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Abstract— 1t is desirable to limit the amount of communi-  that can be reduced to a first order agreement problem [19].
cation and computation generated by each agent in a large |n contrast to the event-triggered approach, we consider
multi-agent system. Event- and self-triggered control stratei@s in this paper a self-triggered solution to the multi-agent

have been recently proposed as alternatives to traditional time- t bl | ticul h ¢ ¢
triggered periodic sampling for feedback control systems. In agreement problem. In parucular, éach agent now computes

this paper we consider self-triggered control applied to a IitS next update time at the previous one, without having
multi-agent system with an agreement objective. Each agent to keep track of the state error measurement that triggers

computes its next update time instance at the previous time. the actuation between two consecutive update instants. The
This formulation extends considerably our recent work on approach is first presented in a centralized fashion, while

event-based control, because in the self-triggered setting the I . .
agents do not have to keep track of the state error that trigges a distributed counterpart is presented next. Self-trigder

the actuation between consecutive update instants. Both a control is a natural extension of the event-triggered aggino
centralized and a distributed self-triggered control architecture  and has been considered in [25],[1],[27],[17],[18].

are presented and shown to achieve the agreement objective.  The rest of this paper is organized as follows: Section
The results are illustrated through simulated examples. Il presents some necessary background and discusses the
. INTRODUCTION problem treated in the paper. The centralized case is dis-

Distributed control of networked multi-agent systems isCl_Jssed in Sectlo_n l where we first review the event-
an important research field due to its role in a number Otf!ggered formulation of [7] and proceed to present the-self

applications, including multi-agent robotics [6], [16]]] triggered approach of the current paper. Section IV present

_ L ; the distributed counterpart, first reviewing the result§@f
E]Z] ?;t[rétg];te[g] ([ezsg]manon [20],[23] and formation cooitr and then presenting the distributed self-triggered fraomkw

Recent advances in communication technologies have fﬁpinz examples are ?'t\r/]en in Ist‘eCtRE. V while Sgc_:tlg_n \t/I
cilitated multi-agent control over communication netwsark Includes a summary of the results of this paper and indicates

On the other hand, the need to increase the number of agemgher research directions.

leads to a demand for reduced computational and bandwidth Il. PRELIMINARIES

reql_urements per agent. In the_lt respect, a future contrxln System Model

design may equip each agent with a small embedded micro-

processor, which will collect information from neighbagin ~ We considerN agents, withz; € R denoting the state

nodes and trigger controller updates according to some.rul®f agenti. Note that the results of the paper are extendable

The control update scheduling can be done in a time-drivdf arbitrary dimensions. We assume that the agents’ motion

or an event-driven fashion. The first case involves the tradPbeys a single integrator model:

tional approach of sampling a.t _pre—speciﬁeq time insta,nce; s = g, ieN={1,...,N}, @

usually separated by a specific period. Since our goal is

allowing more agents into the system without increasing theherewu; denotes the control input for each agent.

computational cost, an event-driven approach seems moreEach agent is assigned a sub®gt c A of the rest of

suitable. Stochastic event-driven strategies have ap@ear the team, called agenis communication setthat includes

[21],[24]. Similar results on deterministic event-triggd the agents with which it can communicate. The undirected

feedback control have appeared in [26],[24],[13],[15]][1 communication graplG = {V, E} of the multi-agent team

A comparison of time-driven and event-driven control forconsists of a set of verticd8 = {1, ..., N} indexed by the

stochastic systems favoring the latter can be found in [4]. team members, and a set of edgés,= {(i,j) € V x
Motivated by the above discussion, in previous work [7}|i € N;} containing pairs of vertices that correspond to

a deterministic event-triggered strategy was providedafor communicating agents.

large class of cooperative control algorithms, namely ¢hos
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that # = —Lx, wherex = [z1,...,2x]7 is the stack The closed loop system is then given by

vector of agents’ states antl is the Laplacian matrix of Lo _

the communication graph. For a review of the Laplacian i(t) = —La(t) = —L(z(t) + e(t)) )
matrix and its properties, see the above references and [10fenote byz(t) = + > z;(t) the average of the agents’
For a connected graph, all agents’ states converge to a i

common agreement point which coincides with the avera@ates Itis shown in [7] that(t) = Z(0) = — sz( ) =7,

1 i
N le( ) of the initial states. , the average of the agents’ states remalns constant and

We redefine the above control formulation to take lntoaqual to its initial value.
account event-triggered strategies for the system (1)h Bot Thus in the event-triggered set up of [7], the event times
centralized and distributed event-triggered cooperative- ¢;, 7 = 0,1,... are defined recursively by

trol are treated. |La(t )H
1) Centralized Event-triggered Multi-agent ControfFor tiv1 = argmin{t : |le(t)|| = 4>t (8)
eachi € AV, andt > 0, introduce a (state) measurement error ! 1]
e;(t). Denote the stack vectar(t) = [ei(t),...,en(t)]T. With {o = 0. This also implies that the condition
The discrete time instants where the events are triggered ar | La||
denoted by, t1,.... To the sequence of events,t1, ... el <o izl 9)

corresponds a sequence of control updatés), u(ty), ... , ) )
Between control updates the value of the inputs held holds for all times and that the control is updated when this

constant and equal to the last control update, i.e.,: condition is violated. The main result of [7] is summarized
T in the following:
u(t) = u(t;), vVt € [ti, tit1), 3) Theorem 1:Consider systemi: = u with the control
and thus the control law ipiecewise constartietween the 12W (6),(8) and assume that the communication grépls
event timesto, t1,.... The centralized cooperative controlcONnected. Suppose that o < 1. Then the state of all the

problem is stated as follows: “derive control laws of thenfior 29€Nts converge to their initial average, ilan,—oc ;(t) =
(3) and event timesy,?;,... that drive system (1) to an ¥ = ¥ in(()) for all i € V.
agreement point equal to their initial average.” '
2) Distributed Event-triggered Multi-agent Controltn
the distributed case, there is a separate sequence of event the event-triggered formulation, it becomes apparent
tk ¥ ... defined for each agerit. A separate distributed that continuous monitoring of the measurement error norm
condition triggers the events for agént A. The distributed is required to check condition (8). In the context of self-
control law for k is updated both at its own event timestriggered control, this requirement is relaxed. In cortfras

B. Self-triggered Control

th,th,..., as well as at the last event times of its neighborthe self-triggered setup, the next timg, at which control
t},t],...,7 € Ng. Thus it is of the form law is updated is predetermined at the previous event time
t; and no state or error measurement is required in between
uk(t) = uk(t U tjl(r) (4) " the control updates. Such a self-triggered control design i
JENK presented in the following.

where (t) A arg min {t _ t{} Fort € [t;, tit1), (7) yieldsz(¢t) = —La(t;) (t—t;)+x ().

o leN:t>t] L Thus (9) can be rewritten dsz(t) — z(t;)|| < o ‘EL(‘)”, or

The distributed cooperative control problem can be stated
as follows: “derive control laws of the form (4), and event | _ ;v 41 < S= LPa(t;)(t —ti) + La(t;)||
timestf,t¥, ..., for each agent € A\ that drive system (1) ‘ Ll '
to an agreement point equal to their initial average.” or, equivalently
II. CENTRALIZED SELF-TRIGGEREDCONTROL L ()|t — ;) < ||L||H( (t = t,)L + D) La(ty)]).

We now present a self-triggered control design for the

agreement problem. The event-triggered formulation of [7An upper bound on the next execution time; is given by
is reviewed first and it is then modified to the self-triggered

design. [La(t:)||(t" —t;) = ”L” (=" —t;)L + I)La(t;)]]-
A. Review of Centralized Event-Triggered Control Design Using the notatiort = t* — ¢t;, the latter is rewritten as
The state measurement error is defined b
Y |La () IPILI2E* = o>(| L2a(t) %€

et) =a(t) —alt), PN, ®) + L2 (t)|? = 2(La(t:)) T LLa(t:)E),
fort € [t;,t;+1). The choice of; will be given in the sequel. or equivalently
The proposed control law in the centralized case is defined '
as the event-triggered analog of the ideal control law:  (||La(t;)|]*[|L|]> — o?|| L?z(t;)]|*)&>

u(t) _ —Lx(ti)7 te [ti;tiJrl) (6) + 202(La?(ti))TLLx(ti)§ — 02||L2x(ti)||2 =0



Note that
(L) IPILIP=a?(| L2 (t:)1?) > (1—o?)|[La(t:) ||| L],
so that(|| Lz (t;)||?|| L||* — o?||L?x(¢;)]|*) > 0 and

A =40t ||(La(t:)" LLa(t:) ]| + 40| L2(t:)||?
(L) LI = o L2 (8:)]%) > 0.

An upper bound is then given by

—20%(La(t;))T LLx(t;) + VA
(L) PIIL)? — o2 | L22(t:)]%)

=t 10
+5 (10

Note that as long asz(t;) # 0, i.e., agreement has not been
reachedt* — t; is strictly positive, i.e., the inter-execution

Denote nowLxz £ z = [z,...,2zy|’ and consided’ =
12T Lz.. Then it is shown in [7] that

V<-— Zz? —i—Za|Ni|zi2
FY o IE Y S e,

i JEN;

[

for a > 0.
Since the graph is symmetric, by interchanging the indices
of the last term we get

1 1 1
202 505 = 2 2 50 = L g NIl
i jEN; i JEN;

so thatV < — 3 (1 —a|N;|)22 + 3 L|N;|e?. Assume that

%

times are non-trivial. The preceding analysis, along with, satisfies) < a < ﬁ for all i € l/\/‘ Then, enforcing the

Theorem 1, yield the following result: condition
Theorem 2:Consider system: = u with the control 2 < giall —alNi]) » (14)
law (6) and assume that the communication graphis T | V3| Y
connected. Suppose that< o < 1. Assume that for each : 2 e -
we getV < + — 1)(1 — a|N;|)z, which is negative
i = 1,2,... the next update time is chosen such that the g - zi:(a )1 —alNil)z; 9
bound definite for0 < o; < 1.
, . VA Thus for each, the event times are defined recursively by
—20°(La(t;))" LLx(t;) + VA
t; —1; < 11 i . o;a(l —alN; i
TS S PILE - ) Yt = angminge () = P00, 02 ),
(15)

holds. Then for any initial condition inRRY all agents
converge to their initial average, i.e.,

t—o0

lim 2i(1) = 7 = lezi:xi(O), VieN.

IV. DISTRIBUTED SELF-TRIGGEREDCONTROL

A. Review of Distributed Event-Triggered Control Design

with t§ = 0 and wherez; =

Z (371'

jEN;
of [7] is summarized in théefollowing:

Theorem 3:Consider the systent = u with the control
law (13), (15) and assume that the communication gr@ph
is connected. Suppose that< ¢ < 1 and0 < a < ﬁ
Then the states of all agents converge to their initial ayera
e, limy oo 2;(t) =2 = % > 2;(0) for all i € NV,

— z;). The main result

In this section, we consider a distributed counterpart ef thB. Distributed Self-Triggered Control

event-triggered agreement problem. In particular, eagmtag
now updates its own control input at event times it decid
based on information from its neighboring agents. The evemS) in the distributed case.

times for each agerite A" are denoted by, ¢4, . . .. We will

first review the event-triggered approach of [7] and procee&redetermined

to the self-triggered formulation in the sequel.
The measurement error for agenis defined as

ei(t) = wi(ty) — xi(t), t € [ty thy1)- (12)

The distributed control law for agermtis now given by:

= (xi(t};) —xj(ti'a)))’

JEN;

ui(t) = 13)

A .
wherek’(t) = arg min
leN:t>t]

into account the last update value of each of its neighbors

in its control law. The control law fo¥ is updated both at

its own event timesgg, 7, ..., as well as at the event times

of its neighborst), t{,...,j € N;. Itis shown in [7] that in

this case we also have= 0 for the agents’ initial average.

_ {t - t{} Hence, each agent takesSince

Similarly to the centralized case, continuous monitorifig o

®he measurement error norm is required to check condition

In the self-triggered setup,
the next timet, , at which control law is updated is
at the previous event tirtje and no state

or error measurement is required in between the control
updates. Such a distributed self-triggered control dessgn
presented below.

Define
ﬁ- - al—a(l — G,|Nl|)
o | N '

Then, (14) is rewritten as

i () — 2 (B)]* < Bz} ().

=3 (wmlt) —as(6)).

JEN;

oi(t) =
e get

= > (ilti) = 2 () — ) +zilty)

JEN;



for ¢ € [t},, min{t} |, minjcy, t1,}), where then the next update timg  , takes place at mosj; time
- units aftert], i.e.,tj_, <t* =t; +¢&. Of course if there is
J 7 . . . .
{t —t } an update in one of its neighbors, thus updating the control
law (13), then agent re-checks the condition. Otherwise, if
and hencanln{tk+1,m1nj€N t7,} is the next time when the inequality|p;|¢; < /3i|Pi&; + ®;| holds for all¢; > 0,

A
kK’ = arg min
leN:tE <t]

the controlu; is updated. Thus (14) is equivalent to then agent waits until the next update of the control law of
; J i ) one of its neighbors to re-compute this condition. Note that
| Z i) — 25 () (¢ = 8)|° < Bizi (D). (16) in [7], we showed that there is a strictly positive solution
JEN: & > 0 for at least one at each time instant.
Recalling The self-triggered ruling for each agents thus summa-
zi(t) = Y (wi(t) — (1), rized as:
JEN; Definition 4: For eachi = 1,2,... the self-triggered
we also have ruling defines the next update time as follows: if there is
. . . a ¢ > 0 such that|p;|& = Bi| P& + @4, then the next
zi(t) = — Z ((t) = 21(tn))(E = ) + 2(8,), update timef},, , taLeé place atlmoﬂ,» tim|e units aftert?,
leN; et <t* =t +&. Agenti also checks this condition
where whenever its control law is updated due an update of the

error of one of its neighbors. Otherwise, if the inequality
Ipilé < V/Bi| P& + ®;| holds for all¢; > 0, then agent
waits until the next update of the control law of one of its

k/// _ k///( ) arg min {t m} :

meN:t>tl

Denote now neighbors to re-check this condition.
D (wilty) = x(t) = pir Y (w(t,) — mi(thn)) = pj, The preceding analysis, along with Theorem 3, yield the
JEN; leN; following result:
and Theorem 5:Consider system: = w with the control
&=t —tl. law (13) and assume that the communication gréphs
connected. Suppose that< a < |N and0 < o; < 1 for
We can compute all i € V. Assume that for each= 1,2, ... the next update
Z(t) = Z (2i(t) — (1)) time is decided according to Def|n|t|on 4.
’ = ‘ ! Then, for any initial condition inR", the states of all
. _ agents converge to their initial average, i.e.,
=" (—pii + wi(th))
JEN; . _
lim z;(t) =z = le
- Z t?c’ + a;(t k’)) feo
JEN,; )
= —|Nulpi€i + | Nifz(t}) foralli & - . .
i i g i The previous analysis can also help us derive some con-
+ 3 (pit — th +th — t,) — x;(t)), clusions about the inter-execution times of each agent.
JEN: Note that after simple calculation it is easily derived that
or equivalently, ®; = z;(t}). From (17), we know that the next event for
agent:i occurs at a time when the equation
zi(t) = (—|Nilpi+ Y pj)€
JEN: o pil(t = 1,) < VBilPi(t — 1) + 2 (1)
+pi + Z (pj (th — t3))- . o
JEN; holds. Thus a zero inter-execution time for ageetin only
Further denoting?, — —|N; |, Cand @, = p, occur Wheri_z,»(t;)\ =0. By virtue of T_h_e_orem 5, the system
or [Nilp +jez]:\,i Pi pit is asymptotically stabilized to the initial average. By the

> (p;(ti — t1,)), the condition (16) can be rewritten asCauchy-Schwartz inequality, we have
JEN;

Eil < | P& + ©;| and sinceg; > 0, the latter is
lpi&il < VBil P& + 4 &i IE ||2_||Lx||2_|zz

' 2Tl =V
equivalent to

1
I] 2
i JEN;
Ipiléi < VBIP + @i, 17 5o that= asymptotically converges to zero. Unfortunately
Note that this inequality always holds féy = 0. Also note there is no guarantee that no element afill reach zero in
that (16) may or may not hold for af; > 0, and this can finite time (or be equal to zero initially), however, as shown
be decided by ageritat timet:. Based on this observation, above, the inter-execution time can only be zero whes 0
the self-triggered policy for agentat timet; is defined as for agenti, i.e., when agent has already reached its control
follows: if there is a¢; > 0 such thalp;|¢; = /B;| P& +®;|  objective.



V. EXAMPLES

The results of the previous sections are illustrated thioug

computer simulations. In the following paragraphs, we con- 2

sider both the centralized and distributed formulations of

the self-triggered algorithms and compare the derivedtsesu Y

with the corresponding event-triggered formulation of. [7] .
As in [7], consider a network of four agents whose VI

Laplacian matrix is given by )

0.05!

1 -1 0 0

_1 3 _1 —1 Co 5 20 25 30
L = O 71 2 71 Time
o -1 -1 2 (a) Event-triggered case
The four agents start from random initial conditions and a
evolve under the control law (6) in the centralized case, \
and the control law (13) in the distributed case. In the oz
centralized case, we have set 0.65, ando; = 05 = 0.55,
o3 = o4 = 0.75 anda = 0.2 for the distributed control el AN
example. In both cases, we consider two different cases of
actuation updates: the event-triggered and the selferag 01
one.
Figure 1 shows the evolution of the error norm in the 005
centralized case. The top plot represents the event-tedge /W\/M\/W ______________
and the bottom the self-triggered formulation. In the event % 5 10 T 2 30
triggered case, the control law is updated according to Time
Theorem 1 and in the self-triggered according to Theorem 2. (b) Self-triggered case

The solid line represents the evolution of the erfieft)||.

Thi inb ﬁ | bel h ified Md( )H deF‘ . 1. Four agents evolve under the centralized evengeried (top plot)
Is stays in both p OtﬁLerOW the specified state-depen zﬂgﬁ self-triggered (bottom plot) proposed framework.

threshold||e||maz = o T

dotted line m. the Elgure. . . . Future work will involve extending the proposed approach
The next simulation depicts how the framework is realized " general dynamic models, as well as adding uncer-

in the distributed case for agent 1. In particular, the soli hinty and time delays to the infor’mation exchange

line in Figure 2 shows the evolution d#;(¢)|. This stays '

below the specified state-dependent threshold given by (14)

o ora(l—a|Ny|)
|el|max = V1]

which is represented by the
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