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Abstract

This paper studies the consensus problem for multi-agent systems. A distributed consensus algorithm is developed by con-
structing homogenous pulse width modulators for agents in the network. In particular, a certain percentage of the sampling
period named duty cycle is modulated according to some state difference with respect to the neighbors at each sampling in-
stant. During each duty cycle, the amplitude of the pulse is fixed. The proposed pulse width modulation scheme enables all
agents to sample asynchronously with arbitrarily large sampling periods. It provides an alternative digital implementation
strategy for multi-agent systems. We show that consensus is achieved asymptotically under the proposed scheme. The results
are compared with the self-triggered ternary controller.
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1 Introduction

Pulse width modulation (PWM) is one of the most fre-
quently used ways to perform analog-to-digital conver-
sion with applications in diverse areas including signal
processing, control, communication, and power electron-
ics (Skoog & Blankenship 1970). Ease of implementation
makes the utilization of PWM an attractive alternative
in many control systems (Wang, Meng & Chen 2014).
PWM uses rectangular pulse waves with fixed ampli-
tude while the pulse width is adjusted during each pe-
riod. All pulses have the same amplitude during the
duty cycle of the period, but the sign is determined at
the beginning of each period according to the control
objective. PWM shares the same philosophy as event
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triggered control, which has been shown to be efficient
in utilization of communication and computational re-
sources (Sánchez, Guarnes & Dormido 2009), (Meng &
Chen 2012), (Ramesh, Sandberg & Johansson 2013).
Both PWM and event triggered control can be regarded
as state-dependent switching control laws. In the PWM
scheme, the time when the control signal switches from
“on” to “off” depends on the sampled state at the be-
ginning of each cycle.

A multi-agent system is a system composed of multiple
interacting intelligent agents. Typical multi-agent sys-
tems include multiple spacecraft, fleets of autonomous
rovers, and formations of unmanned aerial vehicles. The
research interest in consensus problems for multi-agent
systems is evident with recent monographs (Ren &
Beard 2008), (Mesbahi & Egerstedt 2010) and papers
(Xiao & Wang 2008), (Meng, Ren & You 2010), (Qin,
Zheng & Gao 2011), (Liu, Li, Xie, Fu & Zhang 2013).
Early control algorithms for consensus problems are
based on continuous information exchange with the
assumption that the communication bandwidth is suf-
ficiently large. However, the communication bandwidth
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is often limited in reality. Therefore, a digital imple-
mentation of multi-agent systems is much desired.

In this paper, we explore the consensus problem for
multi-agent systems with PWM. After obtaining neigh-
bors’ information, each agent converts the information
into the width of a rectangular pulse wave with unit
amplitude. Then the pulse wave is applied to the local
agent as an input signal. In contrast to existing results
on digital control for multi-agent systems, the main con-
tributions lie in the following four aspects: complete dis-
tribution, asynchronous sampling, arbitrarily large sam-
pling period, and saturation free. Firstly, the proposed
algorithm is completely distributed in the sense that
we require only neighbors’ information instead of global
topology information, such as the largest or the smallest
positive eigenvalues of the associated graph Laplacian
matrix. This supports a plug-and-play implementation
easily handling agents added to or removed from the
network. Secondly, we show that asynchronous sampling
is possible for the proposed PWM scheme. Thirdly, we
demonstrate that the sampling period can be arbitrar-
ily large for asymptotic consensus. Lastly, the PWM al-
gorithm with a fixed amplitude is advantageous to deal
with actuator saturation.

Notation: let Z+ be the set of non-negative integers, that
is, Z+ = {0, 1, 2, . . .}. The sign function is defined as
sgn(z) = 1 if z > 0, sgn(z) = 0 if z = 0, and sgn(z) = −1
if z < 0. For a given real number c, dce denotes the
smallest integer larger than or equal to c.

2 Problem Formulation

2.1 Algebraic Graph Theory

Digraphs G = (V, E) are frequently used to model in-
formation exchange among agents, where the vertex set
V = {1, . . . , N} represents agents in a network, and
the edge set E ⊆ V × V characterizes the connectivity
between agents. The set of neighbors of node i is de-
noted Ni := {j : (j, i) ∈ E} and |Ni| is the neighbor-
hood cardinality. A directed path is a non-empty sub-
graph G′ = (V ′, E ′) of G of the form V ′ = {i0, i1, . . . ik},
E ′ = {(i0, i1), (i1, i2), . . . , (ik−1, ik)} where the ij , j =
0, 1, . . . , k are all distinct. A (non-empty) directed graph
is said to have a directed spanning tree if there exists at
least one node having a directed path to all other nodes.

2.2 System Model

The dynamics of each agent obeys a single integrator
model

ẋi (t) = ui (t) , i ∈ V, (1)

where xi(t) is a scalar and ui (t) denotes the control in-
put for each agent. A distributed PWM algorithm is con-
sidered here in the sense that each agent receives infor-
mation only from neighbors. Also note that each agent

has access to only the relative state differences from
neighbors with respect to its own state. The information
from neighbors will be modulated and then applied as a
control input. PWM strategy guarantees a strictly pos-
itive lower bound of inter-sample periods for each agent
and thus rules out Zeno behavior (Johansson, Egerstedt,
Lygeros & Sastry 1999).

2.3 Distributed PWM

Let us first define some terminologies. Sampling instants
{khi, k ∈ Z+} are the instants when agent i measures
the relative differences with respect to all its neighbors
j ∈ Ni periodically with a fixed sampling period hi. The
PWM control scheme can be described as follows. On
each period the input ui for agent i is switched exactly
once from either 1 or −1 to 0. The length of the duration
of the kth sampling period on which the input holds the
fixed value 1 or−1 is known as the duty cycle αk

i and the
duty rate is denoted αk

i /hi. The duty cycle depends on
the state, which will be shown later. The PWM control
scheme originates from the control of switching power
converters, where usually it is reasonable to assume that
the switches can be “on” and “off” at any ratio αk

i /hi ∈
[0, 1).

Let us define an indicator function si (t) for agent i to
describe “on” and “off” times over a sampling period.
When αk

i = 0, si (t) = 0 for t ∈ [khi, khi + hi); when
αk
i 6= 0, si (t) = 1 if t ∈

[
khi, khi + αk

i

)
, and si (t) = 0

if t ∈
[
khi + αk

i , khi + hi
)
. The length of the duty cycle

for agent i at sampling instant khi is defined as αk
i = 0

if Ni = ∅ or zi (khi) = 0, and

αk
i = min

{
|zi (khi)|

2 |Ni|
, hi

}
, (2)

otherwise, where

zi (khi) =
∑

j∈Ni

(xi (khi)− xj (khi)) .

Intuitively, each agent measures the sum of the disagree-
ment with respect to its neighbors, and sets the length
of its duty cycle proportional to the discrepancy. We de-
fine the piecewise constant signal

ẑi (t) = zi (khi) , for t ∈ [khi, khi + hi) ,

and let the control input for agent i be given by

ui (t) = −si (t) sgnẑi (t) . (3)

The solution notion for the differential equation (1) with
(3) can be defined using the notion of sample-and-hold
solution (Clarke, Ledyaev, Sontag & Subbotin 1997).
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Remark 1 The sample pattern here is different from
the traditional sample-and-hold case (Xie, Liu, Wang &
Jia 2009). Here each agent samples the neighbors’ infor-
mation periodically in an asynchronous way. Note also
that the sampling periods for distinct agents are differ-
ent. The PWM algorithm allows a distributed implemen-
tation without using any a priori information about the
global topology. Our PWM scheme shares the philosophy
of event triggered control since the length of the pulse de-
pends on the sampled state information.

Remark 2 The PWM algorithm is similar to the fi-
nite time consensus algorithm in Cortés (2006) and the
ternary controller in De Persis & Frasca (2013), as it uses
{−1, 0, 1} as the control input set. The PWM algorithm
is different from those algorithms in information acquisi-
tion and utilization. The finite time consensus algorithm
in Cortés (2006) requests neighbors’ state and updates
the controller continuously, while the ternary controller
in De Persis & Frasca (2013) uses self-triggered com-
munication and piecewise constant control between two
consecutive sampling instants. The PWM scheme ob-
tains the information periodically, and the control signal
is switched once during each period.

The objective of this paper is to propose a PWM algo-
rithm such that global asymptotic consensus is achieved
for the multi-agent system (1).

Definition 3 The multi-agent system (1) with a given
PWM algorithm ui, for all i ∈ V, achieves global asymp-
totic consensus if for all xi(0) ∈ R and all i ∈ V, it holds
that limt→∞(xi(t)− xj(t)) = 0, for all i, j ∈ V.

3 PWM over Directed Graphs

Without loss of generality, we relabel V = {1, 2, . . . , N}
such that 0 < h1 ≤ h2 ≤ · · · ≤ hN . Define Φ(x) =
maxi∈V xi, Ψ(x) = mini∈V xi, and V (x) = Φ(x)−Ψ(x),
where x = [x1, x2, . . . , xN ]T. In addition, denote Φ∗ =
Φ(x(0)), Ψ∗ = Ψ(x(0)). Before giving the main result,
we first present two supporting lemmas. The following
lemma shows that the states of all agents of the system
(1) with the control law (3) remain bounded for all t ≥ 0,
where the proof is given in Appendix A.

Lemma 4 Consider the multi-agent system (1) with the
PWM control law (3). It follows that Ψ∗ ≤ xi(t) ≤ Φ∗,
for all t ≥ 0 and all i ∈ V.

The following lemma shows that the state of an agent is
strictly less than an explicit upper bound as long as it is
initially strictly less than this bound, where the proof is
given in Appendix B.

Lemma 5 Consider the multi-agent system (1) with the
PWM control law (3). Suppose that xp(k∗hp) ≤ Φ∗ − ς
for some k∗ ∈ Z+ and some p ∈ V, where 0 < ς < Φ∗

is a constant. Then, xp(t) ≤ Φ∗ − ς/2k−k∗ , for all t ∈
[k∗hp, khp) and for all k ∈ Z+ satisfying k > k∗.

Next we give the main result of this paper.

Theorem 6 Consider the multi-agent system (1) with
the PWM control law (3) and suppose that the communi-
cation graph G is directed. Global asymptotic consensus
is achieved if and only if G contains a directed spanning
tree.

PROOF. Necessity: consider that there are two groups
V1 and V2, where there are no links between V1 and V2.
Choose xi(0) = c1, for all i ∈ V1 and xj(0) = c2, for all
j ∈ V2 and let c1 6= c2. According to the control law (3),
we know that xi(t) = c1 for all t ≥ 0 and i ∈ V1, and
xj(t) = c2 for all t ≥ 0 and j ∈ V2. Therefore, global
asymptotic consensus cannot be achieved.

Sufficiency: We use V (x) = Φ(x)−Ψ(x) as a Lyapunov
function candidate.

Suppose that V (x(0)) 6= 0 (otherwise, x1(t) ≡ x2(t) ≡
· · · ≡ xN (t), for all t ≥ 0 according to (3)). It follows
from Lemma 4 that Ψ∗ ≤ xi(t) ≤ Φ∗, for all t ≥ 0 and
all i ∈ V. We will show that V (x(t)) is strictly decreasing
after a sufficiently long time.

Since G contains a directed spanning tree, we choose
any root node p and suppose that the root node satisfies
xp(0) ≤ Φ∗−ς (the opposite case will be discussed later),
where ς = (Φ∗ − Ψ∗)/2 = V (x(0))/2 > 0. Consider
the time interval [0, NhN ), where N = 2N − 2. Define

Np = dNhN

hp
e. It follows from Lemma 5 that xp(t) ≤

Φ∗ − ς/2Np , for all t ∈ [0, NhN ). Since agent p is a root
agent, we know that there exists a path of length one
from agent p to agent i1 ∈ V\{p}. We next analyze the
trajectory of agent i1.

Case I: zi1(0) ≤ 0. It follows that 0 ≤ ui1(t) ≤ 1, for all
t ∈ [0, α0

i1
) according to (3). Therefore,

xi1(t) ≤ xi1(0) + α0
i1

≤ xi1(0) +

∑
j∈Ni1

\{p}
xj(0)+xp(0)

|Ni1
| − xi1(0)

2

=
(
∑

j∈Ni1
\{p} xj(0) + xp(0))/|Ni1 |+ xi1(0)

2

≤ Φ∗ − ς/(2Np+1N),

for all t ∈ [0, hi1).

Case II: zi1(0) > 0. It follows that ui1(t) = −1, for all t ∈
[0, α0

i1
) according to (3). For the case of |zi1(0)|/|Ni1 | ≤
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2hi1 , we know that

xi1(hi1) = xi1(0)−
xi1(0)−

∑
j∈Ni1

\{p}
xj(0)+xp(0)

|Ni1
|

2

=
(
∑

j∈Ni1\{p}
xj(0) + xp(0))/|Ni1 |+ xi1(0)

2

≤ Φ∗ − ς/(2Np+1N).

For the case of |zi1(0)|/|Ni1 | > 2hi1 , it follows that
xi1(hi1) = xi1(0)− hi1 ≤ Φ∗ − hi1 ≤ Φ∗ − h1.

Combining these two cases, we know that xi1(hi1) ≤
Φ∗ − χ1, where χ1 = min{h1, ς/(2N

∗
+1N)} with N

∗
=

dNhN/h1e. It thus follows from Lemma 5 that xi1(t) ≤
Φ∗−χ1/2

Ni1 for all t ∈ [hi1 , (N i1 +1)hi1), where N i1 =

dNhN/hi1e − 1. Then, xi1(t) ≤ Φ∗ − χ1/2
N
∗

for t ∈
[hN , NhN ) since [hN , NhN ) ⊆ [hi1 , (N i1 + 1)hi1) and

N i1 ≤ N
∗
.

We next focus on the time interval [hN , 2hN ). We know
that there exists a path of length one from {p, i1} to
i2. It is not hard to show that there exists a sampling
instant khi2 ∈ [hN , 2hN ) for agent i2. We next analyze
the trajectory of agent i2 after khi2 .

Case I: there exists an edge from agent p to agent i2.
Then, following the same analysis as for agent i1, we
have that xi2((k + 1)hi2) ≤ Φ∗ − χ1.

Case II: there exists an edge from agent i1 to agent i2.
Similar to the analysis for agent i1, we have xi2((k +
1)hi2) ≤ Φ∗ − χ2 for all t ∈ [hN , NhN ) where χ2 =

min{h1/(21+N
∗
N), ς/(21+N

∗
N)2} since xi1(t) ≤ Φ∗ −

χ1/2
N
∗
. It thus follows from Lemma 5 that xi2(t) ≤

Φ∗ − χ2/2
Ni2 for all t ∈ [(k + 1)hi2 , (k + 1 + N i2)hi2),

where N i2 = d(NhN − (k + 1)hi2)/hi2e. Then xi2(t) ≤
Φ∗−χ2/2

N
∗

for all t ∈ [3hN , NhN ) since [3hN , NhN ) ⊆
[(k + 1)hi2 , (k + 1 +N i2)hi2) and N i2 ≤ N

∗
.

By repeating the above process, it is not hard to

show that xi(t) ≤ Φ∗ − χN−1/2
N
∗

for all t ∈
[(2N − 3)hN , NhN ) and all i ∈ V, where χN−1 =

min{ς/(2N
∗
+1N)N−1, h1/(2

N
∗
+1N)N−2}. This implies

that Φ(NhN ) ≤ Φ∗ − χN , where χN = χN−1/2
N
∗
.

Note that this conclusion is based on the assump-
tion xp(0) ≤ Φ∗ − ς. Instead, now consider the case
xp(0) > Φ∗ − ς = Ψ∗ + ς. Doing analogous anal-
ysis for Ψ(x(t)), we have xi(t) ≥ Ψ∗ + χN , for all
t ∈ [(2N − 3)hN , NhN ) and all i ∈ V. Therefore, it
follows that Ψ(NhN ) ≥ Ψ∗ + χN .

Combining the analysis above for Φ and Ψ, we
have V (x(t)) ≤ V (x(0)) − χN since either xi(t) ≤

Φ∗ − χN or xi(t) ≥ Ψ∗ + χN holds for all t ∈
[(2N − 3)hN , NhN ). Consider the case of χN =

ς/(2NN
∗
+N−1NN−1). It follows that V (x(NhN )) ≤

V (x(0)) − ς/(2NN
∗
+N−1NN−1) = αV (x(0)), where

α = 1− 1/(2NN
∗
+NNN−1). Without loss of generality,

we assume that xp(0) ≤ Φ∗ − ς. We can then find a

sampling instant k̃hp ∈ [(2N − 3)hN , (2N − 2)hN ) such

that xp(k̃hp) ≤ Φ∗− ς/(2NN
∗
+N−1NN−1). Using a sim-

ilar analysis to the time interval [0, NhN ), it is not hard
to show that V (x(2NhN )) ≤ α2V (x(0)). Therefore,
we obtain V (x(rNhN )) ≤ αrV (x(0)). By noting that
0 < α < 1 is a constant, we have limt→∞ V (x(t)) = 0.

For the case of χN = h1/(2
NN

∗
+N−N∗−2NN−2), the

analysis is similar to that of χN = ς/(2NN
∗
+N−1NN−1).

Overall, we know that limt→∞(xi(t) − xj(t)) = 0, for
all i, j ∈ V and therefore global asymptotic consensus is
achieved. �

4 Simulation Example

12 3 4 5

Fig. 1. A graph contains a directed spanning tree

Consider the multi-agent system with the topology
shown in Fig. 1 to illustrate Theorem 6. There exists a
spanning tree in the communication topology shown in
Fig. 1. We choose a random initial condition which is
generated from the uniform distribution on the interval
[−1, 1]. The control signal ui(t) is modulated accord-
ing to the algorithm (3) to control each agent. The
sampling period for each agent is generated randomly.
Fig. 2 shows the evolution of all agents and we see that
rendezvous is achieved. The control input of agent 5 is
shown in Fig. 3 for the first 4 seconds. We see that the
duration of pulses becomes shorter and shorter at the
beginning, which indicates agent 5 is closer and closer
to its neighbors. After a while, the sign of the pulse be-
comes negative, which indicates that the state of agent
5 is larger than the average of its neighbors.

The proposed PWM algorithm is a distributed digital
algorithm for multi-agent systems. There is another
class of digital algorithms for multi-agent systems, called
event/self-triggered control (Dimarogonas, Frazzoli &
Johansson 2012), (Fan, Feng, Wang & Song 2013),
(Garcia, Cao, Yu, Antsaklis & Casbeer 2013), (Seyboth,
Dimarogonas & Johansson 2013), (Meng & Chen 2013),
(De Persis & Frasca 2013) and (Xiao, Meng &
Chen 2015). Note that Dimarogonas et al. (2012), Gar-
cia et al. (2013), Seyboth et al. (2013), Meng & Chen
(2013), and Xiao et al. (2015) use the broadcasting way
to communicate with neighbors to guarantee the av-
erage consensus. Therefore, the comparisons here are
made with Protocol A in De Persis & Frasca (2013)
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Fig. 3. Control input of agent 5

Table 1
Comparison with self-triggered ternary controllers

De Persis & Frasca (2013) PWM

P1 Bounded & Finite-time Asymptotic

P2 Self-triggered Periodic

P3 Undirected Directed

P4 2.1167 × 10−4 1.1748 × 10−7

P5 2.1394 1.5504

P6 0.0013 0.5481

only because of the similarities between the proposed
PWM method and self-triggered ternary controllers.
They share the same sensing model. In addition, aver-
age consensus is not preserved in De Persis & Frasca
(2013) and herein.

Now let us compare the proposed methods with self-
triggered ternary controllers from six different perspec-
tives (P1: Convergence to consensus; P2: Triggering

method; P3: Communication Graph; P4: State dis-
agreement; P5: Energy consumption; P6: Average com-
munication time). The comparison is summarized in
Table 1. Bounded consensus is achieved within a finite
time in De Persis & Frasca (2013), while the proposed
PWM algorithm ensures global asymptotic consensus
(P1). The work in De Persis & Frasca (2013) uses a self-
triggered way to request information from neighboring
agents, while the proposed PWM algorithm obtains
neighbors’ information periodically (P2). The result in
De Persis & Frasca (2013) is based on the assumption
of undirected connected graphs. However, our result ap-
plies to directed graphs containing a directed spanning
tree, which include the undirected connected graph as a
special case (P3).

Let us perform numerical simulations to compare prop-
erties (P4–P6). Note that the comparison is done under
the same initial condition which is generated randomly
and under the network topology used in Dimarogonas
et al. (2012). The simulation time is T = 10 seconds.
The sampling period of each agent for the PWM method
is chosen randomly in the interval (0,1) and ε = 0.01
for the ternary controller in De Persis & Frasca (2013).
Note that a different choice of ε may lead to different
numerical values listed in Table 1. For P4, the state

disagreement is defined as
∑N

i=1(xi(T )− x̄(T ))2, where

x̄(T ) =
∑N

i=1 xi(T )/N is the average of all states. The
numerical values shown in Table 1 confirm that consen-
sus is reached for the PWM method, and bounded con-
sensus by the self-triggered ternary controller in De Per-
sis & Frasca (2013). For P5, the energy consumption is

defined as J =
∫ T

0
u′(τ)u(τ)dτ . The energy consumed by

the PWM approach is less than the self-triggered ternary
controller. At the same time, the average communica-
tion period of the PWM algorithm is much larger than
the ternary controller, which means less communication
cost for the PWM method (P6).

5 Conclusion

In this paper, a PWM method was introduced to con-
trol a multi-agent system with the objective of reaching
consensus. It was shown that no global knowledge about
the topology was needed to guarantee asymptotic con-
sensus. The PWM scheme allows all agents to sample
asynchronously with arbitrarily large sampling periods.
The magnitude of the control signal can be easily chosen
by a practitioner based upon actuator saturation con-
straints as the control signal has fixed amplitude. The
efficiency of the algorithm was demonstrated by simula-
tions. For future work, we would like to consider agents
with general linear dynamics. We would also like to take
into account measurement noise and disturbances.
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A Proof of Lemma 4

We first show that for the sampling interval [khi, khi +
hi), k ∈ Z+ of agent i ∈ V, the state remains bounded
and the bound is determined by the states of all agents
at sampling instant khi, that is, Ψ(x(khi)) ≤ xi(t) ≤
Φ(x(khi)). We prove this fact by considering the follow-
ing subcases:

Case I: Ni = ∅, or zi(khi) = 0. It is trivial to show
that xi(t) = xi(khi) and therefore Ψ(x(khi)) ≤ xi(t) ≤
Φ(x(khi)), for all t ∈ [khi, khi + hi).

Case II: Ni 6= ∅, and zi(khi) < 0. Then, it follows that
ui(t) = 1 for all t ∈ [khi, khi + αk

i ) according to (3).
Therefore, xi(khi) ≤ xi(t) ≤ xi(khi) + αk

i ≤ xi(khi) −
0.5zi(khi)/|Ni| = [

∑
j∈Ni

xj(khi)/|Ni|+xi(khi)]/2, for

all t ∈ [khi, khi + αk
i ). Thus, Ψ(x(khi)) ≤ xi(t) ≤

Φ(x(khi)), for all t ∈ [khi, khi + hi).

Case III: Ni 6= ∅, and zi(khi) > 0. It can be shown that
Ψ(x(khi)) ≤ xi(t) ≤ Φ(x(khi)) for all t ∈ [khi, khi +hi)
similar to Case II.

Combining all these subcases, we know that Ψ(x(khi)) ≤
xi(t) ≤ Φ(x(khi)) for any i ∈ V and t ∈ [khi, khi + hi]
due to the continuity of xi(t). We also know that there
exists an agent j ∈ V such that xj(khi) = Φ(x(khi))
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and khi ∈ [k̃hj , k̃hj + hj ] with k̃hj < khi. Based on

the above fact we obtain Φ(x(khi)) ≤ Φ(x(k̃hj)). By
repeating this process, we have Φ(x(khi)) ≤ Φ∗ for any
k ∈ Z+. We can similarly show that Ψ(x(khi)) ≥ Ψ∗ for
any k ∈ Z+. Therefore, we have that Ψ∗ ≤ xi(t) ≤ Φ∗

for all t ≥ 0 and all i ∈ V.

B Proof of Lemma 5

We first consider the time interval t ∈ [k∗hp, k
∗hp + hp)

and show that xp(t) ≤ Φ∗− ς/2 for all t ∈ [k∗hp, k
∗hp +

hp).

Case I:Ni = ∅. It is trivial to show that xp(t) = xp(k∗hp)
and therefore xp(t) ≤ Φ∗ − ς/2 for all t ∈ [k∗hp, k

∗hp +
hp).

Case II: Ni 6= ∅, and zp(k∗hp) < 0. It follows that

up(t) = 1, for all t ∈ [k∗hp, k
∗hp + αk∗

p ) according to

(3). Therefore, xp(t) ≤ xp(k∗hp) + αk∗

p ≤ xp(k∗hp) −
0.5zi(k

∗hp)/|Np| ≤ Φ∗−ς/2 for all t ∈ [k∗hp, k
∗hp+hp),

where we have used the fact that xj(k
∗hp) ≤ Φ∗, for all

j ∈ V based on Lemma 4.

Case III: Ni 6= ∅, and zp(k∗hp) > 0. The relationship
xp(t) ≤ xp(k∗hp) ≤ Φ∗−ς/2 for all t ∈ [k∗hp, k

∗hp+hp)
can be proved since up(t) ≤ 0 for all t ∈ [k∗hp, k

∗hp+hp).

Then, by repeating the above analysis, it follows that
xp(t) ≤ Φ∗− ς/22 for all t ∈ [(k∗+ 1)hp, (k

∗+ 2)hp) and
therefore xp(t) ≤ Φ∗−ς/22, for all t ∈ [k∗hp, (k

∗+2)hp).

Finally, we have that xp(t) ≤ Φ∗ − ς/2k−k∗ , for all t ∈
[k∗hp, khp) for all k ∈ Z+ satisfying k > k∗.
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