− tjk′) + xj(t
j
k′))

= −|Ni|ρiξi + |Ni|xi(tik)

+
∑
j∈Ni

(ρj(t− tik + tik − tjk′)− xj(t
j
k′)),

or equivalently,

zi(t) = (−|Ni|ρi +
∑
j∈Ni

ρj)ξi + |Ni|ρi +
∑
j∈Ni

(ρj(t
i
k − tjk′)).

where the dependence of zi on t is encoded in the evolution of ξi(t)
with respect to time. Further denoting Pi = −|Ni|ρi +

∑
j∈Ni

ρj and

Φi = |Ni|ρi+
∑
j∈Ni

(ρj(t
i
k−tjk′)), the condition (14) can be rewritten

as |ρiξi| ≤
√
βi|Piξi + Φi| and since ξi ≥ 0, the latter is equivalent

to
|ρi|ξi ≤

√
βi|Piξi + Φi|. (15)

Note that this inequality always holds for ξi = 0. Also note that (14)
may or may not hold for all ξi ≥ 0, and this can be decided by agent
i at time tik. Based on this observation, the self-triggered policy for
agent i at time tik is defined as follows: if there is a ξi ≥ 0 such that
|ρi|ξi =

√
βi|Piξi + Φi| then the next update time tik+1 takes place

at most ξi time units after tik, i.e., tik+1 ≤ tik + ξi. Of course if there
is an update in one of its neighbors, thus updating the control law
(9), then agent i re-checks the condition. Otherwise, if the inequality
|ρi|ξi ≤

√
βi|Piξi+Φi| holds for all ξi ≥ 0, then agent i waits until

the next update of the control law of one of its neighbors to re-check
this condition.

The self-triggered ruling for each agent i is thus summarized as:
Definition 6: For each i = 1, 2, . . . the self-triggered ruling defines

the next update time as follows: if there is a ξi ≥ 0 such that |ρi|ξi =√
βi|Piξi + Φi| then the next update time tik+1 takes place at most

ξi time units after tik, i.e., tik+1 ≤ tik + ξi. Agent i also checks this
condition whenever its control law is updated due an update of the
error of one of its neighbors. Otherwise, if the inequality |ρi|ξi ≤√
βi|Piξi + Φi| holds for all ξi ≥ 0, then agent i waits until the

next update of the control law of one of its neighbors to re-check
this condition.

The preceding analysis, along with Theorem 3, yield the following
result:

Theorem 7: Consider system ẋ = u with the control law (9) and
assume that the communication graph G is connected. Suppose that
0 < a < 1

|Ni|
and 0 < σi < 1 for all i ∈ N . Assume that for each

i = 1, 2, . . . the next update time is decided according to Definition 6.
Then, for any initial condition in RN , the states of all agents converge
to their initial average, i.e., limt→∞ xi(t) = x̄ = 1

N

∑
i

xi(0) for all

i ∈ N .
Note that after simple calculations it is easily derived that Φi =

zi(t
i
k). From (15), we know that the next event for agent i occurs at a

time t when the equation |ρi|(t−tik) =
√
βi|Pi(t−tik)+zi(t

i
k)| holds.

Thus a zero inter-execution time for agent i can only occur when
|zi(tik)| = 0. By virtue of Theorem 7, the system is asymptotically
stabilized to the initial average. By the Cauchy-Schwartz inequality,
we have ||z||2 = ||Lx||2 = |

∑
i

∑
j∈Ni

(xi−xj)|2 ≤ 1
2
xTLx = V ,

so that z asymptotically converges to zero. Unfortunately there is no
guarantee that no element of z will reach zero in finite time (or be
equal to zero initially), however, as shown above, the inter-execution
time can only be zero when zi = 0 for agent i, i.e., when agent i
has already reached its control objective.

We can now make some further calculations regarding the inter-
execution times for each agent, assuming that Φi = zi(t

i
k) 6= 0. By

taking the squares of both sides of |ρi|ξi =
√
βi|Piξi + Φi|, we

have the following calculation for the next inter-execution time: for

|ρi|2−βiP 2
i 6= 0, we have ξi =

√
βiΦi

|ρi| ±
√
βiPi

. So ξi is the smallest

positive solution, provided that at least one of the non-zero numbers√
βiΦi

|ρi|+
√
βiPi

,
√
βiΦi

|ρi|−
√
βiPi

is positive. Otherwise the strict inequality
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|ρi|ξi <
√
βi|Piξi + Φi| holds for all ξi ≥ 0. For |ρi|2−βiP 2

i = 0,
then no solution is feasible for Pi = 0 and Φi = zi(t

i
k) 6= 0.

For Pi 6= 0 we have ξi =
−Φi
2Pi

which yields a feasible (non-
negative)solution, if ΦiPi > 0.

In all cases when |ρi|ξi =
√
βi|Piξi + Φi| has a feasible solution,

this is analogous to Φi = zi(t
i
k), as expected. Thus the only

occurence of zero inter-execution times can happen when zi(tik) = 0,
i.e., when the control objective has been achieved by agent i.

VI. EXAMPLES

The results of the previous Sections are illustrated through com-
puter simulations.

Consider a network of four agents whose Laplacian matrix is given
by

L =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2


The four agents start from random initial conditions and evolve under
the control (5) in the centralized case, and the control (9) in the
distributed case. We have set σ = 0.65, and σ1 = σ2 = 0.55,
σ3 = σ4 = 0.75 and a = 0.2. In both cases, we consider two
different cases of actuation updates: the event-triggered and the self-
triggered one.

Figure 1 shows the evolution of the error norm in the centralized
case. The top plot represents the event-triggered and the bottom the
self-triggered formulation. In the event-triggered case, the control law
is updated according to Theorem 1 and in the self-triggered according
to Theorem 5. The solid line represents the evolution of ||e(t)||.
This stays in both plots below the specified state-dependent threshold

||e||max = σ
‖Lx‖
‖L‖ which is represented by the dotted line in the

Figure.
The next simulation depicts how the framework is realized in the

distributed case for agent 1. In particular, the solid line in Figure
2 shows the evolution of |e1(t)|. This stays below the specified
state-dependent threshold given by (10) |e1|max =

√
σ1a(1−a|N1|)

|N1|
z1

which is represented by the dotted line in the Figure. Once again, the
top plot shows the event-triggered case of Theorem 3 and the bottom
plot the self-triggered case of Theorem 7.

In both cases, it can be seen that the event-triggered case requires
fewer controller updates. On the other hand, the self triggered
approach seems more robust, since the design provides an upper
bound on the interval in which the update should be held.

VII. CONCLUSIONS

We considered event-driven strategies for multi-agent systems. The
actuation updates were event-driven, depending on the ratio of a
certain measurement error with respect to the norm of a function of
the state. A centralized formulation of the problem was considered
first and then the results were extended to the distributed counterpart,
in which agents required knowledge only of the states of their
neighbors for the controller implementation. The results of the paper
were supported through simulated examples.

Future work will focus on the performance analysis of the frame-
work and its application to other cooperative multi-agent control
tasks. Moreover, while the event-triggered formulation of the current
paper focuses on the reduction of actuator updates, it is also inter-
esting to consider sensing limitations in this case. Finally, current
research also involves the case when it is the responsibility of each
agent to broadcast information to its neighbors rather than requesting
information from them, as in [30].
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(a) Event-triggered case
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(b) Self-triggered case

Fig. 1. Four agents evolve under the centralized event-triggered (top plot)
and self-triggered (bottom plot) proposed framework.
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