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Abstract— In this paper we study a family of controllers
that guarantees attitude synchronization for a network of
elements in the unit sphere domain, i.e.,S2. We propose
distributed continuous controllers for elements whose dynamics
are controllable (i.e., control with torque as command), and
which can be implemented by each individual agent without the
need of a common global orientation frame among the network,
i.e., it requires only local information that can be measured by
each individual agent from its own orientation frame. The con-
trollers are specified according to arbitrary distance functions
in S

2, and we provide conditions on those distance functions
that guarantee that i) a synchronized network of agents is
locally asymptotically stable for an arbitrary connected network
topology; ii) a synchronized network can be achieved for almost
all initial conditions in a tree graph network. We also study
the equilibria configurations that come with specific types of
network graphs. The proposed strategies can be used in attitude
synchronization of swarms of fully actuated rigid bodies, such
as satellites.

I. I NTRODUCTION

Decentralized control in a multi-agent environment has
been a topic of active research for the last decade, with appli-
cations in large scale robotic systems. Attitude synchroniza-
tion in satellite formations is one of those applications [1],
where the control goal is to guarantee that a network of
fully actuated rigid bodies can acquire a common attitude.
Coordination of underwater vehicles in ocean exploration
missions can also be casted as an attitude synchronization
problem [2].

In the literature of attitude synchronization, solutions for
consensus in the special orthogonal group can be found [1],
[3]–[10], which focus oncompleteattitude synchronization.
In this paper, we focus onincompleteattitude synchroniza-
tion, which has not received the same attention: in this
scenario each rigid body has a main direction and the
global objective is to guarantee alignment of all rigid bodies’
main directions; the space orthogonal to each main direction
can be left free of actuation or controlled to accomplish
some other goals. Complete attitude synchronization requires
more measurements when compared to incomplete attitude
synchronization, and it might be the case that a rigid body
(such as a satellite) is not fully actuated but rather only
actuated in the space orthogonal to a specific direction,
in which case incomplete attitude synchronization is still
feasible.

In [4], attitude control in a leader-follower network of rigid
bodies has been studied, with the special orthogonal group
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being parametrized with Modified Rodrigues Parameters.
The proposed solution guarantees attitude synchronization
for connected graphs, but it requires all rigid bodies to be
aware of a common and global orientation frame. In [5],
[6], a controller for a single-leader single-follower network
is proposed that guarantees global attitude synchronization
at the cost of introducing a discontinuity in the control laws.
In [7], attitude synchronization in a leader-follower network
is accomplished by designing a non-linear distributed ob-
server for the leader.

In another line of work, in [3], [8], attitude synchronization
is accomplished without the need of a common orientation
frame among agents. Additionally, in [3], a controller for
switching and directed network topologies is proposed, and
local stability of consensus in connected graphs is guaran-
teed, provided that the control gain is sufficiently high. In
this paper, we provide a stronger result, by describing the
basin of attraction of a synchronized network for a family
of controllers.

In [1], attitude synchronization is accomplished with
controllers based on behavior based approaches and for a
bidirectional ring topology. The special orthogonal group
is parametrized with quaternions, and the proposed strategy
also requires a common attitude frame among agents. In [11],
a quaternion based controller is proposed that guarantees a
synchronized network of rigid bodies is a global equilibrium
configuration, provided that the graph network is acyclic.
This comes at the cost of having to design discontinuous
(hybrid) controllers.

In [9], controllers for complete attitude synchronization
and for switching topologies are proposed, but this is ac-
complished at the kinematic level, i.e., by controlling the
agents’ angular velocity (rather than their torque). This work
is extended in [10] by providing controllers at the torque
level, and similarly to [1], stability properties rely of high
gain controllers.

In this paper, we propose a distributed control strategy for
synchronization of elements in the unit sphere domain. The
controllers are described as functions of arbitrary distance
functions, and, in order to exploit results of graph theory,
we impose a condition on those distance functions that will
restrict them to be invariant to rotations. As a consequence,
the proposed controllers can be implemented by each agent
without the need of a common orientation frame. Also,
when performing synchronization along a principal axis, we
propose a controller that does not require full torque, but
rather torque orthogonal to that principal axis. We restrict
the proposed controllers to be continuous, which means
that a synchronized network of agents cannot be a global
equilibrium configuration, sinceS2 is a non-contractible



set [12]. Our main contribution lies in finding conditions
on the distance functions that guarantee thati) a synchro-
nized network is locally asymptotically stable for arbitrary
connected network topologies;ii) a synchronized network
can be achieved for almost all initial conditions in a tree
graph network. Also, we provide explicit basins of attraction
of the synchronized network, and characterize the equilibria
configurations for some general, yet specific, types of graph
networks. The remainder of this paper is structured as
follows. In Section III, the problem statement is described; in
Section IV, the proposed solution is presented; in SectionsV
and VI, convergence to a synchronized network is discussed
for tree and non-tree graphs, respectively; in Section VII
an alternative constrained control law is proposed; and, in
Section VIII, simulations are presented that support the
theoretical results.

II. N OTATION

Given a matrixA ∈ R
n×m, (A)j denotes thej th column

of A for all j ∈ {1, · · · ,m}, and (AT )Ti denotes theith

row of A for all i ∈ {1, · · · , n}. 0n ∈ R
n and 1n ∈ R

n

denote the zero column vector and the column vector with
all components equal to 1, respectively; when the subscriptn

is omitted, the dimensionn is assumed to be of appropriate
size.In ∈ R

n×n stands for the identity matrix, and we omit
its subscript whenn = 3. The matrixS (x) ∈ R

3×3 is a cross
product skew-symmetric matrix and it satisfiesS (a) b =
a×b, for anya,b ∈ R

3. The mapΠ(x) : {x ∈ R
3 : xT

x =
1} 7→ R

3×3 yields a matrix that represents the orthogonal
projection operator onto the subspace perpendicular tox,
and it satisfiesΠ(x) = I − xx

T . We denote the Kronecker
product betweenA ∈ R

m×n andB ∈ R
s×t by A ⊗ B ∈

R
ms×n t. For a functionf(.) parametrized in time, we denote

f |t=t′ asf evaluated at time instantt′. For two vectorsa,b ∈
R

n, a = ±b means that eithera = b or a = −b. For
e ∈ R

n, ei stands for theith component; and fore ∈ R
Mn,

ei ,
[

eM(i−1)+1 · · · eMi

]T

(n,M ∈ N). We also use the
generic notation{ai} , {a1, · · · , aN} whereai ∈ A for
all i ∈ {1, · · · , N} and someN ∈ N, and whereA is an
arbitrary space (for example,S2 or R

3 or N); finally, we
denote|{ai}| = N .

III. PROBLEM STATEMENT

We consider a group ofN agents, indexed by the set
N = {1, · · · , N}, operating in the unit sphere domain
S2 = {x ∈ R

3 : xT
x = 1}. The group of agents network

can be modeled as an undirected static graph,G = {N , E},
with N as the vertices’ set indexed by the team members,
andE as the edges’ set. For every pair of agents,i ∈ N and
j ∈ N\{i}, that are aware of each other’s relative attitude,
we say agentj is a neighbor ofi, and vice-versa; also, we
denoteNi ⊂ N as the neighbor set of agenti. Each agent
i has its own orientation frame (w.r.t. an unknown inertial
orientation frame), represented byRi ∈ SO(3). Letni ∈ S2

be a direction along agent’si orientation, i.e.,ni , Rin̄i,
where n̄i ∈ S2 is a constant unit vector that is known
by agenti and no other agent. In this paper, the goal of
attitude synchronization is not that all agents share the same
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Fig. 1. In incomplete synchronization,n rigid bodies, indexed byi =

{1, · · · , n}, align the unit vectorsni , Rin̄i, wheren̄i is fixed in rigid
body i (u1,u2 andu3 stand for the canonical basis vectors inR3).

completeorientation, i.e.,R1 = · · · = RN , but rather that all
agents share the same orientation along a specific direction,
i.e., n1 = · · · = nN . Figure 1 illustrates the concept of
incomplete synchronization for two agents. Notice that agent
i is not aware ofni (since this is specified in an unknown
inertial orientation frame); instead, agenti is aware of its
direction n̄i – fixed in its own orientation frame – and the
relative attitude between its direction and its neighbors’own
directions. For example, in a group of satellites that must
align one of their principal axis – say the first axis,n̄ =
[

1 0 0
]T

for all satellites, and the desired synchronized
network of satellites satisfiesR1n̄ = · · · = RN n̄.

A rotation matrixR ∈ SO(3) evolves with kinematics

Ṙ = RS (ω) ⇒ Ṙn̄ = S (Rω)Rn̄, (1)

whereω ∈ R
3 is the body-framed angular velocity. For a

rigid body with moment of inertiaJ = JT ∈ R
3×3, the

body-framed angular velocity dynamics are given by

Jω̇ = −S (ω)Jω +T, (2)

with T ∈ R
3 being a torque expressed in the body attitude

frame, and that can be actuated.
Problem 1: Given a set of dynamic agents with unit

vectors{ni}, angular velocities{ωi} and moments of inertia
{Ji} satisfying (1) and (2), design distributed control laws for
the torques{Ti} that guarantee that all unit vectors converge
to each other, in the absence of a common inertial orientation
frame.

IV. PROPOSEDSOLUTION

A. Preliminaries

We first present some definitions and results from graph
theory that will be used in later sections [13]. A graph
G = {N , E} is said to be connected if there exists a path
between any two vertices inN . G is a tree if it is connected
and it contains no cycles. An orientation on the graphG
is the assignment of a direction to each edge(i, j) ∈ E ,
where each edge vertex is either the tail or the head of
the edge. For brevity, we denoteN = |N |, M = |E| and
M , {1, · · · ,M}. The incidence matrixB ∈ R

N×M of
G is the {0,±1} matrix, such thatBij = 1 if the vertex
i is the head of the edgej, Bij = −1 if the vertex i
is the tail of the edgej, and 0 otherwise. For notational
convenience in the analysis that follows, consider the sets
E = {(i, j) ∈ N × N : j ∈ Ni}, i.e., the set of edges



of the graphG; and Ē = {(i, j) ∈ E : j > i}. For
undirected graph networks, we can construct an injective
function κ̄ : Ē 7→ M from which it is possible to construct
a second, now surjective, functionκ : E 7→ M, which
satisfiesκ(i, j) = κ̄(i, j) when j > i andκ(i, j) = κ̄(j, i)
when j < i. As such, by construction, for every(i, j) ∈ E ,
κ(i, j) = κ(j, i), since we consider undirected graphs. The
functionκ(., .) thus assigns an edge index to every unordered
pair of neighbors{i, j}.

Proposition 1: If G is a tree, thenBTB is positive defi-
nite [14]. The same conclusion holds for(B ⊗ I)T (B ⊗ I).

Proposition 2: If G is connected but not a tree, then the
null space of the incidence matrix, i.e.,N (B), is non-empty,
and it corresponds to the cycle space of each cycle [15].

Whenm ≥ 3 edges form a cycle, we denoteC ⊆ M as a
set of indexes that correspond to the cycle edges. We say two
cyclesC1 andC2 are independent ifC1∩C2 = ∅. We say that
two cyclesC1 andC2 share one edge when|C1 ∩ C2| = 1
andC1 ∪C2 contains edges from only three cycles:C1, C2

andC = C1 ∪ C2\{C1 ∩ C2}, with |C| = |C1|+ |C2| − 2.
Proposition 3: If G contains only – saym – independent

cycles, then the null space ofB is given byN (B) = {e ∈
R

M : ek = ±el, ∀k, l ∈ Ci, i = {1, · · · ,m}}; and the null
space ofB⊗In is given byN (B⊗In) = {e ∈ R

Mn : ek =
±el, ∀k, l ∈ Ci, i = {1, · · · ,m}} [16].

A description of the null space of the incidence matrix
(similar to that in Proposition 3) for graphs with independent
cycles and/or cycles that share only one edge can be found
in [16].

B. Distance inS2

Consider an arbitrary distance function between unit vec-
tors d(n1,n2) : S2 × S2 → R

+
0 , satisfyingd(n1,n2) ≥ 0;

d(n1,n2) = 0 ⇔ n1 = n2; andd(n1,n2) = d(n2,n1).
We want to exploit the results in Propositions 1-3, which

is why we impose the condition

S (n1)
∂d(n1,n2)

∂n1

= −S (n2)
∂d(n1,n2)

∂n2

, (3)

where∂d(n1,n2)
∂n1

is the gradient of the distance function w.r.t.
the first argument. By imposing such condition, it follows
that

ḋ(n1,n2) =

[

ω1

ω2

]T [

RT

1 0

0 RT

2

]([

1
−1

]

⊗ I

)

∂d(n1,n2)

∂n1

(4)

where we find an incidence matrix
[

1 −1
]T

corresponding
to an edge between unit vectorsn1 andn2. In later sections,
results from graph theory, such as those presented in Sec-
tion IV-A, are explored in order to infer properties of the
network behavior.

By invoking uniqueness of solutions of the PDE (3), and
by verifying thatd(n1,n2) = f(arccos(nT

1
n2)) satisfies (3),

one can concludef(arccos(nT

1 n2)) is the only type of
distance function that satisfies (3), for anyf(x) :

[

0 π
]

→
R

+
0 . As such, we restrict ourselves to distance functions

of the typed(n1,n2) = f(arccos(nT

1 n2)), which are in-
variant to rotation of their arguments, i.e.,d(Rn1,Rn2) =
d(n1,n2) for anyR ∈ SO(3). This property will guarantee

that the proposed controllers can be implemented without
the need of a common inertial orientation frame. A simple
distance function is found by choosingf(x) = x, in which
case we definedθ(n1,n2) : S2×S2 → [0, π] asdθ(n1,n2) =
arccos(nT

1 n2), and whose gradient is given by

∂dθ(n1,n2)

∂n1

=
−1

√

1− (nT
1
n2)2

n2 =
−1

‖S (n1)n2‖
n2. (5)

The gradient of an arbitrary distance function,d(n1,n2) =
f(dθ(n1,n2)), can be obtained from (5) as

∂d(n1,n2)

∂n1

= −f ′(dθ(n1,n2))

‖S (n1)n2‖
n2 , −g(dθ(n1,n2))n2.(6)

We will focus on arbitrary distance functionsd(n1,n2)
that can be obtained fromdθ(n1,n2) by means of an
increasing functionf(.). As such, it follows that the dis-
tance between unit vectors is maximum when two unit
vectors are diametrically opposed, i.e.,d(n1,−n1) =
max

v1,v2∈S2
d(v1,v2) , dmax, ∀n1 ∈ S2.

Definition 1: Consider a continuous functiong(x) :
[0, π] → R

+
0 that satisfies0 < g(x) < +∞ for all x ∈ (0, π)

and limx→0+ g(x) = g0 < ∞ and limx→π− g(x) = gπ > 0.
We sayg(x) is of

• classP if g0 > 0 andgπ < +∞,
• classP∞ if g0 > 0 andgπ = +∞,
• classP0 if g0 = 0 andgπ < +∞,
• classP0,∞ if g0 = 0 andgπ = +∞,
• classP̄ if it is of any of the previous classes.

In what follows, all functions introduced can depend on
the edge index of the network graph, given by the function
κ : E 7→ M, i.e., (possibly) different distance functions are
assigned to different edges. For each edgek = κ(i, j) =
κ(j, i) ∈ M, we use the notationdk(., .) = dκ(i,j)(., .) =
dκ(j,i)(., .) interchangeably; also, we denotedmax

k
as the

maximum ofdk(., .); fk(.) as the functionf(.) associated to
dk(., .); andgk(.) as the functiong(.) associated todk(., .).
For all k ∈ M, gk(.) is of classP̄.

C. Solution to Problem 1

Recall, from Section IV-A, thatκ(i, j) stands for the edge
formed by agentsi and j. In our framework, since the
distance function can depend on the edge,dk(., .) stands for
the distance function on edgek = κ(i, j) = κ(j, i). For
edgek, whereκ̄−1(k) = (i, j), we denote its tail byk1 = i,
and its head byk2 = j. In order to accomplish the goal in
Problem 1, we propose the following decentralized control
law for Ti,

Ti = −σ(ωi)−RT

i

∑

j∈Ni

S (ni)
∂dκ(i,j)(ni,nj)

∂ni

, (7)

with σ(x) : R
3 → R

3 as a direction preserving function
with possibly bounded norm, i.e.‖σ(.)‖ ≤ σmax, where
‖σ(x)‖ ≤ σs ‖x‖ with σs < ∞; also,Dσ(x) ,

∂σ(x)
∂x

is
upper bounded by‖Dσ(.)‖ ≤ σ′max < ∞ (i.e., σ(x) is
Lipschitz). If we stack all the torque vectorsTi, as T ,

[T1 · · · TN ]
T , we can rewrite (7) as

T = −[σ(ωi) · · · σ(ωN)]
T −R

T (B ⊗ I)e, (8)



where R is a block diagonal matrix with rotation ma-
trices R1 to RN ; and e , [e1 · · · eM ]T where ek ,

S (nk1
)
∂dk(nk1

,nk2
)

∂nk1
stands for the error associated to edge

k ∈ M, ande is the stack variable of all edge errors. As
such, from (6), it follows

‖ek‖ = gk(dθ(nk1
,nk2

))) ‖S (nk1
)nk2

‖ , (9)

which means this norm can grow unbounded only if two
neighbor unit vectors are diametrically opposed, sincegk is
of classP̄ . Moreover, ifgk is of classP ∪P0, then‖ek‖ <
∞, and additionally‖ek‖ = 0 if and only if two neighbor
unit vectors are aligned or diametrically opposed.

The proposed torque (7) exhibits three properties worth
emphasizing. First, notice thatRT

i
S (ni)

∂dκ(i,j)(ni,nj)

∂ni
=

gκ(i,j)(dθ(n̄i,RT

i
nj))S (n̄i)RT

i
nj, whereRT

i
nj can be mea-

sured by agenti in its own reference frame. This means
the control law (7) can be implemented in the absence of a
common orientation frame among agents. Secondly, ifgk is
of classP∞ ∪ P0,∞ for somek ∈ M, the control law may
be ill defined and care must be taken in those cases, as is
done in Theorem 4. Finally, notice thatTi can be bounded
by ‖Ti‖ ≤ σmax + |Ni|maxj∈Ni

(max0≤θ≤π gκ(i,j)(θ)) (if
gκ(i,j) is an increasing function, thenmax0≤θ≤π gκ(i,j)(θ) =
gπ

κ(i,j)). As such, the proposed control law, for each agenti,
can be implemented with bounded actuation provided that
σmax < ∞, and that allgκ(i,j) are of classP ∪ P0 for all
j ∈ Ni.

For the rest of this paper, we dedicate efforts in studying
the equilibria configurations induced by this control law (for
different types of graphs), their stability (or lack thereof),
and what is the effect of the chosen distance function.

D. Lyapunov Function

All results that follow are based on the same Lyapunov
function. It is defined as follows,

V =
∑M

k=1
dk(nk1

,nk2
) +

∑N

l=1

1

2
ω

T

l
Jlωl, (10)

whereH ,
∑N

l=1
1
2ω

T

l
Jlωl stands for the total rotational

kinetic energy of the network. The Lyapunov time derivative
can be computed, and it yieldṡV = ω

T
R

T (B ⊗ I)e +
∑N

l=1 ω
T

l
Tl, where we have used property (3) (see similarity

betweenωT
R

T (B⊗I)e and (4)). When we composėV with
the proposed control law, it follows

V̇ = −
∑N

l=1
ω

T

l
σ(ωl) ≤ 0. (11)

The second time derivative ofV can also be com-
puted, and it yields̈V = −∑N

l=1 (σ
T (ωl) + ω

T

l
Dσ(ωl)) ω̇l,

which can be upper bounded by‖V̈ ‖ ≤ (σs +

σ′max)
∑

N

l=1

‖ωl‖
λmin(Jl)

(

‖Tl‖+ λmax(Jl) ‖ωl‖2
)

. Finally, no-

tice that‖Tl‖ ≤ σs ‖ωl‖+‖B ⊗ I‖ ‖e‖. Thus,‖V̈ ‖ is upper
bounded provided that both‖ωl‖ and‖e‖ are bounded.

V. TREE GRAPHS

Let us focus first on static tree graphs. For these graphs,
we can invoke Proposition 1 and conclude that the null space

of B⊗ I must be the empty set. For brevity, in what follows
we denotemink∈M(dmax

k
) , min(dmax

k
).

Theorem 4:Consider a static tree topology for a group
of unit vectors with kinematics (1) and dynamics (2). Also,
consider the control law (8), wheregk is of classP̄ for all
k ∈ M. If H|t=0

min(dmax
k

) < 1 and

dk(nk1
,nk2

)|t=0 < M−1 (min(dmax
k

)−H |t=0) , (12)

for all edgesk, then all unit vectors converge to each other. If
additionallymin(dmax

k
) = ∞, then all unit vectors converge

to each other for almost all initial conditions.
Proof: Consider the Lyapunov function given in Sec-

tion IV-D. Under the conditions of the Theorem,V (0) <
min(dmax

k
), and given thatV̇ is non-positive, it follows that

V (t) < min(dmax
k

) for all time, which impliesi) that H(t)
is bounded;ii ) that no distance function can ever reach its
maximum and therefore two neighbor unit vectors will never
be diametrically opposed. In turn, this guarantees that‖ek‖ is
bounded (see (9)) and so is̈V . SinceV is lower bounded (by
0), V̇ is non-positive and uniformly continuous, it follows
from Barbalat’s lemma [17] thatV̇ must asymptotically
converge to0. This implies thatωi converges to0 for
all agents (see (11)). Invoking uniform continuity ofω̇i

(Ti is bounded under the Theorem’s conditions), it follows
from (2) thatTi must converge to zero, and consequently
(B ⊗ I)e must also converge to0 (see (7)). For a tree
graph, N (B ⊗ I) = ∅, which implies thate converges
asymptotically to0. As such, and since two neighbor unit
vectors will never be diametrically opposed, it follows that
all neighbor unit vectors converge to each other (see (9)). In
a connected graph, this means all unit vectors converge to
each other. If additionallymin(dmax

k
) = ∞, condition (12)

is satisfied as long as two neighbor unit vectors are not
initially diametrically opposed. This corresponds to a setof
zero measure in the space of all initial conditions.

Condition H|t=0

min(dmax
k

) < 1 represents an upper bound
on the initial rotational kinetic energy, for which we can
guarantee that all unit vectors converge to each other. By
makingmin(dmax

k
) sufficiently large, convergence can still

be guaranteed for arbitrarily large initial rotational energy
H |t=0, thus enlarging the region of stability, and yielding
the almost global stability result formin(dmax

k
) = ∞.

Some example distance functions and their properties can
be found on [16]. Also, an additional Theorem can be found
in [16], which quantifies how many pairs of neighboring unit
vectors can be asymptotically diametrically opposed.

VI. N ON-TREE GRAPHS

In this section, we study the equilibria configuration in-
duced by some more general, yet specific, graph topologies,
and the local stability properties of the synchronized con-
figuration for arbitrary graphs. We first give the following
definition.

Definition 2: Given n vectors xi ∈ R
3, for i ∈

{1, · · · , n}, we say{xi} belong to a common planeif there
exists a unit vectorν ∈ S2 such thatΠ(ν)xi = xi for all
i ∈ {1, · · · , n}.



Proposition 5: Consider the unit vectorsn1, · · · ,nn, with
|nT

i
ni+1| 6= 1 for all i = {1, · · · , n − 1}. If S(n1)n2

‖S(n1)n2‖
=

· · · = ± S(nn−1)nn

‖S(nn−1)nn‖
, then all unit vectors belong to a

common plane.
A proof on Proposition 5 can be found in [16].
Theorem 6:Consider a group of unit vectors with kine-

matics (1) and dynamics (2). Also, consider the control
law (8), wheregk is of classP ∪ P0 for all k ∈ M. If
the topology contains only independent cycles, then for each
cycle, all its unit vectors converge to a common plane.

Proof: Following the same steps as in the proof of
Theorem 4, we conclude thate must converge to the null
space ofB⊗I. Now, consider a graph with only independent
cycles and recall Proposition 3. Without loss of generality,
consider the firstn ≥ 3 edges are part of a cycle. Two
possibilities exist:i) e converges to0 and all unit vectors
are either all aligned or some are diametrically opposed
to others (in either case all unit vectors converge to a
common plane);ii) e converges to some non-zero vector
that, due to the network topology, belongs toN (B⊗I). From
Proposition 3, it follows that±e1 = · · · = ±en. In particular,
all edges must have the same direction, which implies that
S(n11)n12/‖S(n11)n12‖ = · · · = ±S(nn1)nn2/‖S(nn1)nn2‖.
From Proposition 5, it follows that all unit vectors that form
a cycle belong to a common plane.

Proposition 6 can be extended for graphs with independent
cycles and/or cycles that share only one edge [16].

We now present a proposition, which will be useful in
guaranteeing local asymptotic stability of attitude synchro-
nization for arbitrary graphs.

Definition 3: We say that a group of unit vectors belongs
to an openα-cone, for α ∈ [0, π

2 ], if the inner product
between any two vectors is strictly larger thancos(α).

Proposition 7: Consider a set of unit vectors{ni}, for i ∈
N = {1, · · · , N}, contained in an openπ2 -cone, and assume
that i) the network graph is connected;ii) e ∈ N (B ⊗ I),
wheree has been defined in (8). This takes place if and only
if ni = nj for all i, j ∈ N .

A complete proof for Proposition 7 can be found in [16].
In short, if one assumes the unit vectors are not synchronized
and that if there exits ane 6= 0 (see (8)) such that(B⊗I)e =
0, one can find a unit vectorni, for which((BT )T

i
⊗I)e 6= 0,

thus reaching a contradiction.
Before we introduce our final result, let us define the

quantityd⋆ = mink fk

(

mink f
−1
k

(

mink fk

(

π
2

1
N−1

)))

6=
0, representing a critical distance between two neighbor unit
vectors, satisfyingf−1

k
(d⋆) ≤ π

2
1

N−1 for all k. This quantity
is well defined, since allfk(.) are increasing functions.

Theorem 8:Consider an arbitrary graph topology for a
group of unit vectors with kinematics (1) and dynamics (2).
Also, consider the control law (8), wheregk is of class
P̄ for all k ∈ M. If H|t=0

d⋆ < 1 and
dk(nk1

,nk2
)|t=0

d⋆ <
1
M

(

1− H|t=0

d⋆

)

, for all edgesk, then the group of unit
vectors converges to a configuration where all unit vectors
are synchronized.

Proof: Once more, we conclude thate converges to the
null space ofB ⊗ I following the same very steps as in the

proof of Theorem 4.
Also, since the Lyapunov function is non-increasing, it

follows that V (t) ≤ V (0). Given the Theorem’s condi-
tions it follows thatV (0) < d⋆. Since V (t) ≤ V (0), it
follows that dk(nk1

,nk2
) < d⋆ for all time t ≥ 0 and

for all edgesk. This implies that the angular displacement
between any two neighbors is smaller thanπ2

1
N−1 , i.e.,

dθ(nk1
,nk2

) < f−1
k

(d⋆). Since, the angular displacement
between any two unit vectorsi, j ∈ N in a connected
graph satisfiesdθ(ni,nj) < (N − 1)maxk dθ(nk1

,nk2
), it

then follows thatdθ(ni,nj) < π
2 for all time t ≥ 0 and

between any two unit vectors. As such, under the Theorem’s
conditions all unit vectors are contained in aπ2 -cone for all
time. Since all agents are contained in an openπ

2 -cone, two
neighbors will never be diametrically opposed which means
control law (8) is well defined forgk of class P̄ . Finally,
we invoke Proposition 7, which implies that all unit vectors
converge to one another.

VII. C ONSTRAINED TORQUE

We notice that the control law (7), requires full torque
actuation, i.e., it requires torque alongΠ(n̄i), but also torque
alongn̄i (sinceωi can have a component alongn̄i). A natural
constraint in a physical system is to require the torque to be
orthogonal ton̄i (in satellites, for example, thrusters that
provide torque alonḡni might be unavailable).

A possible approach is to modify the control law into

Ti= −σ(Π (n̄i)ωi)−
∑

j∈Ni
S (n̄i)RT

i

∂dκ(i,j)(ni,nj)
∂ni

, (13)

which results inV in (10) having time derivativeV̇ =
−∑N

i=1 ω
T

i
Π(n̄i)σ(ωi) ≤ 0. SinceV will be bounded by

its initial condition, all ωi are also bounded (V depends
on ‖ωi‖ and not on‖Π(n̄i)ωi‖), and we can guarantee
uniform continuity ofV̇ andω̇i. Our concern is to determine
whether(B ⊗ I)e converges to0 and, that is the case, if
we can guarantee that allTi converge to0. With that in
mind, we find that in the set wherėV = 0, it holds that
Ti = (n̄T

i
ωi)

2S (n̄i)Jin̄i. Sincen̄T

i
ωi is not necessarily0,

the only wayTi = 0 is by requiring thatS (n̄i)Jin̄i = 0;
this, in turn, can only be the case whenn̄i is an eigenvector
of Ji. As such, if n̄i is not an eigenvector ofJi, control
law (7) must be applied and torque alongn̄i is necessary.
On the other hand, if̄ni is an eigenvector ofJi, control
law (13) can be applied and torque alongn̄i is not necessary.
Physically, this means that if we are trying to perform
synchronization of principal axes, full torque is not required,
while synchronization of other axes does require full torque.
Details of the above derivations can be found in [16].

VIII. S IMULATIONS

We now present simulations that support some of the
results previously presented.

For the simulations, we have a group of ten agents, whose
network graph is that presented in Fig. 3. The moments
of inertia were generated by adding a random symmetric
matrix (between−I and I) to the identity matrix. For the
initial conditions, we have chosenH |t=0 = 0 and we have
randomly generated two sets of 10 rotation matrices. Also,
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Fig. 2. Consensus in network of 10 unit vectors for two sets ofdifferential
initial conditions (set#1 and#2)

n1
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n6

n10 n9 n8 n7

κ̄(1,6)=1

Fig. 3. Graph with 10 agents, where edge 1 is formed by agents 1and 6

n̄i =
[

1 0 0
]T

for all 10 agents (since these are not
necessarily principal axes, we apply control laws (7)).

For edge 1, we have chosend(n1,n2) =

5 tan2
(

arccos(nT
1 n2)

2

)

. For the other edges, we have

chosend(n1,n2) = 5(1 − n
T

1
n2) (gπ = 5). Notice that we

have chosen a distance function (for edge 1) that grows
unbounded when two unit vectors are diametrically opposed.
As such, it follows from our previous results that agents
1 and 6 will never be diametrically opposed, under the
condition that they are not initially diametrically opposed.

We have also chosenσ(x) = k σxx√
σ2
x+x

T
x

with k = 10

andσx = 1. For this choice, we find thatσmax = kσx = 10.
As such, for all agents, except 1 and 6, an upper bound on
the norm of their torque is given byσmax + 2 gπ = 20 (the
factor 2 relates to the fact that all agents, except 1 and 6,
have two neighbors). For agents 1 and 6, no upper bound
can be found (more precisely, a bound can be found, but it
depends on the initial conditions). For these choices,d⋆ ≈
0.019, which means that if the initial distance between every
pair of neighbor agents is smaller thand

⋆

M
≈ 0.0017, then

convergence to a synchronized network is guaranteed. This
critical value can be made larger by choosing other distance
functions, but it comes at the cost of increasing the upper
bound on the norm of the torque.

The trajectories of the unit vectors for the two sets of
initial conditions are presented in Fig. 2. Notice that despite
not satisfying conditions of Theorem 8 (the unit vectors are
not always in a π

2 -cone), attitude synchronization is still
achieved. This can be verified in Figs. 2(c) and 2(d), which
present the angular error between neighbor agents.

IX. CONCLUSIONS

In this paper, we proposed a distributed control strategy
that guarantees attitude synchronization of unit vectors,rep-
resenting a specific body direction of a rigid body. The
proposed control torque laws depend on distance functions
in S2, and we provide conditions on these distance functions
that guarantee thati) a synchronized network is locally
asymptotically stable in an arbitrary connected undirected
graph network;ii) a synchronized network can be achieved
for almost all initial conditions in a tree graph network. We
imposed conditions on the distance functions that guarantee
that the proposed control laws can be implemented by each
individual rigid body in the absence of a global common
orientation frame. Additionally, if the direction to be syn-
chronized is a principal axis of the rigid body, we proposed
a control law that does not require full torque actuation.
We also studied the equilibria configurations that come with
certain type of graph networks. Directions for future work
include studying the stability of all equilibria configurations,
apart from the synchronized configuration.
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