An application of Rantzer's Dual Lyapunov Theorem to Decentralized
Navigation

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract—We provide a connection between Rantzer's dual The stability analysis of the decentralized scheme in
Lyapunov Theorem that appeared in [18] with Decentralized [4],[3] involved tools from classical Lyapunov theory and
Navigation Functions (DNFs). It is shown that when the agents’ Morse theory. We used a machinery which allowed agents
control law does not contain an element that forces them to . . .
cooperate with the rest of the team once they have reached that h_ad already reached th.elr desired destlnaupn to cooper-
their desired goa|, g|0ba| convergence cannot be guaranteed' ate with the rest of the team in the case of a pOSSIble collision.
A sufficient condition for this to happen is derived based on In this paper, we use a construction similar to the initial
Rantzer's Theorem. In particular, it is shown that agents are  npavigation function construction in [10]. Hence each agent
driven towards their goals provided that collisions between 1, |5nger participates in the collision avoidance procedure if
the team members tend to occur whenever agents are found . . .. " S L - L
sufficiently far from their desired destinations. This is derived its initial condition coincides with its desired destha}tlon. A_S
based on the properties of the critical points of the DNF's a result, the closed loop system can converge to critical points
imposed by Rantzer's Theorem. The result can be used as a which are no longer guaranteed not to coincide with local
new approach to guaranteed local-minima free decentralized minima. What we can hope for is that the agents converge
control approaches. to a certain subset of the state space containing the target

. INTRODUCTION locations. In this paper we provide sufficient conditions for

The emerging use of large-scale multi-robot and mulithis using Rantzer’s dual Lyapunov Theorem [18]. We should

vehicle systems in various modern applications has rais@gte that the results of this paper are extended to the case of

recently the need for the design of control laws that forcfPrmation control in [6]. o
a team of multiple vehicles/robots (from now on called In [18], A. Rantzer presented a new convergence criterion

"agents”) to achieve various goals. As the number of agenf@" nonlinear systems, which involved the divergence of the
increases, centralized control designs fail to guarantee r4ector field with respect to a certain positive function (called
bustness and are harder to implement than decentraliZ2gnSity function in [18]) instead of the time derivative of
approaches, which also provide a reduce in the computatiorfaP0Sitive definite function, as in the classical Lyapunov
complexity of the overall feedback scheme. approach. Density functions can be considered as the dual

A closed loop approach for single robot navigation wa®f the classical Lyapunov functions, while the condition that
proposed by Koditschek and Rimon [10], [20] in theirthe divergence is positive for almost all initial conditions as

seminal work. This navigation functions’ framework handledhe dual of the requirement of the negative definiteness of

single, point-sized, robot navigation. In [13],[14] this methodN® Lyapunov time derivative. The main advantage of this
was successfully extended to take into account the volun@@Proach is the fact that convergence can be checked and
of each robot in a centralized multi-agent scheme, whilgroved for systems which are not asymptotically stable. The
a decentralized version of this work has been present¥{faker notion of convergence introduced in [18] is used in
by the authors in [4] for multiple holonomic agents withthis paper to derive a sufficient condition for navigation of _th.e
global sensing capabilities and in [3] for the case of limite!0S€d 100p system to a subset of the workspace containing

sensing capabilities. While in these papers the objective Hf€ target locations. The main motivation however of this
the multi-agent system was convergence to non-cooperati@Per, is to provide the first result connecting Rantzer's
equilibria with collision avoidance, convergence to cooperdu@ Lyapunov theory with the general problem of local
ative equilibria (aka formation control) using decentralizedninima avoidance in decentralized control. This can serve
navigation functions was dealt with in [5] for the case ofS @ guideline for fut.u.re research directions |n.decentrallzed
sphere world agents, while point world-agents were takefPntrol, such as collision free swarm aggregation where the
into account in [2]. Decentralized navigation functions wer&Xistence of local minima is a major disadvantage [9],[8].
also used for multiple UAV guidance in [1]. Moreover, The_ rest of the paper is organized as follows: sech_on Il
numerous relative results on decentralized control of multd€scribes the system and the problem in hand. In section Il

agent kinematic systems have appeared recently in literatffi¢ theory of [18] is reviewed and we proceed by presenting
including formation [11],[16],[12] and consensus controth€ Decentralized Navigation Functions framework used in

schemes [19],[17]. this paper. In se_:ctlon IV, the convergence of the feedbac_:k

control scheme is analyzed using Rantzer’s Theorem, while

The authors are with the Control Systems Lab, Departmengection V includes computer simulations that support the
of Mechanical Engineering, National Technical University of ived Its. The | . . h lusi

Athens, 9 Heroon Polytechniou Street, Zografou 15780, Greecqenve resuits. e last section summarizes the conclusions

ddimar,kkyria@mail.ntua.gr of this paper and indicates further research directions.



Il. SYSTEM AND PROBLEM STATEMENT

Consider a system ofV agents operating in the same
planar workspacel¥ C R2. Let ¢ € R? denote the
position of agenti. The configuration space is spanned by

q = lq1,-..,qn]T. The motion of each agent is described
by the single integrator:
qi:ui,ieN:[l,...,N] Q)

whereu; denotes the velocity (control input) for each agent.
The desired destinations of the agents are respectively de-
noted by the indexd: q; = [qdl,...,qu]T. We consider
cyclic agents of specific radius> 0, which is common for
each agent. The results can trivially be extended to the case
of agents with not necessarily common radii. FFoe 0, the
problem in reduced to the degenerate case of point agents.
The objective of each agent is navigation from an initiaFig. 1. A conflict scenario with three agents. Each agemtcupies a disc
position to a desired destination avoiding at the same tin’\fv%ﬁﬁfggcg'sés)r:éiazgfj C;;éﬁ”;g 2 Lgi;ﬁg”;i%’?xﬁtg‘ gi;’é’;”i‘led
collisions with the other agents. Collision avoidance is meankntered ay; and has radiug.
in the sense that no intersections occur between the agents’
discs. Thus we want to assure that

||q7.(t) - qJ(t)” > 277V7’7] S NaZ #] (2)

for each time instant. . S .

Furthermore, we assume that each agent has only knovﬁl Decentralized Navigation Functions
edge of the position of agents located in a cyclic neighbor- In previous work [3], [4], [7] a decentralized navigation
hood of specific radiug at each time instant, where> 2.  functions (DNF's) method for multiple agents with single
This setT; = {q : ||¢ — || < d} is called thesensing zone integrator kinematics was proposed by the authors. In this

We shall callp a “Rantzer” density function while equation
(3) will be called “Rantzer” condition.

of agenti. The control design is hence of the form paper, we redefine the DNF framework of the aforementioned
papers in a manner that resembles more the framework of
ui = ui (¢i,{q;,J € Si}) [10] . Specifically, each agent is equipped with a decentral-
where S; = {j € N,j #i: g —q;]| < d} the set of in- ized navigation functionp; : R?N — [0,1] defined as
dices of agents that are located in the sensing zoneabf o Vdi )
each time instant. Finally, the agents evolve in a spherical i (vE + G,»)l/k
bounded planar workspaldé = {q|llg|l € Rw} C R2V, & _ l _
whereRyy is the workspace radius. We assume that all agentd'® t€rms; = [lg; — ga;[|* is the squared metric of the
have knowledge of the workspace boundary. agent’si configuration from its desired destinatigp;. The
A possible conflict scenario is shown in Figure 1. exponentk is a scalar positive parameter. The functicn
expresses the possible collisions of agentth the others. In
I1l. M ATHEMATICAL PRELIMINARIES particular,G; is constructed to render the motion produced
A. Rantzer's Theorem for Density Functions by the negated gradient @f; with respect tog; repulsive
For functionsV : R” — R and f : R® — R” the notation With respect to the other agents. The control law is hence of
o oy AT the form 9
W=[am oo ] w = K32 (5)
o 9 | S |
V-f= 87c1+"'+ i where K > 0 is a positive scalar gain. In this paper,

) . the function G; is constructed to take into account the
is used. The dual Lyapunov result of [18] is stated as follow§iited sensing capabilities of each agent. Using a similar

Theor;am 1:Given the equation:(t) = f(x(t)), where .onqurction with [3],[2] we define thé; function as
f e C*®R",R") and f(0) = 0, suppose there exists

a nonnegative functiop € C!'(R™\{0},R) such that B N
p(z) f () / |z is integrable on{z € R™ : ||z|| > 1} and Gi = 1_[0 Vij

j=

[V - (fp)] (z) > 0 for almost all = 3) 37

Then, for almost all initial states(0) the trajectoryz(t) where the functiony;;, for j = 1,..., N, j # i is given by

exists fort € [0, c0) and tends to zero a&s— co. Moreover, 1B, 0< Bi; < 2
if the equilibrium z = 0 is stable, then the conclusion Yii (Bij) = d(Biz), < Biy < d?
remains valid even ip takes negative values. 1, d* < B3y



where Since the boundary of the free space for ager# the set
Bij = llgi — qu2 — 4r? whereG; = 0, the negated gradient motlena“a’ will point

is the squared Euclidean distance between agerid;. The tcc;)yvirgséhe interior of the free space, |e towards the set
i .

function ;o refers to the workspace boundary ( indexed by ‘L. . .
Since this result holds simultaneously for all agents,
0) and is used to maintain the agents within the workspace
collision avoidance is guaranteed. The next result of the

We have (R — )2 — NI current paper, which also follows the procedure of [10], [4],
Pio = (Rw —7) la: guarantees that the critical points of each navigation function

The functionv;o is defined in the same way ag;,j > 0. can be constrained to a subset of the state space wihere

The positive constant scalar parameters and the function is arbitrarily small:

¢ are chosen in such a way so thgi is everywhere Proposition 2: For every e > 0 there exists a pos-

twice continuously differentiable. This is accomplished bytive scalar P > 0 such that if ¥ > P then

choosing an appropriate third degree polynomial function:there are no critical points ofp; in the set F; =

{a € Wlyi; > e,¥j € N, j # i} \{vai}-

Proof: At a critical point, we have

Vipi =0= GVivai = 3+ V:G; =
= 2kG; = \ai [|IViGil|

b(z) = azx® + axx® + a1z + ag

The parameters of this function are calculated so thats
everywhere twice continuously differentiable. Figure 2 shows
a plot of the functior;; with respect to3;; for d*> = 0.96

and appropriate choice of the other parameters. since |Vivail| = 24/74:- A sufficient condition for this
equality not to hold inF; is given by
VAa VG
k> s Vq € Fi~
035 R QG,L q
0z 1 An upper bound for the right hand side is given by
o LTE| iG] | < 38 5~ 19l
02 ] Yij
. J#i A
0.15 1 ﬁ IHWE}X {\/%} E mwzj.‘X{HVZVHH} =Pr
J#i
. since v;; >¢,VjeN,j#i. Note that the terms
mvgx{,/'ydi}, mwa}x{HijH} are bounded due to the

0 O.‘Z 0‘4 0‘6 O.‘S ‘1 1.‘2 1.‘4 1.‘6 1.‘8 2 boundedness Of the WorkspaQE
Based on the result of this Proposition, we can choose a
Fig. 2. The functiony;; for d? = 0.96. sufficiently largek in order to ensure that whenevehas not
reached its destination, the critical pointsicdre located at
The gradient ofp; is calculated as configurations where;; < ¢, for at least ong # . By the
- . definition of ¢, we can choose small enough, so that the
. +G) YV iy — 2 (G )Y T (kT Vv A VGl " P X '
3% _ (646 Vi ((::,T+GI))2/]€ (b4 ' Vina ) condition~y;; < ¢ implies G;; < 2¢2, i.e.vi; = 6y
= gﬁf = (7% + Gi)fl/k*1 (GiVivai — 1 V,G;) IV. CONVERGENCEANALYSIS VIA RANTZER’S
' (6) THEOREM

The construction of the7; function allows each agent to
take into account only agents that are located withjrat
each time instant.

In the sequel, we use the notatidn; (-)

From (5), it can be deduced that each agent either nav-
igates towards its desired destination avoiding collisions

A g () 1 with the others, or converges to a critical point of the
or

~ dqi corresponding DNF. Specifically, in the DNF framework of
brevity. A critical point ofy; occurs wheneve% =0.The [4] we showed that the system converges to a configuration
destination point,; is a non-degenerate Iocal minimum ofin which 6% = 0 for all i € N. Using arguments from
¢i. The reader is referred to [4] for a proof. Morse theory [10], [15], it was then shown that the largest

The free space boundary for agens defined as the set jnyariant set contained in the S%ﬁ =0 foralliecAN,is

where G; — 0. Following the recipe of [10], [4], the next the set of desired destination points, for almost all initial
Proposition shows that the negated gradient motion induce@nditions. The proof procedure of [4] does not hold in

by (5) leads to collision avoidance: the approach of the current paper though. The construction
Proposition 1: The controller (5) points towards the inte- of the DNEs in [4] took into account the case when the
rior of the free space whenevél; — 0 for eachi. initial conditions of some agents coincided with their desired
Proof: At a pointgo for which G; — 0, we have destinations. In particular, all agents were forced to partici-
0p; eN—1/k=1 ( Ydi pate in the collision avoidance procedure even if their initial

dq; (0) ( di) ( - ViGi ) state coincided with their desired destination. The reader is



referred to the aforementioned paper for more details. In thfiencevgfydi =2 and

DNF framework of this paper, it is clear that 4f;; = 0
for some agent at a time instant,, thenu,;(t) = 0 for

all t > tg, i.e. the agent won't participate in the collision
avoidance procedure. In essence, the stability analysis of [#herefore, in order to havy - (

does no longer hold in this case.

Vigﬁi =0=
Vip; = (vh + Gi)_Q(l/Hl) (GiVivai —

e velen
fp)] > 0, it suffices that

192 207,

In this paper, we examine the invariance of the%@{ = 4G; — Jdi (%i’ T 88 %) <0 )
0,Vi € N via Rantzer’s condition (3). It is shown that in the k L '
current framework convergence is feasible only to a subsg@ihere we stress out again that the notatioh(-) refers to
of the state space surrounding the target locations, and rggih - 6 ( ) and ()_
to the target locations themselves. U h ation’! N o q

In the sequel, we denot&; () 2 2 (), V() 2 Asmg now the notatiorV; () = {371(')7@(')} an
{8 0. 2 % for notational thrift 7is = 11 7 we can compute

Specmcally, e following Theorem holds: ) .

Theorem 3:Assume that the multi-agent team (1) navi- G; = H%‘j = V;Gi = Z%jvi Vij
gates under the control law (5). Then a sufficient condition JFi JFi

for the system to satisfy Rantzer’s condition (3) at a statiorand

ary point

;i
{q © W| 0q;

is given by~v4 > Ymin > 0,Vi € N.

=0, vz‘eN}

Proof: The closed loop kinematics of system (1) under the

control law (5) are given by

q=flq) =

—1/k—1
-K (751

+ G1) {G1V1yar — 22V1G1}

—K (kv + GN)il/kil {GNVNYaN — EEV NGy}

Definep = 5" ; andp = ¢! and note thap is a suitable

density function for the equilibrium poing;. We can then
calculate

Vp=—¢ Vo

and
V-(fp)=Vp-f+pV- =
=—¢p Ve f+oT'V f

WheneverV;p; = 0 for all i € N/, we havef = 0 and

_ ;i 0%
—1 o 1 7 7
Vif=-y ZK( T By >

V- (fp) =

A sufficient condition for the right hand side of the last

equation to be strictly positive is

32%‘
Ox?

7

82%’

<0
Oy?

_|_

forall i € NV. . .
Using the notatiori'? (-) for either 57 () or £ (-), we
have ' '

8@1+6¢7<0<:>
GZ<87d1_~_87d1) V{u( I 2)<0<:>
4G ’Yd1 617 62) <0

ViG,; = ; {VI3Vivig + 35 Vivis b
YE]

= Z {V Yii Vivig +'VZJ}
_7 7
sinceVZv;; = 1 for 3;; < ¢®. Hence
sz i %]v Vij
Gy iyl
j#i g#i Y

since ”” = L. ForG; — 0%, we havey;; — 0% for at
least onej ;é i by definition of G;. Hence
2

ISR L oo o o 0t
— — 400 — +00 —_—
for G, — 07.
By continuity of the funcuorg and smcevz—c — 0t

for G; — O+ we conclude that there existsid > 0, such
that 0 i <e.

Condmon (7) now yleIdSVdL > 2kM, Vi e N. &

Some remarks on the condition of Theorem 3 are in order.
First of all, it should be pointed out that the condition is
far from necessary. Taking into account thatis chosen
according to Proposition 2 the lower bound gg that is
derived is rather conservative. In other words, we show that
a finite lower boundy,,;, exists, but we do not calculate this
bound explicitly. Note however that the smallteis chosen,
the smallerd becomes.

It should also be pomted out that the properties imposed

on thescalars ‘2,) “";, %“‘;1 are not equivalent to the spectral

properties of thematrlx %q“"i from which the Morse prop-
erties of the DNF framework are derived in [4]. Clearly, the
property on the diagonal elements of the mat%aé"— as
imposed by the condition of Theorem 3, does not imply the
sign definiteness of the eigenvalues of this matrix. Please
note also that the conditio % + 2 85 <0, VieN of
Theorem 3 can be replaced by "

82%’ 52%‘
Z(axs 55 <0

i=1




This would result in a less conservative bound4gy;,,. The team members tends to occur. In such a situation, Rantzer’s
analysis is identical to that of Theorem 3. condition does not hold and some of the agents (in particular
On the other hand, Theorem 3 justifies the fact that,2) converge to a critical point that does not coincide with

in order to avoid local minima, the agents must be fatheir desired destination point.
enough from their targets when they approach a critical
point not coinciding with their targets. Since critical points
occur whenever agents are near a possible collision (see* @ @
Proposition 2), it is evident that the DNF framework of the aa ”
current paper drives the agents to their desired destination . AS@ @
only for scenarios where collisions for each agent tend to *« T4 U
1}
o

O

01 00
5 o

occur far away from the destination positions. As long as ., °
the condition of Theorem 3 holds, agents navigate towards - e
their target location, according to Theorem 1. In essence, =& =% @& fer oo s

the DNF framework of the current paper can only guarante
convergence to a certain subset of the state space contain
the target locations, but not to the target locations ther
selves. The conclusions of this section can be summariz
in the following Theorem:

Theorem 4:Assume that the multi-agent team (1) nav-
igates under the control law (5). Then for every initial
condition¢(0), there a finite strictly positive,,;, such that
the closed loop system converges to the set

T o015 o0z 02 03
015 02 0z

Fig. 3. Agents fail to converge to their desired destinations.

{q € W|’de < Ymin, Vi e N} .

It is obvious that different values of.,;,, can be obtained
for different relative distances between agents’ final anci]
initial conditions. The exact relation of the parametegf, t
with the set of initial/final positions is a topic of ongoing
research.

Convergence however takes place in the next simulation
at involves seven kinematic agents and a more “collision-
bound” scenario. In Figure 4, the seven agents initial and
final positions are shown. The initial and final positions, as
well as the controller parameters of this simulation have been
V. SIMULATIONS chosen as:

In this section we provide two computer simulations to Nitial Conditions

support the derived conclusions of this paper. N=I_-1 8617 N="l.1 .09 17
In the first simulation, the case where the sufficient condi- a(0)=[—1 36 ] T’qQ( )=[1. I T
tion of Theorem 3 is clearly violated. In the first screenshot 93(0) = [ 1 7'045T} ar(®) = —1 Ti'o55 I
of Figure 3 the initial position and desired destination of ¢(0)=[0 —1] ,¢(0)=[0 1]",
agenti,i = 1,2, 3,4 are denoted byl —i,7 — i respectively. g7(0)=1[ .18 0 ]T
The parameters of this simulation have been chosen as N
Initial Conditions Final Conditions
T T
a0 =[0 -15]" g0 =[0 15]", qi=[1 =165 ] qn=[.1 .09 ]
g(0)=[ .15 —02 1" ,qu(0)=[.02 0]" qas=1[ —1 145 | jqu=1[.1 .145 ],
T T
§ . qd5:[0 1} 7Qd6:[0 _1] y
Final Conditions _ T
. T qar=1[0 0]
=[.1432 141 ,qp=[- 1732 -2,
an = }T] 4 = | ] Parameters

gas=1[ 1732 0] Jqu=[0 0]"

k=647 =.035,d=.1,R, =1
Parameters

k=100,r=.05,d=.11, R, =1 In Figure 5, screenshots |-V show the evolution in time
Screenshots -1V show the evolution of the multi-agent tearof the seven agents under the control law (5). Although the
in time under the control law (5). We observe that the controkorkspace is more crowded, both the collision avoidance
design fails to drive the system to the desired equilibrisand destination convergence objectives take place. This is
despite the fact that there is a clear collision-free path fatue to the fact that agents are far enough from their desired
agents 1,2 (note that,, has been chosen sufficiently large).destination at the time when a collision between the team
This is due to the fact that agents 3,4 are very close to theitembers tends to occur and the conditions of Theorem 3
desired destination at the time when a collision between tree not violated.
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Fig. 4. Initial positions and desired final locations of the seven agents in
the second simulation. 2]
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Fig. 5. Agents converge to their desired destinations successfully, avoidil[ijgg]
at the same time collisions with each other.
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VI. CONCLUSIONS [15]

We provided a connection between Rantzer's dual Lydl6l
punov Theorem that appeared in [18] with Decentralized
Navigation Functions. It was shown that when the agentgi7]
control law does not contain an element that forces them to
cooperate with the rest of the team once they have reach
their desired goal, global convergence cannot be guaranteed.
A sufficient condition for this to happen was derived based oi#®]
Rantzer’'s Theorem. In particular, it was shown that agents are
driven towards their goals provided that collisions between
the team members tend to occur whenever agents are found
sufficiently far from their desired destinations. This wa 20
derived based on the properties of the critical points of the
DNF’s imposed by Rantzer's Theorem. The approach of this
paper can be considered as a new approach to guaranteed
local-minima free decentralized control designs.

] E. Rimon and D. E. Koditschek.
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