

Coordinated Guarding/Coverage

- Applications: Art gallery, Industrial Area, Police positioning
- Possible objectives:
- Min no of cameras,
- Max coverage with N cameras,
- Weighted coverage
- Environment: 2D/3D

Bounds on number of Guards

- The General Art Gallery Problem: What is the smallest number of guards needed to cover any polygon with n vertices and h holes.
- For $h=0$, Chvatal (1975) proved bound: Floor(n/3)
- Hoffmann (1991) proved bound: Floor (($n+h) / 3$)

\qquad

Minimizing number of guards (3D etc)
Further reading on Guarding

- Marangoni (2000)
- Triangulation of 3D environment
- Vertex coloring to find subset
- Visibility computation to get candidates
- Efrat (2002) randomized search instead of the greedy
- V. Chyatal. A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial
- F. Hoffmann, M. Kaufmann, and K. Kriegel. The Art Gallery Theorem for Polygons

With Holes. Proceedings of the 32 nd Annual Symposium on Foundations of

- S. Eidenbenz. Approximation Algorithms for
Processing Letters, $82(2): 99-105,2002$.
, M.
- M. Marengoni and B. Draper. System to Place Observers on a Polyhedral Terrain
in Polynomial Time. Image and Vision Computing, 18(10): 773 - 780,2000
- A. Efrat and S. Har-Peled. Guarding Galleries and Terrains. Proceedings of the
- A. Efrat and S. Har-Peled. Guarding Galieries and Terraid Computer Congress-TC1 Stream, 2002.
U. Nisson, P. Ögren, and J. Thunberg, "Optimal positioning of survellance UGVs," presented at the 2008 IEEE/RSS International Conference on Intelligent Robots and
W.R. Franklin. Siting Observers on Terrain. Symposium on Spatial Data Handling,

Ottawa, pages 109-120, 2002

Bullo Coverage

- Distribute agents p_{i} to
- Minimize Expected squared distance
- From random event
- To nearest agent
$\mathcal{H}(P, \mathcal{W})=\sum_{i=1}^{n} \int_{W_{i}}\left\|q-p_{i}\right\|^{2} \phi(q) d q$

	Todays topics - Cooperative guarding - Static guards Cooperative search - Static targets - Cooperative pursuit evasion - Moving targets and guards

Cooperative Search

- Sensor range gives two cases
- Range similar to environment size - (next slide)
- Range \ll environment size
- Shuzhi (2005) proposes solution \rightarrow

Cooperative Search (long sensor range)

Possible approaches:

- Use Guard positions and solve m-TSP
- Discretize to a graph and solve m-TSP
- Use convex cover and solve m-TSP ...

Cooperative Search
Further reading on cooperative search

- How can we make search less conservative? - Replace partition with overlapping convex cover

- E. Frazzoli and F. Bullo. Decentralized algorithms for vehicle routing in a
stochastic time-varying environment. In Proc. of the 43 rd IEEE Conference
on Decision and Control, CDC, 2004
- Maria John, David Panton, and Kevin White. Mission planning for regiona

Shuzhi Sam Ge and Cheng-heng Fua. Complete Multi-Robot Coverage of
Unknown Environments with Minimum Repeated Coverage. In IEEE Unknown Environments with Minimum Repeated Coverage. In IEEE
International Conference on Robotics and Automation, Barcelona, Spain,
International Conference on Robotics and Automation, Barcelona, Spain,
pages $727-732$, April 2005.
I. I. Hussein and Stipanovic, "Effective Coverage Control using Dynamic Sensor Networks," presented at the Decision and Control, 2006 45th IEEE Conference on, 2006.
D. A. anisi, P. Ögren, and X. Hu, "Cooperative Minimum Time Surveillance With Multiple Ground Vehicles," Automatic Control, IEEE Transactions on, vol. 55, no. 12, pp. 2679-2691, 2010.

	Cooperative Pursuit Evasion - First introduced by Parsons (1976) - Problem on a graph - Multiple searchers - A continuous version: Suzuki et al. (1992). - simple polygon - single searcher (k-searcher) Limited field of view: Gerkey et al. (2006) - capability of a robot with a camera - (phi-searcher)

Further reading on pursuit evasion

- T. D. Parsons. Theory and applications of graphs, Lecture Notes in Mathematics,

I Suzuki and M. Yamashita. Searching for a mobile intruder in a polyo

- 1. Suzzki i
region. SIAM Journal on Computing, 21(5), 1992.
- V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygona
environment. IEEE Transactions on Robotics, 21(5), 2005.
- B. P. Gerkey, S. Thrun, and G. Gordon. Visisiility-based pursuit-evasion with
limited field of view, International Journal of Robotics Research, $25(4), 2006$
-A. Efrat, L. J. Guibas, S. Har-Peled, Lin D. C.. J. S. B. Mitchel, and T. M. Murali
Sweeping simple polyons with a chain of guards. In Proceedings of the 11th
ACM-SIAM Symposium on Discrete Algorithms, 2000. San Francisco, California,
January.
- Geoffrey Hollinger, Athanasios Kehagias, and Sanjiv Singh. Probabilistic
Strategies for Pursulit in Cluttered Environments with Multiple Robots. IEEE Strategies for Pursuit in Cluttered Environments with Multiple
International Conference on Robotics and Automation, 2007.
- J. Thunberg and P. Ögren, "A Mixed Integer Linear Programming approach to pursuit evasion problems with optional connectivity constraints, Autonomous Robots, vol. 31, no. 4, pp. 333-343, Aug. 2011.

Todays topics

- Cooperative guarding
- Static guards
- Cooperative search
- Static targets
- Cooperative pursuit evasion
- Moving targets and guards

