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Guarding, Searching and Pursuing 
Evaders using Multiagent Systems 
Petter Ögren 
Computer Vision and Active Perception (CVAP) 

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Example Scenario 

• Airport 
• Power plant 
• Military base 
• Port 
• Factory 
• … 

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

• This field is very broad 
- Overview of problems, results and tools  

Common theme: Discretizing the 
search space 

• Partitioning search space into convex sets is often useful 
• Create a graph 

-  Set <-> vertex 
-  Neighbor <-> edge 

 
Some naïve solutions: 
• Guarding 

-  Each set has guard on border 
• Search 

-  Travelling salesman 
 

Can we improve on these conservative solutions?	



Todays topics 

• Cooperative search 
- Static targets  

• Cooperative guarding 
- Static guards  

• Cooperative pursuit evasion 
- Moving targets and guards 
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Coordinated Guarding/Coverage 

• Applications: Art gallery, Industrial Area, Police 
positioning 

• Possible objectives:  
- Min no of cameras,  
- Max coverage with N cameras,  
- Weighted coverage 

• Environment: 2D/3D 

Bounds on number of Guards 

• The General Art Gallery Problem: What is the 
smallest number of guards needed to cover any 
polygon with n vertices and h holes.  

• For h=0, Chvatal (1975) proved bound: Floor(n/3)  
• Hoffmann (1991) proved bound: Floor ((n+h)/3) 

Minimize number of guards (3D etc) 

• Problem: (Min number of guards)  
• Problem (Minimum set cover) Let E = {e1, . . . , en} be a finite set 

of elements, and let S = {s1,...,sm} be a collection of subsets of E, 
i.e. sj ⊆ E. The problem minimum set cover is the problem of finding 
a minimum subset S′ ⊆ S such that every elements ei ∈ E belongs 
to at least one subset in S′. We say that E is covered by S′.  
-  NP-hard 
-  Greedy algorithm performs well , Eidenbenz (2002)  

Movie: Guarding with resolution constraints	



Guarding with resolution constraints 

Minimizing number of guards (3D etc) 

• Marangoni (2000)  
-  Triangulation of 3D environment 
-  Vertex coloring to find subset 
-  Visibility computation to get candidates 

• Efrat (2002) randomized search instead of the greedy 
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Further reading on Guarding 

• V. Chvatal. A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial 
Theory Series B, 18:39–41, 1975. 

• F. Hoffmann, M. Kaufmann, and K. Kriegel. The Art Gallery Theorem for Polygons 
With Holes. Proceedings of the 32nd Annual Symposium on Foundations of 
Computer Science, pages 39–48, 1991. 

• S. Eidenbenz. Approximation Algorithms for Terrain Guarding. Information 
Processing Letters, 82(2):99–105, 2002. 

• M. Marengoni and B. Draper. System to Place Observers on a Polyhedral Terrain 
in Polynomial Time. Image and Vision Computing, 18(10):773– 780, 2000. 

• A. Efrat and S. Har-Peled. Guarding Galleries and Terrains. Proceedings of the 
IFIP 17th World Computer Congress-TC1 Stream, 2002. 

•  U. Nilsson, P. Ögren, and J. Thunberg, “Optimal positioning of surveillance UGVs,” 
presented at the 2008 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2008), pp. 2539–2544. 

•  W.R. Franklin. Siting Observers on Terrain. Symposium on Spatial Data Handling, 
Ottawa, pages 109–120, 2002.  
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Bullo Coverage 

• Distribute agents pi to 
• Minimize Expected squared distance  

-  From random event 
-  To nearest agent 
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of Voronoi. Moreover, one can deduce some smoothness prop-
erties of : since the Voronoi partition depends at least con-
tinuously on , for all , the function
is at least continuously differentiable on

for some .

C. Centroidal Voronoi Partitions

Let us recall some basic quantities associated with a region
and a mass density function . The (generalized) mass,

centroid (or center of mass), and polar moment of inertia are
defined as

Additionally, by the parallel axis theorem, one can write

(4)

where is defined as the polar moment of inertia of
the region about its centroid .

Let us consider again the locational optimization problem (1),
and suppose now we are strictly interested in the setting

(5)

that is, we assume . The parallel axis
theorem leads to simplifications for both the function and
its partial derivative

Here, the mass density function is . It is convenient to
define

Therefore, the (not necessarily unique) local minimum points
for the location optimization function are centroids of their
Voronoi cells, i.e., each location satisfies two properties si-
multaneously: it is the generator for the Voronoi cell , and it
is its centroid

Accordingly, the critical partitions and points for are called
centroidal Voronoi partitions. We will refer to a sensors’ config-
uration as a centroidal Voronoi configuration if it gives rise to a
centroidal Voronoi partition. Of course, centroidal Voronoi con-
figurations depend on the specific distribution density function

, and an arbitrary pair admits, in general, multiple cen-
troidal Voronoi configurations. This discussion provides a proof
alternative to the one given in [10] for the necessity of centroidal
Voronoi partitions as solutions to the continuous -median lo-
cation problem.

III. CONTINUOUS AND DISCRETE-TIME LLOYD DESCENT FOR

COVERAGE CONTROL

In this section, we describe algorithms to compute the loca-
tion of sensors that minimize the cost , both in continuous and
in discrete time. In Section III-A, we propose a continuous-time
version of the classic Lloyd algorithm. Here, both the positions
and partitions evolve in continuous time, whereas the Lloyd al-
gorithm for vector quantization is designed in discrete time. In
Section III-B, we develop a family of variations of Lloyd algo-
rithm in discrete time. In both settings, we prove that the pro-
posed algorithms are gradient descent flows.

A. A Continuous-Time Lloyd Algorithm

Assume the sensors location obeys a first-order dynamical
behavior described by

Consider a cost function to be minimized and impose that
the location follows a gradient descent. In equivalent con-
trol theoretical terms, consider a Lyapunov function, and
stabilize the multivehicle system to one of its local minima via
dissipative control. Formally, we set

(6)

where is a positive gain, and where we assume that the
partition is continuously updated.

Proposition 3.1 (Continuous-Time Lloyd Descent): For the
closed-loop system induced by (6), the sensors location con-
verges asymptotically to the set of critical points of , i.e., the
set of centroidal Voronoi configurations on . Assuming this set
is finite, the sensors location converges to a centroidal Voronoi
configuration.

Proof: Under the control law (6), we have

By LaSalle’s principle, the sensors location converges to the
largest invariant set contained in , which is precisely the
set of centroidal Voronoi configurations. Since this set is clearly
invariant for (6), we get the stated result. If consists of
a finite collection of points, then converges to one of them
(see Corollary 1.2).

Remark 3.2: If is finite, and , then a
sufficient condition that guarantees exponential convergence is
that the Hessian of be positive definite at . Establishing
this property is a known open problem, see [10]. Note that this
gradient descent is not guaranteed to find the global minimum.
For example, in the vector quantization and signal processing
literature [12], it is known that for bimodal distribution density
functions, the solution to the gradient flow reaches local minima
where the number of generators allocated to the two region of
maxima are not optimally partitioned.

Bullo Coverage 
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closed-loop system induced by (6), the sensors location con-
verges asymptotically to the set of critical points of , i.e., the
set of centroidal Voronoi configurations on . Assuming this set
is finite, the sensors location converges to a centroidal Voronoi
configuration.

Proof: Under the control law (6), we have

By LaSalle’s principle, the sensors location converges to the
largest invariant set contained in , which is precisely the
set of centroidal Voronoi configurations. Since this set is clearly
invariant for (6), we get the stated result. If consists of
a finite collection of points, then converges to one of them
(see Corollary 1.2).

Remark 3.2: If is finite, and , then a
sufficient condition that guarantees exponential convergence is
that the Hessian of be positive definite at . Establishing
this property is a known open problem, see [10]. Note that this
gradient descent is not guaranteed to find the global minimum.
For example, in the vector quantization and signal processing
literature [12], it is known that for bimodal distribution density
functions, the solution to the gradient flow reaches local minima
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Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Cooperative Search (Background: TSP) 

• Travelling Salesperson 
Problem (TSP) 

• Variations 
- Multi-TSP 
- Metric TSP 
-  Vehicle routing problem 
- Max capacity 
-  Time windows 
- … 

"It involves ideas from polyhedral combinatorics and combinatorial 
optimization, integer and linear programming, computer science data 
structures and algorithms, parallel computing, software engineering, 
numerical analysis, graph theory, and more."	



13000 cities, Applegate, Bixby, Cook and Chvatal	



Cooperative Search 

• Sensor range gives two cases 
• Range similar to environment size 

-  (next slide) 
• Range << environment size 

-  Shuzhi (2005) proposes solution à 

observed that by keeping an appropriate distance from the
obstacles and spurious obstacles in the environment while
performing coverage, each robot ensures that, at any time,
any unexplored region is connected to the position of at
least one of the robots, and can be cleared without requiring
the robots to cross any area that had been covered. Hence,
repeated coverage is kept to a minimum.

VI. CONCLUSION

In this paper, we presented a coverage algorithm that
may be applied to multi-robot teams to achieve the com-
plete coverage of a connected area. We have also analyzed
the properties of the algorithm. In particular, we studied
the bounds on the amount of repeated coverage and time
required for complete coverage. The amount of repeated
coverage using the algorithm is limited only to the areas
where the distance between obstacles is less than 2dr,
and is therefore equal to |Enrw|. No unnecessary repeated
coverage occurs, therefore improving the general efficiency
of the team.
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Fig. 5. Coverage of an unknown, gridded environment with three robots
over 387 time steps. Black: Obstacles, White: Uncovered areas, Dark
Gray: Robots, Lighter Shades of Gray: Covered areas (Ec)

732

Cooperative Search (long sensor range) 

Possible approaches: 
• Use Guard positions and solve m-TSP 

• Discretize to a graph and solve m-TSP 

• Use convex cover and solve m-TSP … 
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Example of Cooperative search 
(Anisi 2010) 

How?	



Cooperative Search 

• How can we make search less conservative? 
• Replace partition with overlapping convex cover 

Create Convex Cover Sets

Perform Tabu Search on Order of Set Visitation

Solve Shortest Path Problem to find Paths Visiting Sets

Cooperative Search 

• How can we make search less conservative? 
• Replace partition with overlapping convex cover 

Create Convex Cover Sets

Perform Tabu Search on Order of Set Visitation

Solve Shortest Path Problem to find Paths Visiting Sets

Further reading on cooperative search 

•  E. Frazzoli and F. Bullo. Decentralized algorithms for vehicle routing in a 
stochastic time-varying environment. In Proc. of the 43rd IEEE Conference 
on Decision and Control, CDC, 2004.  

•  Maria John, David Panton, and Kevin White. Mission planning for regional 
surveillance. Annals of Operations Research, 108:157–173, Nov. 2001.  

•  Shuzhi Sam Ge and Cheng-heng Fua. Complete Multi-Robot Coverage of 
Unknown Environments with Minimum Repeated Coverage. In IEEE 
International Conference on Robotics and Automation, Barcelona, Spain, 
pages 727–732, April 2005. 

•  I. I. Hussein and Stipanovic, “Effective Coverage Control using Dynamic 
Sensor Networks,” presented at the Decision and Control, 2006 45th IEEE 
Conference on, 2006. 

•  D. A. anisi, P. Ögren, and X. Hu, “Cooperative Minimum Time Surveillance 
With Multiple Ground Vehicles,” Automatic Control, IEEE Transactions on, 
vol. 55, no. 12, pp. 2679–2691, 2010. 

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Cooperative Pursuit Evasion 

• First introduced by Parsons (1976) 
-  Problem on a graph 
- Multiple searchers 

• A continuous version: Suzuki et al. (1992).  
-  simple polygon  
-  single searcher (k-searcher)  

• Limited field of view: Gerkey et al. (2006) 
-  capability of a robot with a camera  
-  (phi-searcher) 
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Randomized Pursuit Evasion 

• Randomized strategy: Isler et al. (2005).  

• By repeating a randomized strategy, capture 
probability can be made arbitrarily high (if simply 
connected) 

876 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 5, OCTOBER 2005

Fig. 1. Single pursuer cannot capture an evader using deterministic strategies.

We also address the harder task of capturing the evader. For
this problem, we present a strategy for two pursuers, one of
which is at least as fast as the evader. The strategy is based on
the randomized strategy to locate the evader and the known solu-
tion to a problem called the “lion and man problem” [2], which
is reviewed in Section III-A. The same strategy can be used to
capture the evader while protecting a door. This problem was in-
troduced in [13] to model scenarios where the goal is to locate
the evader, which may leave the polygonal area through a door
and win the game.

The two-pursuer strategy can be modified so that a single pur-
suer can also capture the evader. However, the expected time-to-
capture in this case, though finite, may be significantly longer
than the expected time-to-capture with two pursuers.

Organization of the Paper: We start the paper with a mo-
tivating example for randomized strategies (Section I-A). We
present preliminary concepts and definitions in Section I-B. In
Section II, we address the problem of locating a fast, unpre-
dictable evader with global visibility.

Next, in Section III, we address the task of capturing the
evader in a simply connected environment. For this problem, we
present a randomized strategy for two pursuers, who can com-
municate at all times, to quickly capture the evader. We show
how this strategy can be modified for a single pursuer, at the ex-
pense of increasing the capture time, in Section IV-A. We also
present extensions of the basic two-pursuer strategy for the case
where the pursuers have limited communication (Section IV-B),
and for a scenario where the polygonal room has a door through
which the evader can escape (Section IV-C).

A. Randomized Strategies

The power of randomization in the context of pursuit–evasion
games is nicely illustrated by the example in Fig. 1. A similar
example can be found in [14].

In this example, a single pursuer can never locate the evader
using a deterministic strategy. Let us distinguish four regions

, and , as shown in the figure. Now suppose the pur-
suer has a deterministic strategy of visiting these regions in the
order . In this case, the evader can first hide at
and escape to while the pursuer is visiting . Afterwards,
it can repeat the same strategy and escape to while is at

. If visits the regions in a different order, it is easy to see
that can find a similar strategy to avoid . Therefore, in this
polygon, one pursuer can never locate the evader.

An alternative interpretation of this situation is the following.
Suppose the polygon in Fig. 1 is contaminated with many

evaders executing all possible evader strategies. There is no de-
terministic pursuer strategy that guarantees that all the evaders
will be caught; for any given deterministic pursuer strategy,
there will be at least one evader which can avoid being located
forever.

Now consider the following randomized strategy. Instead of
committing to a deterministic strategy, moves to the center
of the polygon and selects one of the regions uni-
formly at random and visits it. It is easy to see that if guesses
the region where is located correctly, then cannot escape,
and the probability of this desired event is . The crucial
observation is that since does not know which region will
visit, it cannot choose a strategy based on the order of points
visited by .

The probability of locating the evader can be made arbitrarily
small by repeating the same strategy a few times. If is the
number of trials, the probability of missing in all trials is

in this example, which decreases exponentially with .
In general, if the probability of capture is , the expected number
of rounds to capture is . Note that each round is indepen-
dent. We can obtain the expected time to locate the evader as fol-
lows. Since the length of a round is bounded by the time to travel
between the two furthest points in the polygon (say, ), the ex-
pected time to capture is . By repeating the experiment
roughly times, we can show (using the Chernoff
bound) that the pursuer has a high probability of locating the
evader. For details of this analysis, the reader is referred to [15].

B. Preliminaries

Let be the input polygon, including its interior, and be the
set of vertices of . The letter denotes the number of vertices
of the polygon. Two points can see each other if the
line segment lies entirely in .

We use to denote the length of the shortest path from
to that remains inside . The shortest path has the following

property.
Property 1: The shortest path between any two points and
inside a polygon is a polygonal path whose inner vertices

are vertices of .
The shortest path tree from a point in is defined as

, where denotes the shortest path from
to . A polygon is simply connected if any simple closed curve
inside the polygon can be shrunk to a point. In other words, a
simply connected polygon does not contain any “holes.” All
the polygons considered in this paper are simply connected.

The triangulation of a polygon is a decomposition of the
polygon into triangles by a maximal set of nonintersecting diag-
onals (see Fig. 2). The dual of a triangulation is a graph whose
vertices correspond to the triangles. There is an edge between
two vertices if the corresponding triangles share a side. It is well
known that the triangulation of a simply connected polygon has
exactly triangles. In addition, the dual of the triangulation
is a tree [16].

Game Formulations: In this paper, we study two pur-
suit–evasion games with different objectives. Both games take
place in a simply connected polygon , which is known to all
players.

Cooperative Pursuit Evasion 

• Efrat et al.(2000) consider chains of searchers in 
simple polygons 

• Hollinger et al. (2007) a probabilistic similar to Markov 
Decision processess (MDP) and partially observable 
MDP (POMDP)  

• Thunberg (2011) MILP/MPC formulation … 

3

first for exact optimization, then for approximation. Due to lack of space, we defer most proofs to
the full version of the paper; some proofs are contained in the appendices.

2 Geometric Preliminaries

Let P be a simple polygon in the plane. Let G = {G1, G2, . . . , Gr} be a set of point guards
in P . For a guard Gi ∈ G, let γi(t) denote the position of Gi in P at time t; we require that
γi(t) : [0,∞) → P be a continuous function. A configuration of G at time t, denoted Γ(t) is the set
of points {γi(t) | 1 ≤ i ≤ r}. We say that Γ(t) is legal if

1. γ1(t) and γr(t) both lie in ∂P , and

2. for every 1 ≤ i < r, the segment γi(t)γi+1(t) does not intersect the exterior of P .

From now on, we will use the term configuration to mean legal configuration. A useful way to
think of a configuration of G is as a piecewise-linear path connecting the points γ1(t) and γr(t) that
“cuts” through P and does not intersect the exterior of P .

A motion strategy (γ,G) = {γi, 1 ≤ i ≤ r} is a specification of γi, for each guard Gi ∈ G. We
assume that each guard can follow an algebraic path, once the path is specified. Thus, each γi is a
piecewise-algebraic function. The complexity of γi is the number of algebraic functions needed to
define it. The complexity of a motion strategy is the total complexity of the γi’s.

In order to formalize the notion of sweeping a polygon, we assume that the chain corresponding
to the configuration of the guards is oriented from G1 to Gr. For a motion strategy (γ,G), let AP (t)
denote the fraction of the area of P to the right of the configuration Γ(t); AP (0) = 0. We say that
a motion strategy (γ,G) is a search schedule for P if AP (t) = 1, for some t > 0. Finally, we say
that P is r-searchable if a search schedule that uses at most r guards exists for P . See Figure 1 for
an example of such a sweep. In Appendix A, we show that there are n-vertex polygons that are
not o(n)-searchable.

(a) (b) (c) (d)

$G_1$

(e) (f)

Figure 1: A search schedule with three guards. The unswept region is shown shaded.

We assume without loss of generality that all of the guards start at the same point in ∂P at the
beginning of the sweep and converge at another point of ∂P at the end of the sweep. The following
lemma characterizes when a motion strategy is a search schedule:

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

p1 . . . p
N

represent the probability that the evader is in the
corresponding cell. Let the value p0 represent the probability
that the evader has already been captured by the pursuers.
Refer to this as the “capture state.” The vector p now defines
a probability distribution function over the evader’s position
in the environment (with the addition of a capture state).
The pursuers’ goal is to minimize the expected time

of reaching a capture event. Thus, the pursuers seek to
maximize the probability that the evader is in the capture
state at any given time t. The coordination problem is then
defined as the determination of paths for the pursuers such
that the probability of capture is maximized at any given
time.

IV. ALGORITHM DESCRIPTION

A. Map Discretization

Our method for discretization takes advantage of the
inherent characteristics of indoor environments. To discretize
an indoor map by hand, simply label convex hallways and
rooms as cells and arbitrarily collapse overlapping sections.
This method is simple enough that it can be performed by
hand even for large maps. Fig. 1 shows an example with
a small map, and Fig. 3 gives an example discretization
for a large map. Taking into account the cell adjacency in
a discretized map yields an undirected graph that can be
searched by the pursuers. This ties our research into that of
probabilistic graph search. Fig. 2 shows the undirected graph
derived from the house map.
This method for discretization also has the advantage of

guaranteeing that a pursuer in a given convex cell will have
line-of-sight to an evader in the same cell. This allows the
capture event to be reduced to the attainment of line-of-sight
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evader to a known state. Gaining line-of-sight is relevant to
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In comparison with the visibility-based discretization pro-

posed by LaValle and Guibas [8], our discretization tech-
nique yields far fewer cells making it more applicable
to large, complex environments. The tradeoff is that our
discretization does not provide a discretization suitable for
use with LaValle and Guibas’s visibility-based pursuit algo-
rithms.

Fig. 1. Small house map used for pursuit-evasion simulation

Fig. 2. Undirected graph built from house discretization

Fig. 3. Office building map used for pursuit-evasion simulation (dotted
lines show discretization boundaries)

B. Dispersion and Capture Modeling
To integrate a motion model of the evader into our pursuit-

evasion framework and better define capture events, we
develop “capture” and “dispersion” matrices for application
to the evader’s state vector. As presented in Section III,
the location of the evader is represented by a vector p =

[p0, . . . , pN

] where p0 represents the probability the evader
has already been captured, and p1 . . . p

N

represent the proba-
bility the evader is in the corresponding discretized cell. We
can mathematically represent a capture event on that state
vector by defining a matrix that moves all probability1 from
all cells visible from pursuer i’s current cell XP

i

(t) to the
capture state. The appropriate capture matrix C

X

P
i (t) for cell

XP

i

(t) is applied at time t to yield p(t+1) = p(t)C
X

P
i (t). For

example, if we assume that the pursuer cannot see through
doorways, the capture matrix for a pursuer in cell 1 of the
environment in Fig. 1 would be:

C1 =

0

BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCA

Under the current assumption that capture is guaranteed
in the pursuer’s current cell and not possible in neighboring
1The capture matrix can also contain non-unity values if the probability

of seeing an evader when it is in a pursuer’s line-of-site is less than one.
This would be the case with noisy sensors.

MILP/MPC approach to Pursuit Evasion 

336 Auton Robot (2011) 31:333–343

binary variables λit ,σit , θit ∈ {0,1}, where i ∈ J and t ∈
{1,2, . . . , T }. Let λit = 1 if and only if a pursuer is located
in polygon i at time t . Let furthermore σit = 1 if and only if
polygon i is seen at time t and θit = 1 if and only if polygon
i is cleared but unseen at time t .

Before formulating the MILP we define four different
search-states that each region Fi can be in. Theoretically,
there are eight combinations of the three binary variables
λit ,σit , θit , but given the meanings we assign to them, only
four of those eight combinations are possible, and we denote
them S1, S2, S3, S4. These four states will help us capture the
time evolution of the search in the MILP formalism. We dif-
ferentiate between three different cleared states, S1, S2, S3
and one contaminated state, S4.

S1 The region is seen by a pursuer and contains a pursuer,
i.e., λit = 1, σit = 1 and θit = 0.

S2 The region is seen by a pursuer, but does not contain a
pursuer, i.e., λit = 0, σit = 1 and θit = 0.

S3 The region is not seen by a pursuer, but can not contain
the evader, i.e., λit = 0, σit = 0 and θit = 1.

S4 The region might contain the evader, i.e., λit = 0, σit =
0 and θit = 0.

Note that no other combinations of λit ,σit , θit are possible
by definition.

We now state the MILP formulation and then show, in
Lemma 2, that a feasible solution does indeed correspond
to traversable pursuer paths pi(τ ) and an expanding cleared
region {i : θit = 1}.

Problem 2 (MILP) Given a T ∈ Z+ solve the following in-
teger linear program.

max Z = α
∑

i∈J

θiT + (1 − α)
∑

i∈J

σiT (1)

subject to
Constraints addressing: λit (pursuer locations),

∑

i∈J

λit − N = 0, (2)

N − (N − 1)λit −
∑

j∈Mi

λj t ≥ 0, (3)

∑

j∈Mi

λj t − λi(t−1) ≥ 0, (4)

2 −
∑

j∈Mi

λj (t−1) − λit ≥ 0. (5)

Constraints addressing: σit (seen regions)
∑

j∈Ni

λj t − σit ≥ 0, (6)

σit − λj t ≥ 0, ∀j ∈ Ni (7)

Constraints addressing: θit (unseen cleared regions)

σj t + θj t − θit ≥ 0, ∀j ∈ Mi − {i}, (8)

σi(t−1) + θi(t−1) − θit ≥ 0, (9)

1 − σit − θit ≥ 0, (10)

θi1 = 0, (11)

where α ∈ [0,1], i ∈ J and t ∈ {2,3, . . . , T } in (4), (5) and
(9) and t ∈ {1,2, . . . , T } in the other constraints.

We will now motivate all the constraints and then make
remarks about the objective function and the fact that the
constraints are somewhat conservative. In (2) we make sure
that there are exactly N pursuers at each time t . Constraints
(3)–(5) make sure, in a somewhat conservative way, that the
pursuers move between neighboring regions one step at a
time. Constraint (3) states that if a region is occupied, then
all its neighbors must be unoccupied. (4) Makes sure that if
a region was occupied in the last time step, at least one of
its neighbors must be occupied in this time step. (5) Implies
that if a region is occupied, at most one of its neighbors was
occupied the last time step.

Moving on to the constraints making sure that the right
regions are labeled as seen, we note that (6) makes sure that
if there are no pursuers in the Ni neighborhood, then the
region can not be seen, and (7) makes sure that if there is a
pursuer in one of the Ni neighborhood regions, then it must
be seen.

Finally, looking at the constraints governing the unseen
but cleared regions, we note that (8) implies that if any
neighbor of a region is not seen nor cleared, then the re-
gion can not be cleared itself. (9) Implies that a cleared re-
gion must have been either cleared or seen in the previous
time step. (10) Then states that a region can not be seen and
cleared but unseen at the same time. (11) Finally makes sure
that there are no cleared areas at starting time. Note also that
the objective function makes sure that regions that can be
marked as cleared are marked as cleared.

Remark 2 (Objective function) Note that α = 1 corresponds
to maximizing the cleared but unseen region (S3), α = 0
corresponds to maximizing the visible region (S1 or S2),
while α = 0.5 corresponds to maximizing the cleared region
(S1, S2 or S3) at the final time T . In Sect. 7 below we will
see that α = 1 is actually the best measure of progress for the
clearing task. By removing the visible region from the ob-
jective function, we decrease the risk of the pursuers staying
in locations where they see a large area, instead of moving
on to clear additional areas.
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gion must have been either cleared or seen in the previous
time step. (10) Then states that a region can not be seen and
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that there are no cleared areas at starting time. Note also that
the objective function makes sure that regions that can be
marked as cleared are marked as cleared.

Remark 2 (Objective function) Note that α = 1 corresponds
to maximizing the cleared but unseen region (S3), α = 0
corresponds to maximizing the visible region (S1 or S2),
while α = 0.5 corresponds to maximizing the cleared region
(S1, S2 or S3) at the final time T . In Sect. 7 below we will
see that α = 1 is actually the best measure of progress for the
clearing task. By removing the visible region from the ob-
jective function, we decrease the risk of the pursuers staying
in locations where they see a large area, instead of moving
on to clear additional areas.
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Lemma 2, that a feasible solution does indeed correspond
to traversable pursuer paths pi(τ ) and an expanding cleared
region {i : θit = 1}.

Problem 2 (MILP) Given a T ∈ Z+ solve the following in-
teger linear program.

max Z = α
∑

i∈J

θiT + (1 − α)
∑

i∈J

σiT (1)

subject to
Constraints addressing: λit (pursuer locations),

∑

i∈J

λit − N = 0, (2)

N − (N − 1)λit −
∑

j∈Mi

λj t ≥ 0, (3)

∑

j∈Mi

λj t − λi(t−1) ≥ 0, (4)

2 −
∑

j∈Mi

λj (t−1) − λit ≥ 0. (5)

Constraints addressing: σit (seen regions)
∑

j∈Ni

λj t − σit ≥ 0, (6)

σit − λj t ≥ 0, ∀j ∈ Ni (7)

Constraints addressing: θit (unseen cleared regions)

σj t + θj t − θit ≥ 0, ∀j ∈ Mi − {i}, (8)

σi(t−1) + θi(t−1) − θit ≥ 0, (9)

1 − σit − θit ≥ 0, (10)

θi1 = 0, (11)

where α ∈ [0,1], i ∈ J and t ∈ {2,3, . . . , T } in (4), (5) and
(9) and t ∈ {1,2, . . . , T } in the other constraints.

We will now motivate all the constraints and then make
remarks about the objective function and the fact that the
constraints are somewhat conservative. In (2) we make sure
that there are exactly N pursuers at each time t . Constraints
(3)–(5) make sure, in a somewhat conservative way, that the
pursuers move between neighboring regions one step at a
time. Constraint (3) states that if a region is occupied, then
all its neighbors must be unoccupied. (4) Makes sure that if
a region was occupied in the last time step, at least one of
its neighbors must be occupied in this time step. (5) Implies
that if a region is occupied, at most one of its neighbors was
occupied the last time step.

Moving on to the constraints making sure that the right
regions are labeled as seen, we note that (6) makes sure that
if there are no pursuers in the Ni neighborhood, then the
region can not be seen, and (7) makes sure that if there is a
pursuer in one of the Ni neighborhood regions, then it must
be seen.

Finally, looking at the constraints governing the unseen
but cleared regions, we note that (8) implies that if any
neighbor of a region is not seen nor cleared, then the re-
gion can not be cleared itself. (9) Implies that a cleared re-
gion must have been either cleared or seen in the previous
time step. (10) Then states that a region can not be seen and
cleared but unseen at the same time. (11) Finally makes sure
that there are no cleared areas at starting time. Note also that
the objective function makes sure that regions that can be
marked as cleared are marked as cleared.

Remark 2 (Objective function) Note that α = 1 corresponds
to maximizing the cleared but unseen region (S3), α = 0
corresponds to maximizing the visible region (S1 or S2),
while α = 0.5 corresponds to maximizing the cleared region
(S1, S2 or S3) at the final time T . In Sect. 7 below we will
see that α = 1 is actually the best measure of progress for the
clearing task. By removing the visible region from the ob-
jective function, we decrease the risk of the pursuers staying
in locations where they see a large area, instead of moving
on to clear additional areas.
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where α ∈ [0,1], i ∈ J and t ∈ {2,3, . . . , T } in (4), (5) and
(9) and t ∈ {1,2, . . . , T } in the other constraints.

We will now motivate all the constraints and then make
remarks about the objective function and the fact that the
constraints are somewhat conservative. In (2) we make sure
that there are exactly N pursuers at each time t . Constraints
(3)–(5) make sure, in a somewhat conservative way, that the
pursuers move between neighboring regions one step at a
time. Constraint (3) states that if a region is occupied, then
all its neighbors must be unoccupied. (4) Makes sure that if
a region was occupied in the last time step, at least one of
its neighbors must be occupied in this time step. (5) Implies
that if a region is occupied, at most one of its neighbors was
occupied the last time step.

Moving on to the constraints making sure that the right
regions are labeled as seen, we note that (6) makes sure that
if there are no pursuers in the Ni neighborhood, then the
region can not be seen, and (7) makes sure that if there is a
pursuer in one of the Ni neighborhood regions, then it must
be seen.

Finally, looking at the constraints governing the unseen
but cleared regions, we note that (8) implies that if any
neighbor of a region is not seen nor cleared, then the re-
gion can not be cleared itself. (9) Implies that a cleared re-
gion must have been either cleared or seen in the previous
time step. (10) Then states that a region can not be seen and
cleared but unseen at the same time. (11) Finally makes sure
that there are no cleared areas at starting time. Note also that
the objective function makes sure that regions that can be
marked as cleared are marked as cleared.

Remark 2 (Objective function) Note that α = 1 corresponds
to maximizing the cleared but unseen region (S3), α = 0
corresponds to maximizing the visible region (S1 or S2),
while α = 0.5 corresponds to maximizing the cleared region
(S1, S2 or S3) at the final time T . In Sect. 7 below we will
see that α = 1 is actually the best measure of progress for the
clearing task. By removing the visible region from the ob-
jective function, we decrease the risk of the pursuers staying
in locations where they see a large area, instead of moving
on to clear additional areas.

Todays topics 

• Cooperative guarding 
- Static guards  

• Cooperative search 
- Static targets  

• Cooperative pursuit evasion 
- Moving targets and guards 

Thank you … 


