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Abstract—In this paper we study a family of controllers being parametrized with Modified Rodrigues Parameters.
that guarantees attitude synchronization for a network of ~ The proposed solution guarantees attitude synchronizatio
elements in the unit sphere domain, i.e. 5. We propose ¢or connected graphs, but it requires all rigid bodies to be

distributed continuous controllers for elements whose dyamics f d alobal orientation f In [5
are controllable (i.e., control with torque as command), ad aware of a common and global orientation frame. In [3],

which can be implemented by each individual agent withoutte  [6], @ controller for a single-leader single-follower neik
need of a common global orientation frame among the network, is proposed that guarantees global attitude synchrooizati

i.e., it requires only local information that can be measurel by  at the cost of introducing a discontinuity in the control taw
each individual agent from its own orientation frame. The ca- | [7], attitude synchronization in a leader-follower netk

trollers are specified according to arbitrary distance fundions . . . . -
in §%, and we provide conditions on those distance functions is accomplished by designing a non-linear distributed ob-

that guarantee that i) a synchronized network of agents is Server for the leader.
locally asymptotically stable for an arbitrary connected retwork In another line of work, in [3], [8], attitude synchronizarti

topology; ii) a synchronized network can be achieved for aimost is accomplished without the need of a common orientation
all initial conditions in a tree graph network. We also study frame among agents. Additionally, in [3], a controller for

the equilibria configurations that come with specific types 6 s ; 7
netwoqu graphs. Thge proposed strategies can bg used ir)llgttjde switching and directed network topologies is proposed, and

synchronization of swarms of fully actuated rigid bodies, sch  local stability of consensus in connected graphs is guaran-
as satellites. teed, provided that the control gain is sufficiently high. In

this paper, we provide a stronger result, by describing the
l. INTRODUCTION basin of attraction of a synchronized network for a family

Decentralized control in a multi-agent environment ha8f controllers.
been a topic of active research for the last decade, withi-appl In [1], attitude synchronization is accomplished with
cations in large scale robotic systems. Attitude synctmani controllers based on behavior based approaches and for a
tion in satellite formations is one of those application} [1 bidirectional ring topology. The special orthogonal group
where the control goal is to guarantee that a network d$ parametrized with quaternions, and the proposed syrateg
fully actuated rigid bodies can acquire a common attitudélso requires a common attitude frame among agents. In [11],
Coordination of underwater vehicles in ocean exploratiof quaternion based controller is proposed that guarantees a
missions can also be casted as an attitude synchronizat@nchronized network of rigid bodies is a global equililomiu
problem [2]. configuration, provided that the graph network is acyclic.
In the literature of attitude synchronization, solutionms f This comes at the cost of having to design discontinuous
consensus in the special orthogonal group can be found [{nybrid) controllers.
[3]-[10], which focus oncompleteattitude synchronization.  In [9], controllers for complete attitude synchronization
In this paper, we focus oimcompleteattitude synchroniza- and for switching topologies are proposed, but this is ac-
tion, which has not received the same attention: in thigomplished at the kinematic level, i.e., by controlling the
scenario each rigid body has a main direction and thagents’ angular velocity (rather than their torque). Thiskv
global objective is to guarantee alignment of all rigid tesdi is extended in [10] by providing controllers at the torque
main directions; the space orthogonal to each main dinectidevel, and similarly to [1], stability properties rely of dti
can be left free of actuation or controlled to accomplist@ain controllers.
some other goals. Complete attitude synchronization requi  In this paper, we propose a distributed control strategy for
more measurements when Compared to incomp|ete attituﬂ@Chronization of elements in the unit Sphere domain. The
synchronization, and it might be the case that a rigid bod§ontrollers are described as functions of arbitrary distan
(such as a satellite) is not fully actuated but rather onlfunctions, and, in order to exploit results of graph theory,
actuated in the space Orthogona| to a Specific directiowe impose a condition on those distance functions that will
in which case incomplete attitude synchronization is stilfestrict them to be invariant to rotations. As a consequence
feasible. the proposed controllers can be implemented by each agent
In [4], attitude control in a leader-follower network of iy~ Without the need of a common orientation frame. Also,
bodies has been studied, with the special orthogonal gro¥ghen performing synchronization along a principal axis, we
propose a controller that does not require full torque, but
The authors are with the ACCESS Linnaeus Center, Schooleaftiidal  rather torque orthogonal to that principal axis. We restric

Engineering, KTH Royal Institute of Technology, SE-100 &tockholm,  the proposed controllers to be continuous, which means
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(VR). equilibrium configuration, sinceS? is a non-contractible



set [12]. Our main contribution lies in finding conditions
on the distance functions that guarantee ta synchro-
nized network is locally asymptotically stable for arbitra
connected network topologies) a synchronized network
can be achieved for almost all initial conditions in a tree
graph network. Also, we provide explicit basins of attranti

of the synchronized network, and characterize the eqialibr
configurations for some general, yet specific, types of graph
networks. The remainder of this paper is structured as
follows. In Section Ill, the problem statement is descridad  _. _ B — .

. . . . . Fig. 1. In incomplete synchronizatiom, rigid bodies, indexed by =
Section IV, the proposed solution is presented; in Sectibns {1,--- ,n}, align the unit vectors1, £ R.n,, wherex, is fixed in rigid
and VI, convergence to a synchronized network is discusseody i (u;,u, andus stand for the canonical basis vectorsiA).
for tree and non-tree graphs, respectively; in Section V!&ompleteorientation, i.e.R, = --- = R, but rather that all

an alternative constrained control law is proposed; and, iyents share the same orientation along a specific direction
Section VIII, simulations are presented that support thgg n, = --- = ny. Figure 1 illustrates the concept of

theoretical results. incomplete synchronization for two agents. Notice thanage
1 is not aware ofn, (since this is specified in an unknown
_ ) y h inertial orientation frame); instead, agenis aware of its
Given a matrixA € R"*™, (A); denotes thg™ column  girection i, — fixed in its own orientation frame — and the
of A for all j € {1,---,m}, and (A")] denotes the" |o|ative attitude between its direction and its neighborsh

row of A forall i € {1,---,n}. 0, € R" and1, € R" girections. For example, in a group of satellites that must
denote the zero column vector and the column vector W|tg|ign one of their principal axis — say the first axis,=

all components equal to 1, respectively; when the subsgript; = 0]" for all satellites, and the desired synchronized
is omitted, the dimension is assumed to be of appropriateenvork of satellites satisfieR,fi = - - - = Ryl

size.I,, € R™*" stands for the identity matrix, and we omit o rotation matrixR € SO(3) evolves with kinematics
its subscript whem = 3. The matrixS (x) € R3*? is a cross _ _

product skew-symmetric matrix and it satisfi§ga) b = R =RS (w) = Rn =S (Rw) R, (1)
ax b, for anya,b € R3. The mapll(x) : {x € R? : x"x =
1} — R3*3 yields a matrix that represents the orthogon
projection operator onto the subspace perpendiculax,to
and it satisfiedI (x) = I — xx”. We denote the Kronecker
product betweerd € R™*" and B € R*** by A® B € Jw=-8(w)Jw+T, (2
R™s*xnt For a functionf(.) parametrized in time, we denote
fli=¢ asf evaluated at time instant For two vectora, b €

II. NOTATION

herew € R3? is the body-framed angular velocity. For a
igid body with moment of inertiaJ = J” € R3*3, the
body-framed angular velocity dynamics are given by

with T € R3 being a torque expressed in the body attitude
frame, and that can be actuated.

R", a = +b means that eithea = b or a = —b. For Problem 1: Gi t of d . ts with unit
e € R", ¢, stands for the’” component; and foe ¢ RM", tro em L. |ve|n a Ise.t_o ynarr(;m agents V}”. l;n|
e 2 [erin em]r (n, M € N). We also use the V€C ors{_ni}., angular veloci |es{.wi} and moments of inertia

- ; A {J;} satisfying (1) and (2), design distributed control laws for
generic notationfa;} = {ai,---,an} wherea; € Afor g 5o ueq'T;} that guarantee that all unit vectors converge
all i € {1,---,N} and someN € N, and whereA is an q ! 9 9

to each other, in the absence of a common inertial oriemtatio

i 2 3 . f
arbitrary space (for exampleg§® or R® or N); finally, we frame.

denote|{a;}| = N.

IIl. PROBLEM STATEMENT IV. PROPOSEDSOLUTION

We consider a group ofV agents, indexed by the set”- Preliminaries
N = {1,--- N}, operating in the unit sphere domain We first present some definitions and results from graph
S? = {x € R3 : xTx = 1}. The group of agents network theory that will be used in later sections [13]. A graph
can be modeled as an undirected static grgph, {N,€}, G = {N,&} is said to be connected if there exists a path
with A/ as the vertices’ set indexed by the team memberbetween any two vertices i G is a tree if it is connected
and¢ as the edges’ set. For every pair of ageits, N and and it contains no cycles. An orientation on the graph
j € N\{i}, that are aware of each other’s relative attitudeis the assignment of a direction to each edgeg) € €&,
we say agenj is a neighbor ofi, and vice-versa; also, we where each edge vertex is either the tail or the head of
denoteN; C A as the neighbor set of agentEach agent the edge. For brevity, we denof€ = |N|, M = |£| and

i has its own orientation frame (w.r.t. an unknown inertialM £ {1,---, M}. The incidence matrix3 € RN¥*M of
orientation frame), represented By € SO(3). Letn, € S G is the {0,£1} matrix, such thatB;; = 1 if the vertex
be a direction along agentisorientation, i.e.n, = R,n,, i is the head of the edgg¢, B;; = —1 if the vertexi

wheren, € S? is a constant unit vector that is knownis the tail of the edgej, and 0 otherwise. For notational
by agenti and no other agent. In this paper, the goal otonvenience in the analysis that follows, consider the sets
attitude synchronization is not that all agents share theesa & = {(i,j) € N x N : j € N;}, i.e., the set of edges



of the graphG; and & = {(i,j) € €& : j > i}. For that the proposed controllers can be implemented without
undirected graph networks, we can construct an injectivbe need of a common inertial orientation frame. A simple
function % : € — M from which it is possible to construct distance function is found by choosinfdz) = z, in which
a second, now surjective, function : £ — M, which case we defindys(n,,n,) : S2xS? — [0, 7] asdy(n,,n,) =
satisfiesk (i, j) = %(4,j) whenj > i andx(i,j) = &(j,4) arccos(nfn,), and whose gradient is given by
whenj < i. As such, by construction, for evefy, j) € &, dg(n,, 1) 1 1
x(i, j) = k(j,1), since we consider undirected graphs. The A n,=-—————
functionx(., .) thus assigns an edge index to every unordered om, 1 - (nfn,)? IS () ns |
pair of neighbors{i, j}. The gradient of an arbitrary distance functioffn,, n,) =
Proposition 1:If G is a tree, thenB™ B is positive defi- f(do(n,,n,)), can be obtained from (5) as
nite [14]. The same conclusion holds faB @ I)* (B ® I).
Proposition 2: If G is connected but (r]f)t a ?[re(e, the)n the 0d(ny, n,) = _f/(d"(nl’m))nz £ —g(dg(n,,n,))n,.(6)
null space of the incidence matrix, i.&V,(B), is non-empty, on, IS (n,) n. |
and it corresponds to the cycle space of each cycle [15].  We will focus on arbitrary distance function&n,,n,)
Whenm > 3 edges form a cycle, we denofeC M asa that can be obtained frondy(n,,n,) by means of an
set of indexes that correspond to the cycle edges. We say twiereasing functionf(.). As such, it follows that the dis-
cyclesC; andC;, are independent ', NC, = (). We say that tance between unit vectors is maximum when two unit
two cyclesC; and C, share one edge whea'; NCs| =1 vectors are diametrically opposed, i.el(n,,—n,) =
and C; U Cy contains edges from only three cyclés;, Co maXS2 d(vi,va) £ gmex \fp, € S2.
andC' = Cy U C?\{Cl NG}, with |C] = |Cy] +|Ca| — 2, "Definition 1: Consider a continuous functiog ()
Proposition 3: If G contains only — sayn — independent T -
Y il [0,7] — Ry that satisfie®) < g(z) < +oo for all z € (0, 7)
cycles, then the null space @ is given by N'(B) = {e € andlim () = ¢° < o0 andlim (@) =g~ >0
RM : e, = +e;,Vk,l € Cy,i = {1,---,m}}; and the null W v—0t 9 f—g e W) =9 :
space ofB®1, is given byNV(B®1,) = {e € RM" : e}, = e sayg(z) 1 (1 i
e, Vh 1 € Ciyi= {1, ,m}} [16]. » classpif g° > 0 andg™ < +oc,
A description of the null space of the incidence matrix * cIassPO i 9= 0 andg" = +oo,
(similar to that in Proposition 3) for graphs with indepentie ~ * classpoi g = 0 andg < oo,
cycles and/or cycles that share only one edge can be found® classp™> if g° = 0 andg™ = +oo,

n,. (5)

in [16] o class?P if it is of any of the previous classes.
' In what follows, all functions introduced can depend on
B. Distance inS? the edge index of the network graph, given by the function

Consider an arbitrary distance function between unit vedt : € = M, i.e., (possibly) different distance functions are
tors d(n,, n,) : 82 x S? — R{, satisfyingd(n,,n,) > 0; asglgned to different edges. For each edge «(i,j) =
d(n,,n,) =0 ¢ n, = n,; andd(n,,n,) = d(n,, n,). K(j,1) € M, we use the notation,(.,.) = dyi(.,-) =

We want to exploit the results in Propositions 1-3, whicHlxu.o (-;-) interchangeably; also, we denotg** as the
is why we impose the condition maximum ofd,(.,.); f.(.) as the functiory(.) associated to

di(.,.); andg,(.) as the functiory(.) associated ta,(., .).
dd(n,, n,) — —S(n) dd(n,,n,) (3) For allk € M, g,(.) is of classP.
on,

on, C. Solution to Problem 1
6(1(1’11,

whergT'”) is the gradient of the distance function w.r.t. Recall, from Section IV-A, thak (i, j) stands for the edge

the first argument. By imposing such condition, it followsfyrmed by agents and j. In our framework, since the

that distance function can depend on the edg€,,.) stands for

. w " [RT 0 1 dd(n,,n,) the distance function on edde = «(i,j) = x(j,¢). For

d(ny;m,) = [wz] { 0 RZ} ({_1} ® I) T(A') edgek, wherez (k) = (i,7), we denote its tail by:, = i,
and its head by:, = j. In order to accomplish the goal in

where we find an incidence matrt 1] corresponding problem 1, we propose the following decentralized control
to an edge between unit vectats andn,. In later sections, |aw for T,
results from graph theory, such as those presented in Sec- '
tion IV-A, are explored in order to infer properties of the T, = —g(w,) _RiTZ S (n,) M’ (7)
network behavior. GEN On,

By invoking uniqueness of solutions of the PDE (3), andvith o(x) : R* — R? as a direction preserving function
by verifying thatd(n, ny) = f(arccos(n]n,)) satisfies (3), with possibly bounded norm, i.glo(.)| < o™, where
one can concludef(arccos(nin,)) is the only type of |o(x)|| < o, ||| With 0, < o0; also, Do(x) £ Bg_ix) is
distance function that satisfies (3), for afigz) : [0 7| — upper bounded by Do ()| < o/™* < o (i.e., o(x) is
R{. As such, we restrict ourselves to distance functionsipschitz). If we stack all the torque vectofE,, as T £
of the type d(l’ll,l’lg) = f(arccos(nfnz)), which are in- [T1 TN]T, we can rewrite (7) as
variant to rotation of their arguments, i.€(Rn;, Rny) = . -
d(ny,ny) for any R € SO(3). This property will guarantee T=—[ow) - owy)] —R" (Bale, (8)

S (n1)



where R is a block diagonal matrix with rotation ma- of B®1I must be the empty set. For brevity, in what follows

trices R, to Ry; ande = [e, ---ey,]” wheree, = we denotemingen((d™*¥) £ min(d™a%).
S (ny,) %}1’“’“2) stands for the error associated to edge Theorem 4:Consider a static tree topology for a group
k € M, ande is the stack variable of all edge errors. AsOf unit vectors with kinematics (1) and dynamics (2). Also,
such, from (6), it follows consider the control law (8), wherg is of classP for all
ke M If e < 1 and
HekH :gk(d9(nk1ank2))) HS(nkl)nkz” ’ (9) :

—1 : max) __
which means this norm can grow unbounded only if two (D D, im0 < M (min(d™) = Hli=o), (12)

neighbor unit vectors are diametrically opposed, sipcés  for all edgesk, then all unit vectors converge to each other. If
of classP. Moreover, ifg, is of classP UPY, then|le,|| <  additionallymin(d®**) = oo, then all unit vectors converge
oo, and additionally|le, || = 0 if and only if two neighbor to each other for almost all initial conditions.

unit vectors are aligned or diametrically opposed. Proof: Consider the Lyapunov function given in Sec-
The proposed torque (7) exhibits three properties worttion IV-D. Under the conditions of the Theorerir,(0) <
emphasizing. First, notice thaR”S (n,) %‘“““j) —  min(d™>), and given that/ is non-positive, it follows that

Geijy (do(D;, RTm;))S (0n;) RTn,, whereR7n, can be mea- V(t) < min(d™) for all time, which impliesi) that H t)
sured by agent in its own reference frame. This meansis bounded;i) that no distance function can ever reach its
the control law (7) can be implemented in the absence ofaaximum and therefore two neighbor unit vectors will never
common orientation frame among agents. Secondly, i be diametrically opposed. In turn, this guarantees|tbal is
of classP> U P%> for somek € M, the control law may bounded (see (9)) and soli§ SinceV is lower bounded (by
be ill defined and care must be taken in those cases, asO V' is non-positive and uniformly continuous, it follows
done in Theorem 4. Finally, notice th@t, can be bounded from Barbalat's lemma [17] thal/ must asymptotically
by || T:|| < o™ + |N;| max;en; (maxo<p<, guiyy(0)) (if  cONverge to0. This implies thatw, converges to0 for
g5 IS an increasing function, themax,<,<, g.,,(#) = all agents (see (11)). Invoking uniform continuity df,
9Z..»)- As such, the proposed control law, for each agent (T is bounded under the Theorem’s conditions), it follows
can be implemented with bounded actuation provided th&iom (2) thatT, must converge to zero, and consequently
o™Max < oo, and that allg,, ;, are of classP U PP for all (B @ I)e must also converge t@® (see (7)). For a tree
jENMN,. graph, N(B ® I) = 0, which implies thate converges
For the rest of this paper, we dedicate efforts in studyingsymptotically to0. As such, and since two neighbor unit
the equilibria configurations induced by this control lawr(f Vvectors will never be diametrically opposed, it follows ttha
different types of graphs), their stability (or lack theeo all neighbor unit vectors converge to each other (see (8)). |
and what is the effect of the chosen distance function. @ connected graph, this means all unit vectors converge to
each other. If additionallynin(d**) = oo, condition (12)
D. Lyapunov Function is satisfied as long as two neighbor unit vectors are not
All results that follow are based on the same LyapunoUmially diametr_ically opposed. Thi_s_c_orrespo_n_ds fo a skt
function. It is defined as follows, zero measure L?| Ehe space of all initial conditions. =
Condition =%~ < 1 represents an upper bound
M N 1 .. k. . . .
V= Z d.(n,,,n,,) +Z —w'Jw, (10) on the initial rotational kinetic energy, for which we can
k=1 =1 2 .
guarantee that all unit vectors converge to each other. By
where H £ Zf\il %wazwl stands for the total rotational making min(d;*®*) sufficiently large, convergence can still
kinetic energy of the network. The Lyapunov time derivativdbe guaranteed for arbitrarily large initial rotational eme
can be computed, and it yield§ = w™R”(B ® I)e + H|i—o, thus enlarging the region of stability, and yielding
S, wI'T,, where we have used property (3) (see similaritghe almost global stability result fanin(d**) = oco.

betweenvs”R” (B®I)e and (4)). When we compogé with Some example distance functions and their properties can
the proposed control law, it follows be found on [16]. Also, an additional Theorem can be found
. N in [16], which quantifies how many pairs of neighboring unit
V=- lel w, o(w;) <0. (11)  vectors can be asymptotically diametrically opposed.
The sec_on(_j time derivjzi\[tive of/ can also be com- VI. NON-TREE GRAPHS
puted, andityield$” = -7, (6" (w,) + w Do (w,)) w,, ) ) o ) o
which can be upper bounded bw“/” < (o5 + In this section, we study the equilibria configuration in-

ey SN Jlw]] 2 . _duced by some more general, yet specific, graph topologies,
ff )2 Amin (J1) (”TZH + A (1) e ) Emé”y’ N9 and the local stability properties of the synchronized con-
tice that||T, || < o, [|w.||+[|B @ I|| [e]|. Thus,||V[| is upper figuration for arbitrary graphs. We first give the following

bounded provided that bothw,|| and||e|| are bounded. definition.
Definition 2: Given n vectors x; € R3, for i €
V. TREE GRAPHS {1,---,n}, we say{x;} belong to a common plariéthere

Let us focus first on static tree graphs. For these graptXists a unit vector € 52 such thatll (v) x; = x; for all
we can invoke Proposition 1 and conclude that the null spaées {1, n}



Proposition 5: Consider the unit vectons,, - - - ,n,,, with  proof of Theorem 4.

n’n, | #1foralli={1,--- ,n—1}. If % = Also, since the Lyapunov function is non-increasing, it
L= ii‘égnn—lgnn”, then all unit vectors belong to a follows that V(t) < V(0). Given the Theorem’s condi-
e tions it follows thatV(0) < d*. SinceV(t) < V(0), it

common plane.

A proof on Proposition 5 can be found in [16]. follows that dy(n,,,n,,) < d* for all time ¢ > 0 and

Theorem 6:Consider a group of unit vectors with kine- for all edgesk. This implies thgt the angular difplagement
matics (1) and dynamics (2). Also, consider the contrdf€tWween any twcllnte:ghbgrs is smaller thgny—, i.e.,
law (8), whereg, is of class? U PP for all k € M. If do(m,ms,) < f7(d). Since, the angular displacement
the topology contains only independent cycles, then fohea®€tWeen any two unit vectorsj € N in a connected
cycle, all its unit vectors converge to a common plane.  9raph satisfiesly(n,,n;) < (N - 1) maxy, dg(n,,, ny,), it

Proof: Following the same steps as in the proof ofhen follows thatdy(n;,n;) < £ for all time ¢ > 0 and
Theorem 4, we conclude that must converge to the null between any two unit vectors. As such, under the Theorem’s
space ofB®1. Now, consider a graph with only independentconditions all unit vectors are contained injacone for all
cycles and recall Proposition 3. Without loss of generalifime: Since all agents are contained in an ogecone, two
consider the firstn > 3 edges are part of a cycle. Two neighbors will never be diametrically opposed which means
possibilities existi) e converges ta) and all unit vectors control law (8) is well defined fog, of classP. Finally,
are either all aligned or some are diametrically oppose€ invoke Proposition 7, which implies that all unit vectors
to others (in either case all unit vectors converge to §OMVerge to one another. .
common plane)ji) e converges to some non-zero vector VIl. CONSTRAINED TORQUE
that, due to the network topology, belongs\@ B®I). From
Proposition 3, it follows that-e, = - - - = +e,,. In particular,
all edges must have the same direction, which implies th
S(nu)ni/|[s(n, o, || = - = £5@a)00s/||8(nn, )n, ||
From Proposition 5, it follows that all unit vectors that rior
a cycle belong to a common plane.

Proposition 6 can be extended for graphs with independ
cycles and/or cycles that share only one edge [16].

We now present a proposition, which will be useful in T.—= —o(II (i,) w,) — Y e S(ﬁi)R?%W, (13)
guaranteeing local asymptotic stability of attitude synoeh ' ! .
nization for arbitrary graphs. which results inV in (10) having time derivativel’ =

.. . N _ . .
Definition 3: We say that a group of unit vectors belongs— _;—; w11 (n,) o(w;) < 0. SinceV" will be bounded by

to an opena-cone, fora € [0,%], if the inner product its initial condition, all w; are also boundedV{ depends

We notice that the control law (7), requires full torque
tuation, i.e., it requires torque alofign, ), but also torque
alongn; (sincew, can have a component along). A natural
constraint in a physical system is to require the torque to be
orthogonal ton, (in satellites, for example, thrusters that
eWEOVide torque alongn, might be unavailable).
A possible approach is to modify the control law into

between any two vectors is strictly larger thass(a). on |lw;[| and not on|[II(n;)w;[[), and we can guarantee
Proposition 7: Consider a set of unit vectofs, }, for i € uniform continuity ofV andw,. Our concern is to determine
N = {1,---, N}, contained in an opeg_cone’ and assume Whether(B ® I)e converges ta0 and, that is the case, if

that i) the network graph is connecteil e € V(B ® I), We can guarantee that dll; converge to0. With that in
wheree has been defined in (8). This takes place if and onlgnind, we find that in the set wherg = 0, it holds that
if n, =n, forall i,5 € N. T, = (nTw,)%S (n,) J;n,. Sincen’w; is not necessarily,
A complete proof for Proposition 7 can be found in [16].the only wayT,; = 0 is by requiring thatS (n,) J;n; = 0;
In short, if one assumes the unit vectors are not synchrdniz#is, in turn, can only be the case whanis an eigenvector

and that if there exits aa # 0 (see (8)) such thdtBBoI)e = Of Ji. As such, ifn, i.s not an eigenvector_oﬂi, control
0, one can find a unit vectar,, for which ((B")*@I)e # 0, law (7) must be applied and torque along is necessary.
thus reaching a contradiction. On the other hand, ifa, is an eigenvector of/;, control

Before we introduce our final result, let us define théaw (13) can be applied and torque alamgis not necessary.
quantity d* = miny, f, (ming, £ (ming f, (% — ) 4 Physically, this means that if we are trying to perform
0, representing a critical distance between two neighbor urﬁ%/f!Cth”izaﬁor.‘ of .principal axes, full torque is.not raqa,
vectors, satisfying.~!(d*) < T for all k. This quantity while synchronization of other axes does require full terqu

2 N-1 i ivati i
is well defined, since alf,(.) are increasing functions. Details of the above derivations can be found in [16].

Theorem 8:Consider an arbitrary graph topology for a VIIL. SIMULATIONS

group of umt vectors with kinematics (1) and_dynamlcs (2). We now present simulations that support some of the
Also, consider the control law (8), wherg, is of class

= Hlio die (M, Mg )lemo results previously presented.
pforall k¢ M. It == < 1 and T < For the simulations, we have a group of ten agents, whose

+ (1 - HJ{T“). for all edgesk, then the group of unit network graph is that presented in Fig. 3. The moments
vectors converges to a configuration where all unit vectorsf inertia were generated by adding a random symmetric
are synchronized. matrix (between-I andI) to the identity matrix. For the
Proof: Once more, we conclude thatconverges to the initial conditions, we have chosel|;—; = 0 and we have
null space ofB ® I following the same very steps as in therandomly generated two sets of 10 rotation matrices. Also,




IX. CONCLUSIONS

In this paper, we proposed a distributed control strategy
that guarantees attitude synchronization of unit vectes;
resenting a specific body direction of a rigid body. The
proposed control torque laws depend on distance functions
in 82, and we provide conditions on these distance functions
(a) Trajectories of unit vectors (b) Trajectories of unit vectors that guarantee thaf) a synchronized network is locally

in unit sphere#1 in unit sphere#+2 asymptotically stable in an arbitrary connected undimkcte
graph networkiji) a synchronized network can be achieved
‘ for almost all initial conditions in a tree graph network. We
i imposed conditions on the distance functions that guagante
: that the proposed control laws can be implemented by each
individual rigid body in the absence of a global common
orientation frame. Additionally, if the direction to be syn
chronized is a principal axis of the rigid body, we proposed
(c) Error angle between (d) Error angle between a control law that does not require full torque actuation.

neighbor unit vectors#1 neighbor unit vectors/2 We also studied the equilibria configurations that come with
Fig. 2. Consensus in network of 10 unit vectors for two setdittérential _Certam type Qf graph ne_t\{vorks. D|rec_t|_on_s for fF’t“_re work
initial conditions (set#1 and #2) include studying the stability of all equilibria configuiats,
apart from the synchronized configuration.
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