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Abstract— We provide a connection between Rantzer’s dual
Lyapunov Theorem that appeared in [18] with Decentralized
Navigation Functions (DNFs). It is shown that when the agents’
control law does not contain an element that forces them to
cooperate with the rest of the team once they have reached
their desired goal, global convergence cannot be guaranteed.
A sufficient condition for this to happen is derived based on
Rantzer’s Theorem. In particular, it is shown that agents are
driven towards their goals provided that collisions between
the team members tend to occur whenever agents are found
sufficiently far from their desired destinations. This is derived
based on the properties of the critical points of the DNF’s
imposed by Rantzer’s Theorem. The result can be used as a
new approach to guaranteed local-minima free decentralized
control approaches.

I. I NTRODUCTION

The emerging use of large-scale multi-robot and multi-
vehicle systems in various modern applications has raised
recently the need for the design of control laws that force
a team of multiple vehicles/robots (from now on called
”agents”) to achieve various goals. As the number of agents
increases, centralized control designs fail to guarantee ro-
bustness and are harder to implement than decentralized
approaches, which also provide a reduce in the computational
complexity of the overall feedback scheme.

A closed loop approach for single robot navigation was
proposed by Koditschek and Rimon [10], [20] in their
seminal work. This navigation functions’ framework handled
single, point-sized, robot navigation. In [13],[14] this method
was successfully extended to take into account the volume
of each robot in a centralized multi-agent scheme, while
a decentralized version of this work has been presented
by the authors in [4] for multiple holonomic agents with
global sensing capabilities and in [3] for the case of limited
sensing capabilities. While in these papers the objective of
the multi-agent system was convergence to non-cooperative
equilibria with collision avoidance, convergence to cooper-
ative equilibria (aka formation control) using decentralized
navigation functions was dealt with in [5] for the case of
sphere world agents, while point world-agents were taken
into account in [2]. Decentralized navigation functions were
also used for multiple UAV guidance in [1]. Moreover,
numerous relative results on decentralized control of multi-
agent kinematic systems have appeared recently in literature
including formation [11],[16],[12] and consensus control
schemes [19],[17].
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The stability analysis of the decentralized scheme in
[4],[3] involved tools from classical Lyapunov theory and
Morse theory. We used a machinery which allowed agents
that had already reached their desired destination to cooper-
ate with the rest of the team in the case of a possible collision.
In this paper, we use a construction similar to the initial
navigation function construction in [10]. Hence each agent
no longer participates in the collision avoidance procedure if
its initial condition coincides with its desired destination. As
a result, the closed loop system can converge to critical points
which are no longer guaranteed not to coincide with local
minima. What we can hope for is that the agents converge
to a certain subset of the state space containing the target
locations. In this paper we provide sufficient conditions for
this using Rantzer’s dual Lyapunov Theorem [18]. We should
note that the results of this paper are extended to the case of
formation control in [6].

In [18], A. Rantzer presented a new convergence criterion
for nonlinear systems, which involved the divergence of the
vector field with respect to a certain positive function (called
density function in [18]) instead of the time derivative of
a positive definite function, as in the classical Lyapunov
approach. Density functions can be considered as the dual
of the classical Lyapunov functions, while the condition that
the divergence is positive for almost all initial conditions as
the dual of the requirement of the negative definiteness of
the Lyapunov time derivative. The main advantage of this
approach is the fact that convergence can be checked and
proved for systems which are not asymptotically stable. The
weaker notion of convergence introduced in [18] is used in
this paper to derive a sufficient condition for navigation of the
closed loop system to a subset of the workspace containing
the target locations. The main motivation however of this
paper, is to provide the first result connecting Rantzer’s
dual Lyapunov theory with the general problem of local
minima avoidance in decentralized control. This can serve
as a guideline for future research directions in decentralized
control, such as collision free swarm aggregation where the
existence of local minima is a major disadvantage [9],[8].

The rest of the paper is organized as follows: section II
describes the system and the problem in hand. In section III
the theory of [18] is reviewed and we proceed by presenting
the Decentralized Navigation Functions framework used in
this paper. In section IV, the convergence of the feedback
control scheme is analyzed using Rantzer’s Theorem, while
section V includes computer simulations that support the
derived results. The last section summarizes the conclusions
of this paper and indicates further research directions.



II. SYSTEM AND PROBLEM STATEMENT

Consider a system ofN agents operating in the same
planar workspaceW ⊂ R2. Let qi ∈ R2 denote the
position of agenti. The configuration space is spanned by
q = [q1, . . . , qN ]T . The motion of each agent is described
by the single integrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

whereui denotes the velocity (control input) for each agent.
The desired destinations of the agents are respectively de-
noted by the indexd: qd = [qd1, . . . , qdN ]T . We consider
cyclic agents of specific radiusr ≥ 0, which is common for
each agent. The results can trivially be extended to the case
of agents with not necessarily common radii. Forr = 0, the
problem in reduced to the degenerate case of point agents.

The objective of each agent is navigation from an initial
position to a desired destination avoiding at the same time
collisions with the other agents. Collision avoidance is meant
in the sense that no intersections occur between the agents’
discs. Thus we want to assure that

‖qi(t)− qj(t)‖ > 2r,∀i, j ∈ N , i 6= j (2)

for each time instantt.
Furthermore, we assume that each agent has only knowl-

edge of the position of agents located in a cyclic neighbor-
hood of specific radiusd at each time instant, whered > 2r.
This setTi = {q : ‖q − qi‖ ≤ d} is called thesensing zone
of agenti. The control design is hence of the form

ui = ui (qi, {qj , j ∈ Si})
where Si = {j ∈ N , j 6= i : ‖qi − qj‖ ≤ d} the set of in-
dices of agents that are located in the sensing zone ofi at
each time instant. Finally, the agents evolve in a spherical
bounded planar workspaceW

∆= {q| ‖q‖ ≤ RW } ⊂ R2N ,
whereRW is the workspace radius. We assume that all agents
have knowledge of the workspace boundary.

A possible conflict scenario is shown in Figure 1.

III. M ATHEMATICAL PRELIMINARIES

A. Rantzer’s Theorem for Density Functions

For functionsV : Rn → R andf : Rn → Rn the notation

∇V =
[

∂V
∂x1

. . . ∂V
∂xn

]T

∇ · f =
∂f1

∂x1
+ . . . +

∂fn

∂xn

is used. The dual Lyapunov result of [18] is stated as follows:
Theorem 1:Given the equationẋ(t) = f(x(t)), where

f ∈ C1 (Rn,Rn) and f(0) = 0, suppose there exists
a nonnegative functionρ ∈ C1 (Rn\ {0} ,R) such that
ρ (x) f (x) / ‖x‖ is integrable on{x ∈ Rn : ‖x‖ ≥ 1} and

[∇ · (fρ)] (x) > 0 for almost all x (3)

Then, for almost all initial statesx(0) the trajectoryx(t)
exists fort ∈ [0,∞) and tends to zero ast →∞. Moreover,
if the equilibrium x = 0 is stable, then the conclusion
remains valid even ifρ takes negative values.
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Fig. 1. A conflict scenario with three agents. Each agenti occupies a disc
Ri(black discs) of radiusr centered atqi. The agents evolve in a bounded
workspace of radiusRW . Each agent’s sensing zoneTi(white discs) is
centered atqi and has radiusd.

We shall callρ a “Rantzer” density function while equation
(3) will be called “Rantzer” condition.

B. Decentralized Navigation Functions

In previous work [3], [4], [7] a decentralized navigation
functions (DNF’s) method for multiple agents with single
integrator kinematics was proposed by the authors. In this
paper, we redefine the DNF framework of the aforementioned
papers in a manner that resembles more the framework of
[10] . Specifically, each agent is equipped with a decentral-
ized navigation functionϕi : R2N → [0, 1] defined as

ϕi =
γdi(

γk
di + Gi

)1/k
(4)

The termγdi = ‖qi − qdi‖2 is the squared metric of the
agent’si configuration from its desired destinationqdi. The
exponentk is a scalar positive parameter. The functionGi

expresses the possible collisions of agenti with the others. In
particular,Gi is constructed to render the motion produced
by the negated gradient ofϕi with respect toqi repulsive
with respect to the other agents. The control law is hence of
the form

ui = −K
∂ϕi

∂qi
(5)

where K > 0 is a positive scalar gain. In this paper,
the function Gi is constructed to take into account the
limited sensing capabilities of each agent. Using a similar
construction with [3],[2] we define theGi function as

Gi =
N∏

j=0
j 6=i

γij

where the functionγij , for j = 1, . . . , N, j 6= i is given by

γij (βij) =





1
2βij , 0 ≤ βij ≤ c2

φ(βij), c2 ≤ βij ≤ d2

1, d2 ≤ βij



where
βij = ‖qi − qj‖2 − 4r2

is the squared Euclidean distance between agentsi andj. The
function γi0 refers to the workspace boundary ( indexed by
0) and is used to maintain the agents within the workspace.
We have

βi0 = (RW − r)2 − ‖qi‖2

The functionγi0 is defined in the same way asγij , j > 0.
The positive constant scalar parametersc, d and the function
φ are chosen in such a way so thatγij is everywhere
twice continuously differentiable. This is accomplished by
choosing an appropriate third degree polynomial function:

φ(x) = a3x
3 + a2x

2 + a1x + a0

The parameters of this function are calculated so thatγij is
everywhere twice continuously differentiable. Figure 2 shows
a plot of the functionγij with respect toβij for d2 = 0.96
and appropriate choice of the other parameters.
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Fig. 2. The functionγij for d2 = 0.96.

The gradient ofϕi is calculated as

∂ϕi

∂qi
= (γk

di+Gi)1/k∇iγdi− γdi
k (γk

di+Gi)1/k−1(kγk−1
di ∇iγdi+∇iGi)

(γk
di+Gi)2/k

⇒ ∂ϕi

∂qi
=

(
γk

di + Gi

)−1/k−1 (
Gi∇iγdi − γdi

k ∇iGi

)
(6)

The construction of theGi function allows each agent to
take into account only agents that are located withinTi at
each time instant.

In the sequel, we use the notation∇i (·) ∆= ∂
∂qi

(·) for

brevity. A critical point ofϕi occurs whenever∂ϕi

∂qi
= 0. The

destination pointqdi is a non-degenerate local minimum of
ϕi. The reader is referred to [4] for a proof.

The free space boundary for agenti is defined as the set
whereGi → 0. Following the recipe of [10], [4], the next
Proposition shows that the negated gradient motion induced
by (5) leads to collision avoidance:

Proposition 1: The controller (5) points towards the inte-
rior of the free space wheneverGi → 0 for eachi.
Proof: At a point q0 for which Gi → 0, we have

∂ϕi

∂qi
(q0) =

(
γk

di

)−1/k−1
(
−γdi

k
∇iGi

)

Since the boundary of the free space for agenti is the set
whereGi = 0, the negated gradient motion−∂ϕi

∂qi
will point

towards the interior of the free space, i.e. towards the set
Gi > 0. ♦

Since this result holds simultaneously for all agents,
collision avoidance is guaranteed. The next result of the
current paper, which also follows the procedure of [10], [4],
guarantees that the critical points of each navigation function
can be constrained to a subset of the state space whereGi

is arbitrarily small:
Proposition 2: For every ε > 0 there exists a pos-

itive scalar P > 0 such that if k ≥ P then
there are no critical points ofϕi in the set Fi =
{q ∈ W |γij ≥ ε,∀j ∈ N , j 6= i} \{γdi}.
Proof: At a critical point, we have

∇iϕi = 0 ⇒ Gi∇iγdi = γdi

k ∇iGi ⇒
⇒ 2kGi =

√
γdi ‖∇iGi‖

since ‖∇iγdi‖ = 2
√

γdi. A sufficient condition for this
equality not to hold inFi is given by

k >

√
γdi ‖∇iGi‖

2Gi
, ∀q ∈ Fi.

An upper bound for the right hand side is given by
√

γdi‖∇iGi‖
2Gi

≤
√

γdi

2

∑
j 6=i

‖∇iγij‖
γij

≤
1
2ε max

W

{√
γdi

} ∑
j 6=i

max
W

{‖∇iγij‖} ∆= P

since γij ≥ ε,∀j ∈ N , j 6= i. Note that the terms
max

W

{√
γdi

}
, max

W
{‖∇iγij‖} are bounded due to the

boundedness of the workspace.♦
Based on the result of this Proposition, we can choose a

sufficiently largek in order to ensure that wheneveri has not
reached its destination, the critical points ofi are located at
configurations whereγij ≤ ε, for at least onej 6= i. By the
definition of i, we can chooseε small enough, so that the
conditionγij ≤ ε implies βij ≤ 2c2, i.e. γij = 1

2βij .

IV. CONVERGENCEANALYSIS VIA RANTZER’ S

THEOREM

From (5), it can be deduced that each agent either nav-
igates towards its desired destination avoiding collisions
with the others, or converges to a critical point of the
corresponding DNF. Specifically, in the DNF framework of
[4] we showed that the system converges to a configuration
in which ∂ϕi

∂qi
= 0 for all i ∈ N . Using arguments from

Morse theory [10], [15], it was then shown that the largest
invariant set contained in the set∂ϕi

∂qi
= 0 for all i ∈ N , is

the set of desired destination points, for almost all initial
conditions. The proof procedure of [4] does not hold in
the approach of the current paper though. The construction
of the DNFs in [4] took into account the case when the
initial conditions of some agents coincided with their desired
destinations. In particular, all agents were forced to partici-
pate in the collision avoidance procedure even if their initial
state coincided with their desired destination. The reader is



referred to the aforementioned paper for more details. In the
DNF framework of this paper, it is clear that ifγdi = 0
for some agenti at a time instantt0, then ui(t) = 0 for
all t ≥ t0, i.e. the agent won’t participate in the collision
avoidance procedure. In essence, the stability analysis of [4]
does no longer hold in this case.

In this paper, we examine the invariance of the set∂ϕi

∂qi
=

0, ∀i ∈ N via Rantzer’s condition (3). It is shown that in the
current framework convergence is feasible only to a subset
of the state space surrounding the target locations, and not
to the target locations themselves.

In the sequel, we denote∇i (·) ∆= ∂
∂qi

(·) ,∇2
i (·) ∆={

∂2

∂x2
i

(·) , ∂2

∂y2
i

(·)
}

for notational thrift.
Specifically, the following Theorem holds:
Theorem 3:Assume that the multi-agent team (1) navi-

gates under the control law (5). Then a sufficient condition
for the system to satisfy Rantzer’s condition (3) at a station-
ary point {

q ∈ W |∂ϕi

∂qi
= 0, ∀i ∈ N

}

is given byγdi > γmin > 0,∀i ∈ N .
Proof: The closed loop kinematics of system (1) under the
control law (5) are given by

q̇ = f(q) =

−K

(
γk

d1 + G1

)−1/k−1 {
G1∇1γd1 − γd1

k ∇1G1

}
...

−K
(
γk

dN + GN

)−1/k−1 {
GN∇NγdN − γdN

k ∇NGN

}




Defineϕ =
∑
i

ϕi andρ = ϕ−1 and note thatρ is a suitable

density function for the equilibrium pointqd. We can then
calculate

∇ρ = −ϕ−2∇ϕ

and
∇ · (fρ) = ∇ρ · f + ρ∇ · f =
= −ϕ−2∇ϕ · f + ϕ−1∇ · f

Whenever∇iϕi = 0 for all i ∈ N , we havef = 0 and

∇ · (fρ) = ϕ−1∇ · f = −ϕ−1
∑

i

K

(
∂2ϕi

∂x2
i

+
∂2ϕi

∂y2
i

)

A sufficient condition for the right hand side of the last
equation to be strictly positive is

∂2ϕi

∂x2
i

+
∂2ϕi

∂y2
i

< 0

for all i ∈ N .
Using the notation∇2

i (·) for either ∂2

∂x2
i

(·) or ∂2

∂y2
i

(·), we
have

∂2ϕi

∂x2
i

+ ∂2ϕi

∂y2
i

< 0 ⇔
Gi

(
∂2γdi

∂x2
i

+ ∂2γdi

∂y2
i

)
− γdi

k

(
∂2Gi

∂x2
i

+ ∂2Gi

∂y2
i

)
< 0 ⇔

4Gi − γdi

k

(
∂2Gi

∂x2
i

+ ∂2Gi

∂y2
i

)
< 0

since∇2
i γdi = 2 and

∇iϕi = 0 ⇒
∇2

i
ϕi =

(
γk

di + Gi

)−2(1/k+1) (
Gi∇2

i γdi − γdi

k ∇2
i Gi

)

Therefore, in order to have[∇ · (fρ)] > 0, it suffices that

4Gi − γdi

k

(
∂2Gi

∂x2
i

+
∂2Gi

∂y2
i

)
< 0 (7)

where we stress out again that the notation∇2
i (·) refers to

both ∂2

∂x2
i

(·) and ∂2

∂y2
i

(·).
Using now the notation∇1

i (·) ∆=
{

∂
∂xi

(·) , ∂
∂yi

(·)
}

and

γ̄ij
∆=

∏
k 6=i,j

γik we can compute

Gi =
∏

j 6=i

γij ⇒ ∇1
i Gi =

∑

j 6=i

γ̄ij∇1
i γij

and
∇2

i Gi =
∑
j 6=i

{∇1
i γ̄ij∇1

i γij + γ̄ij∇2
i γij

}

=
∑
j 6=i

{∇1
i γ̄ij∇1

i γij + γ̄ij

}

since∇2
i γij = 1 for βij < c2. Hence

∇2
i Gi

Gi
=

∑

j 6=i

∇1
i γ̄ij∇1

i γij

Gi
+

∑

j 6=i

1
γij

since γ̄ij

Gi
= 1

γij
. For Gi → 0+, we haveγij → 0+ for at

least onej 6= i, by definition ofGi. Hence

1
γij

→ +∞⇒ ∇2
i Gi

Gi
→ +∞⇒ Gi

∇2
i Gi

→ 0+

for Gi → 0+.
By continuity of the function∇

2
i Gi

Gi
and since Gi

∇2
i Gi

→ 0+

for Gi → 0+, we conclude that there exists aM ≥ 0, such
that 0 < Gi

∇2
i Gi

≤ M for 0 < γij ≤ ε.
Condition (7) now yieldsγdi > 2kM,∀i ∈ N . ♦
Some remarks on the condition of Theorem 3 are in order.

First of all, it should be pointed out that the condition is
far from necessary. Taking into account thatk is chosen
according to Proposition 2 the lower bound onγdi that is
derived is rather conservative. In other words, we show that
a finite lower boundγmin exists, but we do not calculate this
bound explicitly. Note however that the smallerε is chosen,
the smallerM becomes.

It should also be pointed out that the properties imposed
on thescalars ∂2ϕi

∂x2
i

, ∂2ϕi

∂y2
i

are not equivalent to the spectral

properties of thematrix ∂2ϕi

∂q2
i

, from which the Morse prop-
erties of the DNF framework are derived in [4]. Clearly, the
property on the diagonal elements of the matrix∂2ϕi

∂q2
i

, as
imposed by the condition of Theorem 3, does not imply the
sign definiteness of the eigenvalues of this matrix. Please
note also that the condition∂

2ϕi

∂x2
i

+ ∂2ϕi

∂y2
i

< 0, ∀i ∈ N of
Theorem 3 can be replaced by

N∑

i=1

(
∂2ϕi

∂x2
i

+
∂2ϕi

∂y2
i

)
< 0



This would result in a less conservative bound forγmin. The
analysis is identical to that of Theorem 3.

On the other hand, Theorem 3 justifies the fact that
in order to avoid local minima, the agents must be far
enough from their targets when they approach a critical
point not coinciding with their targets. Since critical points
occur whenever agents are near a possible collision (see
Proposition 2), it is evident that the DNF framework of the
current paper drives the agents to their desired destination
only for scenarios where collisions for each agent tend to
occur far away from the destination positions. As long as
the condition of Theorem 3 holds, agents navigate towards
their target location, according to Theorem 1. In essence,
the DNF framework of the current paper can only guarantee
convergence to a certain subset of the state space containing
the target locations, but not to the target locations them
selves. The conclusions of this section can be summarized
in the following Theorem:

Theorem 4:Assume that the multi-agent team (1) nav-
igates under the control law (5). Then for every initial
conditionq(0), there a finite strictly positiveγmin such that
the closed loop system converges to the set

{q ∈ W |γdi ≤ γmin, ∀i ∈ N} .
It is obvious that different values ofγmin can be obtained

for different relative distances between agents’ final and
initial conditions. The exact relation of the parameterγmin

with the set of initial/final positions is a topic of ongoing
research.

V. SIMULATIONS

In this section we provide two computer simulations to
support the derived conclusions of this paper.

In the first simulation, the case where the sufficient condi-
tion of Theorem 3 is clearly violated. In the first screenshot
of Figure 3 the initial position and desired destination of
agenti, i = 1, 2, 3, 4 are denoted byA− i,T − i respectively.
The parameters of this simulation have been chosen as
Initial Conditions:

q1(0) =
[

0 −.15
]T

, q2(0) =
[

0 .15
]T

,

q3(0) =
[

.15 −.02
]T

, q4(0) =
[

.02 0
]T

Final Conditions:

qd1 =
[

.1432 .14
]T

, qd2 =
[− .1732 −.2

]T
,

qd3 =
[

.1732 0
]T

, qd4 =
[

0 0
]T

Parameters:

k = 100, r = .05, d = .11, Rw = 1

Screenshots I-IV show the evolution of the multi-agent team
in time under the control law (5). We observe that the control
design fails to drive the system to the desired equilibria,
despite the fact that there is a clear collision-free path for
agents 1,2 (note thatRw has been chosen sufficiently large).
This is due to the fact that agents 3,4 are very close to their
desired destination at the time when a collision between the

team members tends to occur. In such a situation, Rantzer’s
condition does not hold and some of the agents (in particular
1,2) converge to a critical point that does not coincide with
their desired destination point.
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Fig. 3. Agents fail to converge to their desired destinations.

Convergence however takes place in the next simulation
that involves seven kinematic agents and a more “collision-
bound” scenario. In Figure 4, the seven agents initial and
final positions are shown. The initial and final positions, as
well as the controller parameters of this simulation have been
chosen as:

Initial Conditions:

q1(0) =
[ −.1 .86

]T
, q2(0) =

[
.1 .096

]T
,

q3(0) =
[

.1 −.045
]T

, q4(0) =
[ −.1 −.055

]T
,

q5(0) =
[

0 −.1
]T

, q6(0) =
[

0 .1
]T

,

q7(0) =
[

.18 0
]T

Final Conditions:

qd1 =
[

.1 −.165
]T

, qd2 =
[

.1 .096
]T

,

qd3 =
[ −.1 .145

]T
, qd4 =

[
.1 .145

]T
,

qd5 =
[

0 .1
]T

, qd6 =
[

0 −.1
]T

,

qd7 =
[

0 0
]T

Parameters:

k = 64, r = .035, d = .1, Rw = 1

In Figure 5, screenshots I-V show the evolution in time
of the seven agents under the control law (5). Although the
workspace is more crowded, both the collision avoidance
and destination convergence objectives take place. This is
due to the fact that agents are far enough from their desired
destination at the time when a collision between the team
members tends to occur and the conditions of Theorem 3
are not violated.
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Fig. 4. Initial positions and desired final locations of the seven agents in
the second simulation.
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Fig. 5. Agents converge to their desired destinations successfully, avoiding
at the same time collisions with each other.

VI. CONCLUSIONS

We provided a connection between Rantzer’s dual Lya-
punov Theorem that appeared in [18] with Decentralized
Navigation Functions. It was shown that when the agents’
control law does not contain an element that forces them to
cooperate with the rest of the team once they have reached
their desired goal, global convergence cannot be guaranteed.
A sufficient condition for this to happen was derived based on
Rantzer’s Theorem. In particular, it was shown that agents are
driven towards their goals provided that collisions between
the team members tend to occur whenever agents are found
sufficiently far from their desired destinations. This was
derived based on the properties of the critical points of the
DNF’s imposed by Rantzer’s Theorem. The approach of this
paper can be considered as a new approach to guaranteed
local-minima free decentralized control designs.
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