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Abstract— In this paper, we propose an aperiodic formulation
of Distributed Model Predictive Control for the cooperation of
multi-agent systems under additive bounded disturbances. In
the proposed method, each agent solves an Optimal Control
Problem only when certain control performances cannot be
guaranteed according to certain triggering rules. This could
lead to the reduction of energy consumption and the alleviation
of over-usage of communication loads under critical resource
constraints in networked control systems, such as limited
communication power and the life-time of the battery. The
triggering rule is derived for event-based case, where control in-
puts are executed based on the current state measurement. Our
proposed method is also verified through a simple simulation
example.

I. INTRODUCTION

The analysis of formation control of cooperating dis-

tributed agents such as autonomous vehicles or mobile

robots, is an important area of research in the last decades.

This has been motivated due to the fact that it increases

the efficiency and lowers the overall loads and costs by

completing tasks together working as a team of agents. One

of the most common problems of formation control involves

distributed agents cooperatively achieving their desired for-

mations and destinations. In this case, the control method has

to be designed to deal with several problems, such as how to

avoid their collisions, how to achieve their desired formation,

and how to deal with the actuator limitations. One of the most

attractive control schemes is the use of Distributed Model

Predictive Control (DMPC), and an extensive research has

already been done, e.g., [2], [7], [8], [14], [15], [16], [17]. In

this control scheme, each agent tries to solve a Finite Horizon

Optimal Control Problem (FHOCP) on-line given the current

state of the plant and the information of the neighbors to

predict their behavior. The most common approach to DMPC

is the case of decoupled sub-systems, where each sub-system

is not directly influenced by the others. The cost function is

instead, coupled and affected by others as a part of the total

cost. This implies that choosing the controller is influenced

by the cooperation with the neighbors and consequently, may

indirectly affect the individual dynamics.
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Another attractive research deals with how to reduce

energy consumption and the over-usage of communication

resources in large scale interconnected networks. The battery

discharge could be one of the serious concerns due to

the communication and computational loads when using

limited life-time of battery powered devices. The event-

triggered control scheme has been increasing its interest in

recent years in order to alleviate these network constraints.

In the event-triggered control method, control inputs are

executed only when certain desired control performances

(such as cosed loop stability) cannot be guaranteed. This

is in contrast to the conventional time-triggered control

where the control inputs are executed periodically, which

may lead to redundant execution of control inputs and the

over-usage of communication resources among sub-systems.

Thus the event-triggered control method could alleviate the

communication load by executing control input aperiodically

while saving desired control performances.

Event-based and self-triggered control are two main dif-

ferent aperiodic control approaches, see, e.g., [9], [13], [19],

[20] for the event-based case, and [21], [13], [22] for the self-

triggered case. The major difference between event-based

and self-triggered control is that, the event-based control

scheme requires current measurements of states of the plant,

while in the self-triggered case the next control execution can

be pre-computed without measuring the states of the system

based on the prediction and the dynamics.

Although the DMPC framework requires to solve the

FHOCP periodically, and thus not only the periodic commu-

nication among agents but also computation loads to solve

FHOCP are required, the combination between the event-

triggered control and DMPC has received some attention in

recent years; the readers can refer to [1], [4], [5], [6], [10],

[12] for some recent results. In [1], the authors consider

deriving event-based DMPC for distributed agents having

nonlinear dynamics with no additive disturbances, and the

FHOCP is aperiodically solved according to an event-based

triggering rule with respect to the information error from

the neighboring agents based on stability analysis. While

these methods may lead to the reduction of the energy

consumption, the triggering rules could be conservative as

the size of the network increases, since the information error

for all of the agent’s neighbors is taken into account for

the stability criterion. In [10], the authors consider a self-

triggered MPC for single agent with linear dynamics. A sub-

optimal control input is designed, through which the infinite

horizon quadratic cost is evaluated. The event-triggered rule

described in [10] takes over the fundamental concept of



the event-triggered control; the control input is executed in

an aperiodic way, which renders it different from the other

papers where only the FHOCP is aperiodically solved and

thus the control execution can be periodic.

In this paper, we consider deriving event-based DMPC for

cooperation of distributed agents having nonlinear dynamics,

where the FHOCP is aperiodically solved according to cer-

tain triggering rules. A main novelty with respect to earlier

approaches is that we derive a triggering condition which

does not involve the neighbors’ information by changing the

expression of the Lyapunov function candidate, and thus the

triggering rules could be less conservative with respect to

earlier approaches and the periodic usage of communication

is not needed in this case. Moreover, additive bounded

disturbances are taken into account, and the corresponding

triggering rule is obtained by robust stability of DMPC. This

is clearly more practical than the conventional methods, as

we cannot avoid any disturbances when applying control

schemes to the real world. Therefore, our proposal could lead

not only to a reduction of the computational load of DMPC

but also to the relaxation of over-usage of communication

resources for the cooperation of perturbed multi-agent sys-

tems. The feasibility and stability analysis for our proposals

are also provided in detail.

The rest of this paper is organized as follows. In Section

II, the mathematical modeling and the problem formulation

of DMPC for distributed agents are described along with

several assumptions. In Section III, a triggering condition for

event-based DMPC is described. Feasibility and the stability

under our proposed scheme are shown in Section IV and

V. Simulation results verify our proposal in Section VI, and

finally a summary of the results of this paper is given in

Section VII.

II. PROBLEM FORMULATION

In this section the problem formulation is going to be

presented. At first, the mathematical modeling is provided

and then the design for DMPC for each agent is formulated.

A. Modeling

We consider a distributed system consisting of M agents,

where each agent is controlled by a local Model Predictive

Controller. The nominal model for each agent is given by a

nonlinear difference equation

x̂i(k + 1) = fi(x̂i(k), ui(k)) (1)

where for each i = 1, ...,M , x̂i(k) ∈ R
n is the state of i-th

agent Ai at time k and ui(k) ∈ R
m is control variable. This

general class of nonlinear system is considered in this paper

so that various type of systems can be included, such as the

kinematics of the autonomous vehicles or flights, see e.g.,

[16], [17]. We further consider that the agent evolves under

the influence of a certain disturbance. That is, the dynamics

of the actual state is given by a perturbed model;

xi(k + 1) = fi(xi(k), ui(k)) + wi(k), wi(k) ∈ W (2)

where wi is an additive disturbance which belongs to a

compact set wi(k) ∈ W and is assumed to be bounded

by ||wi(k)|| ≤ w̄, where || · || denotes the Euclidean norm.

We assume fi(0, 0) = 0 and the constraints for the state

and control input on each agent are of the form xi(k) ∈
Xi, ui(k) ∈ Ui. Moreover, we assume that the nonlinear

function fi(x, u) is Lipschitz continuous in x ∈ Xi and its

Lipschitz constant is Lfi , i.e.,

||fi(x1, u)− fi(x2, u)|| ≤ Lfi ||x1 − x2||

for x1 ∈ Xi and x2 ∈ Xi. This assumption is later used

to derive event-based condition for DMPC and the stability

property.

B. DMPC Formulation

In the proposed DMPC framework, each agent Ai solves

a FHOCP at current time k, involving the predictive states

x̂i(k + l|k) for future time k + l obtained from the nominal

model (1) and predictive control inputs ui(k+ l|k), based on

its current state xi(k) and the information from its neighbors.

The current and predictive states and control inputs are

denoted in vector format as

xi(k) = {x̂i(k + l|k)}Nl=0, ui(k) = {ui(k + l|k)}N−1
l=0

with x̂i(k|k) = xi(k) and N is the prediction horizon.

Furthermore, we consider a partially connected structure;

each agent Ai can exchange the state information with

neighboring cooperating agents Gi = {Aj , j ∈ Gi}, where

Gi denotes the set of indices of agents belonging to the set

Gi. We assume that Gi is non-empty and the information flow

is bidirectional; that is, every agent has at least one neighbor

and the information can be exchanged between neighboring

agents.

The information vector from the neighboring agent j is

denoted as zj(k) = {zj(k + l)}Nl=0, where each component

zj(k+l) is the predictive state of the j-th agent at k+l. This

information vector depends on whether the FHOCP is solved

or not, and thus more specific definitions of the information

vector are provided later in this text. The overall information

which Ai obtains from all of its neighboring agents at time

k are collected as one stack vector zGi
(k)

zGi
(k) = col(zj(k), j ∈ Gi)

Given the state xi(k) at time k and its neighbors’ information

vector zGi
(k), we define the following type of cost function

to be minimized (see e.g., [1], [2], [16], [17] ) ;

Ji(xi(k),ui(k), zGi
(k))

= JH
i (xi(k),ui(k)) + JQ

i (xi(k), zGi
(k))

where the easier notation Ji(k) = JH
i (k) + JQ

i (k) is used

for the rest of this paper. The cost consists of two terms;

JH
i (k) is the cost for the agent itself and is given by

JH
i (k) =

N−1
∑

l=0

{hi(x̂i(k + l|k), ui(k + l|k))}

+Vi(x̂i(k +N |k))



where x̂i(k + l|k) is the predictive state obtained from the

nominal model (1), Vi(x̂i(k +N |k)) is a terminal cost, and

N is the prediction horizon. The second cost JQ
i (k) involves

the information from the neighbors and is given by

JQ
i (k) =

N−1
∑

l=0

∑

j∈Gi

qij(x̂i(k + l|k), zj(k + l))

where qij is a coupling cost between neighboring agents

Ai and Aj . In this paper we assume that the coupling

cost qij is given by quadratic form qij(xi, zj) = (xi −
zj + dij)

TQij(xi − zj + dij), where Qij is positive definite

weighted matrix, and dij is a desired distance vector between

agents Ai and Aj . Thus, this coupling cost is used in order

to achieve the desired formation.

The FHOCP for the perturbed model (2) is now ready to

be formulated;

min Ji(xi(k),ui(k), zGi
(k))

ui(k)

s.t. x̂i(k + l + 1|k) = fi(x̂i(k + l|k), ui(k + l|k))
x̂i(k + l|k) ∈ X l

i

ui(k + l|k) ∈ Ui

x̂i(k +N |k) ∈ Xfi

JH
i (xi(k),ui(k)) ≤ γi(k)

(3)

where the constraint for x̂i(k + l|k) is narrowed to x̂i(k +
l|k) ∈ X l

i ⊆ Xi to make sure that there is a robust positively

invariant set for the closed loop system where a solution

to the FHOCP exists, see [3] for more detailed explanation.

More specifically, the restricted constraint set X l
i is given

by X l
i = Xi ∼ Bl

i, where Bl
i = {x ∈ R

n : ||x|| ≤
Ll

fi
−1

Lfi
−1

}

and ∼ denotes Pontryagin difference. The terminal constraint

Xfi is a set given by Xfi = {x ∈ R
n : Vi(x) ≤ αvi

} and

Xfi ⊆ Xi. The last constraint JH
i (xi(k),ui(k)) ≤ γi(k) is

imposed for ensuring the stability for each agent. A more

specific definition of γi(k) is formulated in the next section.

We further make following assumptions for the stability

analysis :

Assumption 1: The running costs hi(xi, ui) is Lipschitz

continuous in xi ∈ Xi, with Lipschitz constant Lhi
. Further-

more, the terminal cost Vi(x) is Lipschitz in x ∈ Φi with

Lipschitz constant LVi
.

Assumption 2: There exists a local stabilizing controller

κi(x) ∈ Ui in the sense that

Vi(fi(x, κi(x)))− Vi(x) ≤ −hi(x, κi(x)) (4)

for all x ∈ Φi, where Φi is a compact set given by Φi = {x ∈
R

n : Vi(x) ≤ αi} and Φi ⊆ XN−m
i for m = 1, · · · , N − 1.

Assumption 3: The set Xfi = {x ∈ R
n : Vi(x) ∈ αvi

} is

such that for all x ∈ Φi , f(x, κi(x)) ∈ Xfi ⊆ Φi.

Remark 1: All of these assumptions are fairly general

for guaranteeing stability property of MPC under additive

bounded disturbances; see e.g., [3], [18], where the same

assumptions are used. In this paper we make use of this

assumptions in order to derive our proposed triggering rules

as described in the next section. Note that the set X l
i could

be very small if the Lipschitz constant Lfi is relatively

large, especially when it is larger than 1. This problem

is also addressed in [3], where several methods to reduce

this conservativeness are given. For example, the control

parametrization method can be used by giving a feedback

structure to reduce Lfi ; ui(k) = Kxi(k) + vi(k), where

vi(k) is a new control variable.

The solution to the FHOCP gives an optimal control input

sequence and the corresponding predictive states denoted by

x
∗

i (k) = {x̂∗

i (k + l|k)}Nl=0, u
∗

i (k) = {u∗

i (k + l|k)}N−1
l=0

where x̂∗

i (k|k) = xi(k). Then, in the event-triggered for-

mulation, some part of this optimal input is applied to the

system, i.e.,

uap
i (k + l|k) = u∗

i (k + l|k), l = 0, · · · ,m− 1

where k+m denotes the next time step when the FHOCP is

going to be solved obtained by the triggering condition. Be-

fore deriving the triggering condition, some useful Lemmas

are given;

Lemma 1: The difference between the true state xi(k+ l)
and the predictive state x̂i(k + l|k) is bounded by ||x̂i(k +

l|k)− xi(k + l)|| ≤ δi(l) where δi(l) =
Ll

fi
−1

Lfi
−1

w̄.

Lemma 2: Let X l
i be given by X l

i = Xi ∼ Bl
i, where

Bl
i = {x ∈ Rn : ||x|| ≤

Ll
fi

−1

Lfi
−1

} for l ≥ 1, and let x ∈ X l
i

and y ∈ R
n be such that ||x−y|| ≤ Ll−1

fi
w̄. Then y ∈ X l−1

i .

For the proofs, the reader can refer to [3].

III. DERIVING EVENT-BASED CONDITION FOR DMPC

In this section the event-based triggering rule is derived.
1 Assuming that we solved the FHOCP at k, then this

provides an optimal control sequence u
∗

i (k) and the cor-

responding optimal cost denoted by J∗

i (k) = JH∗

i (k) +
JQ∗

i (k), where JH∗

i (k) = JH
i (x∗

i (k),u
∗

i (k)) and JQ∗

i (k) =
JQ
i (x∗

i (k), zGi
(k)). Then, consider that the following con-

trol sequence ūi(k + m) = {ūi(k + l|k + m)}m+N−1
l=m

where 1 ≤ m < N is used to obtain the predictive state

sequence x̄i(k + m) = {x̄i(k + l|k + m)}m+N
l=m (given

x̄i(k +m|k +m) = xi(k +m)) from k +m : for m = 1,

ūi(k + l|k + 1) =
{

u∗

i (k + l|k) (for l = 1, · · · , N − 1)
κi(x̄(k + l|k + 1)) (for l = N)

(5)

This means that the optimal control inputs are used until

N − 1, and the local stabilizing controller (4) is used at the

last step. For 1 < m < N , ūi(k +m) is given by

ūi(k + l|k +m) =
{

ūi(k + l|k +m− 1) (for l = m, · · · , N +m− 2)
κi(x̄(k + l|k +m)) (for l = N +m− 1)

(6)

which means that the control inputs at k + m is based on

ones at the previous step; ūi(k + l|k + m − 1) is used for

ūi(k + l|k +m) until N +m− 2, and the local stabilizing

1In the extended version submitted as the journal publication, the self-
triggered condition and the feasibility and stability are also derived in detail.



controller is used at the last step. The corresponding cost is

simply denoted as J̄i(k +m) = J̄H
i (k +m) + J̄Q

i (k +m),
where J̄H

i (k+m) = JH
i (x̄(k+m), ūi(k+m)) and J̄Q

i (k+
m) = JQ

i (x̄(k +m), zGi
(k +m)).

At k + m, we will assume that this (admissible) control

input sequence ūi(k + m) is going to be applied instead

of solving the FHOCP, and check triggering conditions if

the stability is still guaranteed. Specifically, we propose the

following triggering rule.

(Triggering rule): The FHOCP is solved only when JH
i (k)

is not guaranteed to decrease.

This means that we take JH
i (k) = JH

i (xi(k),ui(k)) as

a Lyapunov candidate, instead of using the total cost Ji(k).
The reason for this is that if we had the total cost as a

Lyapunov candidate, we would need to take into account

the information zGi
(k) to evaluate triggering conditions and

thus the periodic usage of communication resources would be

required. Furthermore, the uncertainties of this information

vector would be considered for all the neighbors, and thus

the triggering condition might have been more conservative.

Thus by taking only JH
i (k) as a Lyapunov candidate, which

involves only the information of the agent i itself, the reduc-

tion of not only the utilization of communication resources

but also of the conservativeness of the triggering rule can be

achieved.

The problem when the partial cost is used here is, however,

that the optimal control inputs are obtained by evaluating the

total cost Ji(k) and thus J̄H
i (k) does not necessarily follow

JH∗

i (k) ≤ J̄H
i (k), and the stability conditions are hard

to verify. Motivated by this, we impose here an additional

constraint for JH
i (k) in JH

i (xi(k),ui(k)) ≤ γi(k), which

corresponds to JH
i (xi(k + m),ui(k + m)) ≤ γi(k + m)

when the FHOCP is triggered at k + m. The upper bound

γi(k +m) is defined as

γi(k +m) = J̄H
i (k +m− 1) + Lpi · w̄

−hi(xi(k +m− 1), u∗

i (k +m− 1|k))
(7)

where Lpi = Lhi

L
N−1

fi
−1

Lfi
−1

+ LVi
LN−1
fi

, and J̄H
i (k +m− 1)

is replaced with the optimal cost JH∗

i (k) when m = 1.

Having obtained JH∗

i (k) at k, we first check if this cost

is guaranteed to decrease from k to k + 1. Consider that an

admissible control input ūi(k + 1) is used for k + 1 and

obtain J̄H
i (k + 1). If J̄H

i (k + 1) < JH∗

i (k), the stability is

already guaranteed without having to solve the FHOCP at

k + 1. Similarly, we check J̄H
i (k + m) < J̄H

i (k + m − 1)
for 2 ≤ m < N if the cost is guaranteed to decrease from

k +m− 1 to k +m. The following theorem provides more

detailed condition if the cost is decreasing:

Theorem 1: Let JH∗

i (k) be the optimal cost obtained at k,

and J̄H
i (k+m) be the cost obtained by applying (5) or (6).

Then, a sufficient condition to satisfy J̄H
i (k + 1) < JH∗

i (k)
is given by

Lpiw̄ ≤ σ · hi(xi(k), u
∗

i (k|k)) (8)

where 0 < σ < 1. Furthermore, for 2 ≤ m < N , a sufficient

condition to satisfy J̄H
i (k +m) < J̄H

i (k +m− 1) is

Lpi · w̄ ≤ σ · hi(xi(k +m− 1), u∗

i (k +m− 1|k)). (9)

Proof: See Appendix.

The event-based MPC is therefore, formulated as follows;

(Event-based MPC): Assume that the FHOCP is solved at k.

Then the FHOCP is solved at k+1 only when (8) is violated.

For k+m where 2 ≤ m < N , the FHOCP is solved at k+m
only when (9) is violated. When the triggering conditions (8)

and (9) are satisfied for all 2 ≤ m < N , then the FHOCP

is solved at k +N .

Definition 1 (Information vector for event-based case):

Let zi(k + 1) be the information vector that should be

transmitted from agent i at time k. This information is sent

to its neighbor, e.g., j, only when j decides to solve the

FHOCP at k+1. When the agent i solves the FHOCP at k,

the following optimal predictive states are transmitted

zi(k+1) = {x̂∗

i (k+1|k), · · · , x̂∗

i (k+N |k), fi(x̂
∗

i (k+N |k), κi(·))}.
(10)

When it is not solved, the predictive states obtained from

ū(k) are transmitted, i.e.,

zi(k+1) = {x̄i(k+1|k), · · · , x̄i(k+N |k), fi(x̄i(k+N |k), κi(·))}.
(11)

IV. FEASIBILITY ANALYSIS

In this section the feasibility analysis of the FHOCP for

each agent is going to be given. Analyzing the feasibility is

important in the MPC framework since the FHOCP is solved

in on-line fashion. In the event-triggered formulation, it is

going to be shown that if we successfully solve the FHOCP at

k, the FHOCP is feasible whenever until prediction horizon

it is again going to be solved in the future k + m, which

means that there exists at least one solution satisfying all the

constraints imposed on (3) at k +m. The main theorem for

the feasibility is provided below.

Theorem 2: Let the system be described by (2), and

assume that all Assumptions 1-3 are satisfied. Then, the

FHOCP solved by agent i is feasible if the disturbance is

bounded by

w̄ ≤
(αi − αvi

)

LVi
LN−1
fi

(12)

for all i = 1, · · · ,M .

Proof: Assume that we successfully solve FHOCP

at time k to get the optimal input sequence u
∗

i (k) and

the corresponding optimal cost J∗

i (k), and then from the

triggering rule, the next FHOCP is determined to be solved

at k + m where 1 ≤ m < N . The FHOCP is shown to be

feasible at k + m that there exists a solution satisfying all

the constraints in (3) by considering that ūi(k + m) given

by either (5) or (6) is applied.

1) ūi(k +m) ∈ Ui

This is clearly admissible from the expression of

ūi(k + l|k +m) given by (5) and (6).



2) x̄i(k+l|k+m) ∈ X l−m
i for l = m+1, · · · , N+m−1.

First we show this for m = 1. Since ūi(k+ l|k+1) =
u∗

i (k + l|k), we first obtain

||x̄i(k + l|k + 1)− x̂∗

i (k + l|k)|| ≤ Ll−1
fi

w̄

where x̂∗

i (k+ l|k) ∈ X l
i . Thus from Lemma 2, x̄i(k+

l|k + 1) ∈ X l−1
i for l = 2, · · · , N . For m = 2, since

ūi(k + l|k + 2) = ūi(k + l|k + 1) for l = 2, · · · , N ,

we get

||x̄i(k + l|k + 2)− x̄i(k + l|k + 1)|| ≤ Ll−2
fi

w̄

for l = 3, · · · , N + 1, where x̄i(k + l|k + 1) ∈ X l−1
i .

Thus from Lemma 2, x̄i(k + l|k + 2) ∈ X l−2
i for l =

3, · · · , N +1. By recursion, we get x̄i(k+ l|k+m) ∈
X l−m

i for l = m+ 1, · · · , N +m− 1.

3) x̄i(k +m+N |k +m) ∈ Xfi

First we show x̄i(k + m + N − 1|k + m) ∈ Φi. For

m = 1, by using

||x̄i(k +N |k + 1)− x̂∗

i (k +N |k)|| ≤ LN−1
fi

w̄

we get that

Vi(x̄i(k +N |k + 1)) ≤ αvi
+ LVi

LN−1
fi

w̄ ≤ αi

Hence x̄i(k+N |k+1) ∈ Φi, thus by using Assumption

3, we obtain x̄i(k +N + 1|k + 1) ∈ Xfi . Similarly as

above, for m = 2,

||x̄i(k +N + 1|k + 2)− x̄i(k +N + 1|k + 1)||

≤ LN−1
fi

w̄

and we get

Vi(x̄i(k +N + 1|k + 2)) ≤ αvi
+ LVi

LN−1
fi

w̄ ≤ αi

Hence x̄i(k + N + 1|k + 2) ∈ Φi, thus by using

Assumption 3, we get x̄i(k + N + 2|k + 2) ∈ Xfi .

Therefore we recursively get that x̄i(k + m + N −
1|k +m) ∈ Φi and x̄i(k +m+N |k +m) ∈ Xfi .

4) J̄H
i (k +m) ≤ γi(k +m)

First we check for m = 1. The difference between

J̄H
i (k + 1) and the optimal cost JH∗

i (k) is bounded

according to (18) from Appendix, and thus we get

J̄H
i (k + 1) ≤ JH∗

i (k)− hi(xi(k), u
∗

i (k|k)) + Lpi · w̄
= γi(k + 1)

(13)

Thus, J̄H
i (k+1) satisfies J̄H

i (k+1) ≤ γi(k+1) and

so the feasibility for this constraint is guaranteed when

m = 1. For 1 < m < N , we obtain from () that

J̄H
i (k +m) ≤ J̄H

i (k +m− 1) + Lpi · w̄
− hi(xi(k +m− 1), u∗

i (k +m− 1|k))
= γi(k +m)

Therefore, the cost at step k+m satisfies J̄H
i (k+m) ≤

γi(k +m), so the feasibility for the last constraint is

guaranteed for m = 1, · · · , N − 1. This completes the

proof for the feasibility.

V. STABILITY ANALYSIS

In this section the stability analysis for DMPC under the

event-based control scheme is going to be given. According

to [18], it is proven for a single agent that the closed loop

system under the standard MPC scheme is Input-to-State

Stable (ISS) with respect to bounded disturbances, and that

the trajectory of the state evolves towards inside the terminal

region Φi.

In this paper, we will show that JH
i (k) is an ISS Lyapunov

function, and the same stability property is guaranteed as in

[18] by making use of the additional constraint imposed on

the FHOCP. According to [18], JH
i (k) is said to be an ISS

Lyapunov function for agent i, if the following is satisfied;

1) JH
i (k) ≥ α1(xi(k)), ∀xi(k) ∈ Xi, and JH

i (k) ≤
α2(xi(k)) ∀xi(k) ∈ Φi, where α1 and α2 are K∞

functions.

2) JH
i (k+1)−JH

i (k) ≤ −α3(xi(k))+σ(||w||), ∀xi(k) ∈
Xi, where α3 is a K∞ function, and σ is a K-function.

where 1) is obtained in the same way as in [18]. Be-

fore showing 2), we must note that JH
i (k) is not always

the cost from the optimal control inputs, and thus this

takes values in two different ways; when the FHOCP is

solved, JH∗

i (k) = JH
i (x∗

i (k),u
∗

i (k)) and when not solved,

J̄H
i (k) = JH

i (x̄i(k), ūi(k)). According to the triggering

rules, we have already shown 2) for the differences J̄H
i (k+

1)−JH∗

i (k) and J̄H
i (k+1)−J̄H

i (k), i.e., when the triggering

conditions are satisfied at k + 1. Therefore, we need to

check the difference when the FHOCP is solved at k + 1,

i.e., JH∗

i (k + 1) − JH∗

i (k) and JH∗

i (k + 1) − J̄H
i (k) for

guaranteeing the ISS property. This is easily shown, since

by using the last constraint JH
i (k+1) ≤ γi(k+1) when the

FHOCP is solved at k + 1, we get from (7) that

JH∗

i (k + 1)− JH∗

i (k) ≤ −hi(xi(k), u
∗

i (k|k)) + Lpi · w̄
≤ −λmin(F )||xi(k)||

2 + σ(||w||)

where JH∗

i (k) can be replaced with J̄H
i (k). Therefore, from

[18], it is proved that JH
i (k) is an ISS Lyapunov function,

and the following stability result is concluded.

Theorem 3: Let the system be given by (2), and assume

that all the Assumptions 1-3 are satisfied. Furthermore,

assume that the additive disturbance is bounded by (12). The

control update is given under the event-based condition(9),

which is described above. Then, the system for agent i is

ISS and thus the trajectory of the state reaches toward inside

the terminal region Φi where it is ultimately bounded.

VI. SIMULATION RESULTS

The simulation results of the proposed methods are given

in this section. Consider the position and formation control

of 3 non-holonomic agents having the same dynamics in two

dimensions, where the nominal model of each agent is given

by






xi(k + 1) = xi(k)− vi(k)T cos θi(k)
yi(k + 1) = yi(k)− vi(k)T sin θi(k)
θi(k + 1) = θi(k)− ωi(k)T

(14)



which is simply denoted as χi(k + 1) = fi(χi(k), ui(k)),
where χi = [xi, yi, θi]

T for i = 1, 2, 3 denotes the state

vector consisting of the position of i-th agent and its direction

θi. u = [vi, ωi]
T is the control input and the constraints are

given by |vi| ≤ v̄ = 2.5 and |ωi| ≤ ω̄ = 0.5. T = 0.2 is the

sampling time. The information flows are allowed between

A1 and A2, and between A1 and A3, that is, G1 = {2, 3},

G2 = {1}, G3 = {1}.

The matrices for the transition cost are given by F =
0.5I3, R = 0.1I2, and the coupling costs are Q12 = Q13 =
0.1I2, Q21 = 1.0I2, Q31 = 1.0I2. The prediction horizon

is set to N = 35 steps. The terminal cost is given by

Vi = χT

i χi, and the parameters αi and αvi
for defining

this terminal region are given by αi = 2.25 and αvi
= 0.68

according to the procedure in [17]. With computed Lipschitz

constants Lfi = 1.01, LVi
= 4.50, the allowable disturbance

for guaranteeing the feasibility is w̄ = 0.25. The initial

points of the agents are x1(0) = [15, 10, π]T, x2(0) =
[4 20 −π/2]T, x3(0) = [15, 5, π]T and the desired distance

vector is d12 = −d21 = [0, 2], d13 = −d31 = [0,−2]. We

assume that their desired goals are xgoal1 = [0, 0, π]T,

xgoal2 = [0, 2, π]T, xgoal3 = [0, −2, π]T.

Fig. 1 shows the trajectory of three agents with w̄ =
0.20 under event-based and standard DMPC schemes. The

heading of triangles represent the direction of the agents,

and filled triangles show the instants when the FHOCP was

solved. Cross marks represent their goals. Fig. 1 shows that

the agents A1,A2 and A3 solve the FHOCP for 21 steps,

20 steps, and 20 steps out of all 41 time steps respectively.

Therefore, we can conclude that the agents could achieve

their desired formation and their goals by aperiodically

solving the FHOCP , which leads to the reduction of the

energy consumption.

VII. CONCLUSIONS

We proposed event-based DMPC for distributed agents

having nonlinear dynamics with additive bounded distur-

bances. In these control methods, each agent aperiodically

solves an OCP in order not only to reduce the energy

consumption but also to reduce the communication loads,

while we can still guarantee the stability and feasibility.

Finally our proposal was verified by a simple simulation

result.

APPENDIX

(Proof of Theorem 1): The difference between J̄H
i (k+1)

and the optimal cost JH∗

i (k) is given by

∆JH
i1 = J̄H

i (k + 1)− JH∗

i (k)
= −hi(xi(k), u

∗

i (k|k))

+
∑N−1

l=1 {hi(x̄i(k + l|k + 1), ūi(k + l|k + 1))
− hi(x̂

∗

i (k + l|k), u∗

i (k + l|k))}
−Vi(x̂

∗

i (k +N |k)) + Vi(x̄i(k +N + 1|k + 1)
+hi(x̄i(k +N |k + 1), κi(·))
−Vi(x̄i(k +N |k + 1)) + Vi(x̄i(k +N |k + 1))

(15)
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Fig. 1. Trajectories of the agents under the several schemes; triangles
represent the trajectory of the agents under event-based MPC, and the dashed
line represents the trajectory under standard MPC. The filled triangles show
instants when the FHOCP was solved. Cross marks respresent their goals.

By using the Assumption 2 for terminal cost and state, we

get

Vi(x̄i(k +N + 1|k + 1))− Vi(x̄i(k +N |k + 1))
≤ −hi(x̄i(k +N |k + 1), κi(x̄i(k +N |k + 1))).

Since ūi(k+ l|k+1) = u∗

i (k+ l|k) for l = 1, · · · , N−1, the

difference for the transition cost hi in the summation can be

bounded by the Lipschitz continuity of hi in Assumption 1:

|hi(x̄i(k + l|k + 1), ūi(k + l|k + 1))
−hi(x̂

∗

i (k + l|k), u∗

i (k + l|k))|

≤ Lhi
Ll−1
fi

w̄
(16)

Furthermore, the difference for the terminal cost Vi is

bounded by the Lipschitz continuity of Vi in Assumption

1:

|Vi(x̂
∗

i (k +N |k))− Vi(x̄i(k +N |k + 1))|

≤ LVi
LN−1
fi

w̄
(17)

Therefore, the bound is given by

∆JH
i1 ≤ −hi(xi(k), u

∗

i (k|k))

+
∑N−1

l=1

(

Lhi
Ll−1
fi

w̄
)

+ LVi
LN−1
fi

w̄

≤ −hi(xi(k), u
∗

i (k|k)) + Lpi · w̄

(18)

Letting

Lpiw̄ ≤ σ · hi(xi(k), u
∗

i (k|k)) (19)

where 0 < σ < 1, we obtain

∆JH
i1 ≤ (σ − 1) · hi(xi(k), u

∗

i (k|k)) < 0

and so the stability is guaranteed. Therefore, a sufficient

condition to satisfy J̄H
i (k + 1) < JH∗

i (k) is (19). Now



assume that the triggering condition (19) is satisfied and we

obtain J̄H
i (k + 1) at k + 1. Then, we further consider that

the admissible control input ū(k+2) is going to be used for

k + 2 to get the next cost J̄H
i (k + 2), and take a difference

from J̄H
i (k + 1) similarly to (15), i.e.,

∆JH
i2 = J̄H

i (k + 2)− J̄H
i (k + 1)

= −hi(xi(k + 1), u∗

i (k + 1|k))

+
∑N

l=2 {hi(x̄i(k + l|k + 2), ūi(k + l|k + 2))
− hi(x̄i(k + l|k + 1), ūi(k + l|k + 1))}
−Vi(x̄i(k +N + 1|k + 1))
+Vi(x̄i(k +N + 2|k + 2)
+hi(x̄i(k +N + 1|k + 2), κi(·))
−Vi(x̄i(k +N + 1|k + 2))
+Vi(x̄i(k +N + 1|k + 2))

From (5), ūi(k+ l|k+1) = ū(k+ l|k+2) for l = 2, · · · , N .

By using the Assumption 4 for the terminal cost, we get

Vi(x̄i(k +N + 2|k + 2))− Vi(x̄i(k +N + 1|k + 2))
≤ −hi(x̄i(k +N + 1|k + 2), κi(x̄i(k +N + 1|k + 2)))

From Lemma 1, the difference between the transition costs

hi in the summation above is bounded by

|hi(x̄i(k + l|k + 2), ūi(k + l|k + 2))
−hi(x̄i(k + l|k + 1), ūi(k + l|k + 1))|
≤ Lhi

||x̄i(k + l|k + 2)− x̄i(k + l|k + 1)||

≤ Lhi
Ll−2
fi

w̄

(20)

Furthermore, the the difference for the terminal cost Vi is

bounded by

|Vi(x̄i(k +N + 1|k + 2))− Vi(x̄i(k +N + 1|k + 1))|
≤ LVi

||x̄i(k +N + 1|k + 2)− x̄i(k +N + 1|k + 1)||

≤ LVi
LN−1
fi

w̄

which is also the same bound as in (17). Therefore, we get

∆JH
i2 ≤ −hi(xi(k + 1), u∗

i (k + 1|k)) + Lpi · w̄

Thus, by letting Lpiw̄ ≤ σ · hi(xi(k + 1), u∗

i (k + 1|k)), we

get ∆JH
i2 < 0, so the stability property is guaranteed. By

using the same procedure, we get the bound of ∆JH
im =

J̄H
i (k +m)− J̄H

i (k +m− 1) for 1 ≤ m < N as

∆JH
im = J̄H

i (k +m)− J̄H
i (k +m− 1)

≤ −hi(xi(k +m− 1), u∗

i (k +m− 1|k))
+Lpi · w̄

and so the triggering rule is given by

Lpi · w̄ ≤ σ · hi(xi(k +m− 1), u∗

i (k +m− 1|k)).

This completes the proof of Theorem 1.
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