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Abstract: In this paper the control of a platoon with a nonlinear controller under event-triggered
communication is investigated. The proposed nonlinear controller is a predecessor-following controller
for a certain class of nonlinear functions. For the event-triggered communication scheme every agent
decides based on its own state when it transmits its state information. Therefore, a trigger rule is designed
that guarantees exponential convergence of the state error while it excludes Zeno behavior. The results
are extended to allow heterogeneous trigger rules under certain conditions. Furthermore the case of
heterogeneous controllers is analyzed and exponential convergence and exclusion of Zeno behavior is
still guaranteed. The theoretical results of the paper are supported by numerical simulations.
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1. INTRODUCTION

Increasing road safety and capacity are among the most impor-
tant goals in traffic systems. Since platooning is a concept that
tries to achieve these goals it is an important point in research
to improve control and communication for platoons of vehicles.
Recent developments in this area investigate vehicles that are
equipped with a communication network and therefore one goal
is to reduce the network load while keeping the performance
of the platooning controller. In this paper we try to reduce the
network load by using an event-triggered control scheme. The
design of a trigger rule, that guarantees desired properties, in
our case exponential convergence and exclusion of Zeno behav-
ior, is the crucial task in this case, since we allow the platooning
controller to be nonlinear. The use of a nonlinear controller can
be very meaningful for platooning. For example one could think
of a saturation like controller that can be approximated with the
nonlinearities used in this paper.

The topic of platooning control has a large history in re-
search. Already Hedrick et al. (1991) worked on the design
of longitudinal vehicle controllers for platooning. One of the
future research directions was the analysis of string stability
for platoons with countably infinite number of vehicles as in
Swaroop and Hedrick (1996), which is not the focus of the
work at hand. A good overview about many investigations and
extensions for two widely used control architectures is given in
Hao and Barooah (2013). One of these control architectures is
the predecessor-following architecture considered in this paper.
Hao and Barooah (2013) also gives the motivation why we
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investigate the nonlinear controller, since it works better than
a linear controller with the same architecture.

The use of event-triggered control schemes started initially with
the work in Årzén (1999). It experienced increasing relevance
through Tabuada (2007). In his work a trigger rule is presented
that guarantees asymptotic stability of a nonlinear system and
exclusion of Zeno behavior under the condition that a controller
with certain properties exists. This concept was enhanced to
perform event-triggered control for distributed systems in Wang
and Lemmon (2011) and Dimarogonas et al. (2012). A new
approach, where each agent transmits its state information only
when the difference of its current state and the last transmitted
one crosses a time dependent threshold, was given in Seyboth
et al. (2013). The concept of time-dependent trigger functions
gives the possibility that one vehicle decides solely on its own
absolute measurements when to trigger the next event, whereas
for state dependent trigger rules the agent has to know at
least some continuous relative measure to neighboring agents.
Thus this concept was used in Linsenmayer and Dimarogonas
(2015). In this paper, firstly a linear event-triggered symmetric
bidirectional controller is analyzed. A first analysis of the
nonlinear predecessor-following controller, which is used here,
is given as well. The result states a trigger rule, that guarantees
boundedness of the state error. Furthermore there is a statement,
that guarantees convergence of the state error if the trigger
error converges. However, in Linsenmayer and Dimarogonas
(2015) there is no tool to derive a trigger rule that has this
convergence property while Zeno behavior (see Johansson et al.
(1999)), i.e., the occurrence of infinitely many events in finite
time, can be excluded. This gap is closed through the work at
hand. Therefore it is an crucial extension to existing work in this
field. The assumptions on the trigger rule derived in this paper
provide a nice similarity to the linear case in Linsenmayer and
Dimarogonas (2015) since the condition says that the trigger
rule must have a slower decrease than the system dynamics.



The quantification on how fast the system decreases is done
using the concept of input-to-state exponential stability, being
defined in the next section, where one can also find a precise
problem definition. In Section 3 the crucial proposition is
stated that gives the possibility to derive the trigger rules for
our nonlinear problem in Section 4. The theoretical analysis
is completed by numerical simulations in Section 5 and a
concluding Section 6.

2. PROBLEM STATEMENT AND DEFINITIONS

The following section gives a precise statement of the observed
problem. At the end of the section, the necessary definitions
used in the main part are collected.

2.1 Problem statement

This paper treats the problem of event-triggered platooning
with a nonlinear predecessor-following controller from Hao and
Barooah (2013) which has partly been investigated in Linsen-
mayer and Dimarogonas (2015). Every vehicle is modeled as a
double integrator

p̈i(t) = ui(t), i ∈N := {1, . . . ,N}, (1)
where pi(t)∈R describes the position of vehicle i at time t. The
desired position of vehicle i at time t is denoted by p∗i (t) ∈ R.
The goal is to follow a fictitious reference vehicle, starting in
p0,0 and moving with constant velocity v0, i.e.,

p0(t)≡ p∗0(t) = v0t + p0,0 (2)
with desired constant gaps ∆(i−1,i) between vehicle i and i−1.
To achieve this goal we use the nonlinear predecessor-following
controller for all i ∈N , i.e.,

ui =− f (pi− pi−1 +∆(i−1,i))−g(ṗi− ṗi−1) (3)
where f ,g are odd, nonlinear functions that are globally Lip-
schitz and fulfill certain sector nonlinearities as in Hao and
Barooah (2013).

The event-triggered approach relies on that each vehicle i
transmits its state information, i.e., pi and ṗi, to its follower
only at discrete event times t i

k, where k ∈ N. To state the
decision rule that determines the event times we define the
transmitted errors due to outdated information

ei(t) = p̂i +(t− t i
k) ˆ̇pi− pi(t) =: pi, f oh(t, t i

k)− pi(t)
edi(t) = ˆ̇pi− ṗi(t) =: ṗi,zoh(t i

k)− ṗi(t), (4)
for all t i

k ≤ t < t i
k+1 with p̂i = pi(t i

k) and ˆ̇pi = ṗi(t i
k) being the

last transmitted state information, pi, f oh(t, t i
k) being the first-

order hold position estimation at time t with information from
t i
k and ṗi,zoh(t i

k) the corresponding zero-order hold velocity
information.

The discrete event times are determined through the trigger rule
σi(t,hi(t))> 0

where hi(t) = [ei(t) edi(t)]
T , i.e., the state information of vehi-

cle i is transmitted to its follower as soon as σi(·) > 0. As our
event-triggered predecessor-following controller we apply for
all t : max{t i

k, t
i−1
l } ≤ t < min{t i

k+1, t
i−1
l+1}, l ∈ N

ui(t) =− f
(

pi, f oh(t, t i
k)− pi−1, f oh(t, t i

l )+∆(i−1,i)
)

−g
(

ṗi,zoh(t i
k)− ṗi−1,zoh(t i

l )
)

(5)
where we use a zero-order hold velocity estimation and a first-
order hold position estimation as introduced in (4). Furthermore
we define the state errors for all t ≥ 0,

p̃i(t) = pi(t)− p∗i (t), ˙̃pi(t) = ṗi(t)− v0, (6)

where p∗i (t)= p∗0(t)−∑
i
j=1 ∆( j−1, j)=: p∗0(t)−∆(0,i) and xi(t) :=[

p̃i(t) ˙̃pi(t)
]T . With the definitions in (6) and (4), using (1) and

applying (5) for all t ≥ 0, we conclude
¨̃pi(t) =− f

(
pi(t)− pi−1(t)+ ei(t)− ei−1(t)+∆(i−1,i)

)
−g
(

ṗi(t)− ṗi−1(t)+ edi(t)− edi−1(t)
)
, t ≥ 0. (7)

Thus, with (6) and the fact that ∆(0,i) − ∆(0,i−1) = ∆(i−1,i)
the closed-loop of the event-triggered predecessor-following
platooning controller can be computed as

¨̃pi(t) =− f (p̃i(t)− p̃i−1(t)+ ei(t)− ei−1(t))
−g
(

˙̃pi(t)− ˙̃pi−1(t)+ edi(t)− edi−1(t)
)
, t ≥ 0. (8)

The goal of this work is now to derive a trigger function
σi(t,hi(t)) that guarantees exponential convergence of ‖x(t)‖
to zero, i.e.,

‖x(t)‖ ≤ re−αt (9)
where x(t) ∈ R2N is the stack vector of state errors for all
vehicles. Furthermore Zeno behavior needs to be excluded.

2.2 Definitions

In this paper we use comparison functions, i.e. class K and
class K∞ as defined in Definition 4.2 in Khalil (2002). Accord-
ing to this definition a continuous function γ : [0,a)→ [0,∞)
belongs to class K if it is strictly increasing and γ(0) = 0
and it belongs to class K∞ if a = ∞ and γ(r)→ ∞ as r→ ∞.
Furthermore if the inequality αx2 ≤ xγ(x) ≤ βx2 holds with
α,β ∈R and β ≥ α , the function γ : R→R is said to fulfill the
sector nonlinearity γ ∈ [α,β ].

The main part of this work uses a special case of the well-
known input-to-state stability (ISS, Sontag (1989)), called
input-to-state exponential stability (ISES), introduced in Grüne
et al. (1999).
Definition 1. (ISES, Grüne et al. (1999)). A system
ẋ = f (t,x(t),u(t)) is ISES, if there exist k ≥ 1, λ > 0 and
γ ∈ K∞, such that

‖x(t)‖ ≤max

{
ke−λ (t−t0)‖x(t0)‖,γ

(
sup

t0≤ν≤t
‖u(ν)‖

)}
.

3. EXPONENTIAL CONVERGENCE

In this section we deal with the ISES property at two points.
Firstly we investigate which statements we can make about
how fast the state of an ISES system converges under an
exponentially converging input. Then we show, that each of the
vehicles in our platooning control scheme can be seen as an
ISES system.

The following proposition is important for this paper. It states
that for ISES systems and a sufficiently slow exponentially
decreasing input the state of the system can be upper bounded
by a function that converges as fast as the input.
Proposition 2. Consider a nonlinear system with state x and
input u that is ISES with γ(r) = cγ(r) being a linear function,
i.e.,

‖x(t)‖ ≤max

{
ke−λ (t−t0)‖x(t0)‖,cγ sup

t0≤ν≤t
‖u(ν)‖

}
. (10)

Assume the input satisfies
‖u(t)‖ ≤ ce−αt (11)
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Fig. 1. Figure to express the idea of the proof

with 0 < α < λ , c > 0 then
‖x(t)‖ ≤ re−αt (12)

holds with
r = max

{
kcγ ceατ ,k‖x(0)‖

}
(13)

where

τ = max
{

1
λ

ln
k‖x(0)‖

cγ c
,

lnk
λ −α

}
. (14)

Proof. First of all we define the function y : R → R with
y(0) = ‖x(0)‖ and y(t) = max

{
ky(mτ)e−λ (t−mτ),cγ ce−αmτ

}
for all t ∈ (mτ,(m+ 1)τ] with m ∈ N0. To illustrate why we
introduce y(t) Fig. 1 shows the bound on the norm of u(t) in
magenta. Furthermore the dotted black line starting at t = 0
represents the bound we gain by using (10) with t0 = 0. If we
reuse the bound (10) after τ > 0 we gain the bound represented
by the second dotted black line. Therefore iterative use of the
bound (10) leads to the blue line. Notice, that the blue line is
exactly the function y(t). Thus we know ‖x(t)‖ ≤ y(t) for all
t ≥ 0. It remains to explain the red line. This line represents
an upper bound on y(t), and therefore also on ‖x(t)‖ which is
stated as an exponentially decreasing function re−αt . Therefore
to prove the proposition we need to show that under the given
assumptions on α and r it holds that y(t)≤ re−αt for all t ≥ 0.

For the proof of the existence of such an upper bound the choice
of τ is crucial. Therefore we start with computing a lower bound
on τ1 such that y(τ1) = cγ c, i.e.,

k‖x(0)‖e−λτ1 ≤ cγ c ⇔ τ1≥
1
λ

ln
k‖x(0)‖

cγ c
(15)

where we assumed t0 = 0 without loss of generality. The next
step is to compute a value for τ2 := t2 − t1 = t2 − τ1 that
guarantees y(t2) = cγ ce−αt1 under the assumption y(t1) = cγ c,
i.e.,

k y(t1)︸︷︷︸
cγ c

e−λτ2 = cγ ce−αt1 ⇔ τ2=
lnk+αt1

λ
. (16)

If we iterate this procedure we gain the condition

τ1 ≥
1
λ

ln
k‖x(0)‖

cγ c
, τi+1 =

lnk+ατi

λ
, ∀i ∈ N. (17)

In the next step of the proof we compute one global τ that guar-
antees the demanded bounds from above, i.e., y(ti) = cγ ce−αti−1

instead of different τi. To compute such a τ we analyze the
conditions from (17). We will demand the sequence of τi to
be nonincreasing and show that this can be stated as a condition
on τ1, i.e.,

τi+1 ≤τi ⇔ lnk+ατi

λ
≤ lnk+ατi−1

λ
. (18)

Thus, the condition

τ2 =
lnk+ατ1

λ
≤ τ1 ⇔ τ1≥

lnk
λ −α

(19)

guarantees the monotonicity. As a consequence of (15) and (19)
we choose

τ = max
{

1
λ

ln
k‖x(0)‖

cγ c
,

lnk
λ −α

}
(20)

to conclude y(mτ) = cγ ce−(m−1)ατ = cγ ceατ e−αmτ and there-
fore y(mτ+)≤ kcγ ceατ e−αmτ with y(mτ+)= limt→mτ+,t>mτ y(t).
Up to now this bound holds only for m ≥ 1. In the case of
m = 0 we have the condition y(0+) ≤ k‖x(0)‖. Thus with
r = max

{
kcγ ceατ ,k‖x(0)‖

}
and α < λ we conclude ‖x(t)‖ ≤

re−αt .

If we see the input as our transmitted error, the proposition can
be used in event-triggered control. It serves as a tool to derive a
trigger rule for a desired convergence of the state error.

Each vehicle in our platoon with nonlinear predecessor-following
controller has dynamics as the system in the following lemma
and the special input as in Corollary 4. This Corollary
uses Lemma 3 to show that each vehicle with a nonlinear
predecessor-following controller that fulfills certain conditions
is ISES with respect to the inputs hi(t), hi−1(t) and xi−1(t).
Therefore we can use Proposition 2 to derive our trigger rule
in the next section.
Lemma 3. Assume that f ,g are globally Lipschitz with Lip-
schitz constants L1,L2 and that they fulfill the following
sector nonlinearities; f ∈ [ε1,K1] and g ∈ [ε2,K2], where
ε1,ε2,K1,K2 > 0. Then the system

ẏ1 = y2

ẏ2 =− f (y1−u1)−g(y2−u2) (21)

is ISES with respect to u = [u1 u2]
T , with γ(r) = cγ r being a

linear function, i.e.,

‖y(t)‖ ≤max

{
ke−λ (t−t0)‖y(t0)‖,cγ sup

t0≤ν≤t
‖u(ν)‖

}
, (22)

where cγ =
√

c2
c1

c4, λ = c3
2c2

, k =
√

c2
c1

with

c1 = λmin(P),

c2 =
λmax(P)+ηK1

2
,

c3 =
1
2
(1−θ)min{ε1,(ηε2−1)},

c4 =
4η max{L1,L2}

θ min{ε1,(ηε2−1)} , (23)

where η > max
{

1, 1
ε2
+ (1+K2)

2

ε1ε2

}
, P =

[
1 1
1 η

]
, 0 < θ < 1 and

λmin/max(P) refers to the smallest/largest eigenvalue of the
symmetric matrix P.

Proof. From the proof of Proposition 1 in Hao and Barooah
(2013) and Lemma 4 in Linsenmayer and Dimarogonas (2015)
we resume, that with V (y) = 1

2 yT Py + η
∫ y1

0 f (z)dz we have
c1‖y‖2 ≤V (y)≤ c2‖y‖2 and

V̇ ≤−c3‖y‖2 ∀‖y‖ ≥ c4‖u‖. (24)

Due to the fact that ‖y‖ ≥
√

V
c2

, (24) implies

V̇ ≤−c3‖y‖2 ≤−c3

c2
V ∀

√
V
c2
≥ c4‖u‖

⇔ V̇ ≤−c3

c2
V ∀V ≥ c2(c4‖u‖)2

⇔V (t)≤V (t0)e
− c3

c2
(t−t0) ∀V ≥ c2(c4‖u‖)2. (25)
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Since c1‖y‖2 ≤V (y)≤ c2‖y‖2 one can conclude

c1‖y‖2 ≤ c2‖y(t0)‖2e−
c3
c2
(t−t0) ∀c1‖y‖2 ≥ c2(c4‖u‖)2

⇔‖y(t)‖ ≤
√

c2

c1
‖y(t0)‖e−

c3
2c2

(t−t0) ∀‖y‖ ≥
√

c2

c1
c4‖u‖

(26)
and hence

‖y(t)‖ ≤max
{√

c2

c1
‖y(t0)‖e−

c3
2c2

(t−t0),

√
c2

c1
c4 sup

t0≤ν≤t
‖u(ν)‖

}
.

(27)
holds for all t ≥ 0. 2

The following corollary applies the results of the foregoing
lemma to the vehicle dynamics in the platooning case.
Corollary 4. Assume that f ,g are globally Lipschitz with
Lipschitz constants L1,L2 and that they fulfill the follow-
ing sector nonlinearities, f ∈ [ε1,K1] and g ∈ [ε2,K2], where
ε1,ε2,K1,K2 > 0. Then the state error dynamics of each vehicle

¨̃pi(t) =− f (p̃i(t)− p̃i−1(t)+ ei(t)− ei−1(t))
−g
(

˙̃pi(t)− ˙̃pi−1(t)+ edi(t)− edi−1(t)
)

(28)
are ISES with respect to u(t) = hi(t)−hi−1(t)− xi−1(t), i.e.,

‖xi(t)‖ ≤max
{

ke−λ (t−t0)‖xi(t0)‖,

cγ sup
t0≤ν≤t

(
‖hi(ν)‖+‖hi−1(ν)‖+‖xi−1(ν)‖

)}
.

(29)

The value for cγ =
√

c2
c1

c4, λ = c3
2c2

, k =
√

c2
c1

can be computed
as in Lemma 3.

Proof. Firstly we apply Lemma 3 with y(t) =
[

p̃i(t)
˙̃pi(t)

]
= xi(t)

and u(t) = hi(t)−hi−1(t)− xi−1(t) to compute

‖xi(t)‖ ≤max
{

ke−λ (t−t0)‖xi(t0)‖,

cγ sup
t0≤ν≤t

(
‖hi(ν)−hi−1(ν)− xi−1(ν)‖

)}
. (30)

With the triangle inequality, i.e.,
‖hi(ν)−hi−1(ν)− xi−1(ν)‖
≤ ‖hi(ν)‖+‖hi−1(ν)‖+‖xi−1(ν)‖ , (31)

equation (29) directly follows. 2

4. NONLINEAR EVENT-TRIGGERED PLATOONING

In our event-triggered predecessor-following platooning scheme
we have an interconnection like in Fig. 2, where all subsystems
Σ have the ISES property as shown in Corollary 4. Therefore
the following lemma describes the evolution of the norm of the
state error for the whole platoon.
Lemma 5. Assume we have an interconnection of N systems as
in Fig. 2 where each system is ISES with respect to the inputs
hi−1, hi and xi−1 as in (29). Furthermore assume that

‖h j(t)‖ ≤ ce−αt (32)

holds for all j ∈N with 0 < α < λ , c > 0. Then there exists
r > 0, s.t.,

‖x(t)‖= ‖ [x1(t) . . . xN(t)]
T ‖ ≤ re−αt . (33)

Proof. Since Σ is ISES and (32) holds for h1(t) we can use
Proposition 2 to conclude that there exists a positive r1 ∈ R
such that ‖x1(t)‖ ≤ r1e−αt . Thus, for the second system we
know that ‖x1(t)‖ ≤ r1e−αt , ‖h1(t)‖ ≤ ce−αt , ‖h2(t)‖ ≤ ce−αt

and with Proposition 2 the existence of a positive scalar r2 is
guaranteed such that ‖x2(t)‖ ≤ r2e−αt holds. With the same
calculation we can iteratively guarantee that a positive ri ∈ R
exists such that ‖xi(t)‖ ≤ rie−αt holds for all i ∈N . Therefore
by choosing r = ‖ [r1, . . . ,rN ]

T ‖ the statement ‖x(t)‖ ≤ re−αt

holds. 2

Now we are able to state the main theorem, that states a trigger
rule that guarantees asymptotic convergence of the state error
and the exclusion of Zeno behavior.
Theorem 6. Suppose a platoon of vehicles modeled as double-
integrators (1), controlled with a nonlinear event-triggered
predecessor-following controller (5) with f ,g being globally
Lipschitz with Lipschitz constants L1,L2 and fulfilling the fol-
lowing sector nonlinearities; f ∈ [ε1,K1] and g∈ [ε2,K2], where
ε1,ε2,K1,K2 > 0. Consider the trigger function

σi(t,hi(t)) = ‖hi(t)‖− ce−αt (34)
with 0 < α < λ , c > 0, thus guaranteeing the bound ‖hi(t)‖ ≤
ce−αt for all i ∈ {1, . . . ,N}.
Then the norm of the state error exponentially converges to 0,
i.e.,

‖x(t)‖ ≤ re−αt (35)
and Zeno behavior is excluded.

Proof. The first part of the proof is covered by Corollary 4 and
Lemma 5. It remains to show, that Zeno behavior is excluded.
As in the proof of Theorem 6 in Linsenmayer and Dimarogo-
nas (2015) we compute ‖ḣi(t)‖ ≤ ‖hi(t)‖+ |ui(t)| ≤ ‖hi(t)‖+
2(L1 +L2)(‖x(t)‖+‖hi(t)‖) where we use the Lipschitz prop-
erty of f and g. Therefore we can conclude

‖ḣi(t)‖ ≤ 2(L1 +L2)re−αt +(1+2(L1 +L2))ce−αt

and for all t i
k ≤ t ≤ t i

k+1

‖ḣi(t)‖ ≤ 2(L1 +L2)re−αt i
k +(1+2(L1 +L2))ce−αt i

k

and thus
‖hi(t)‖ ≤

(
2(L1 +L2)re−αt i

k+(1+2(L1 +L2))ce−αt i
k

)
(t− t i

k).

By the definition of the trigger rule the next event is triggered
as soon as ‖hi(t)‖> ce−αt . Therefore the equation(

2(L1 +L2)re−αt i
k +(1+2(L1 +L2))ce−αt i

k

)
τi = ce−αt

multiplied with eαt i
k , i.e.,

(2(L1 +L2)r+(1+2(L1 +L2))c)τi = ce−ατi

gives an implicit lower bound on the inter-execution time τ i =
t i
k+1− t i

k. This equation shows, that τ i is the intersection of a
linear function with finite gain and a decreasing function with
positive initial value. Therefore it is guaranteed, that τ i is lower
bounded and therefore Zeno behavior is excluded. 2

With the previous theorem we derived a trigger rule that guaran-
tees exponential convergence of the state error while excluding
Zeno behavior. In this case the trigger condition is the same for
each vehicle. The following corollary generalizes this statement



by allowing different values for αi and ci in the triggering
rule for each agent. The values for ci can be arbitrary positive
constants while the αi’s need to fulfill certain conditions.
Corollary 7. Consider a platoon of vehicles modeled as double-
integrators (1) being controlled with an event-triggered nonlin-
ear predecessor-following controller (5) with f ,g being glob-
ally Lipschitz with Lipschitz constants L1,L2 and fulfilling the
following sector nonlinearities, f ∈ [ε1,K1] and g ∈ [ε2,K2],
where ε1,ε2,K1,K2 > 0. Use the trigger functions

σi(t,hi(t)) = ‖hi(t)‖− cie−αit (36)
with λ > α1, αi ≥ αi+1, αN > 0 and ci > 0, thus guaranteeing
the bound ‖hi(t)‖ ≤ cie−αit for all i ∈N . Then the norm of the
state error exponentially converges to 0 with

‖x(t)‖ ≤ re−αN t (37)
and Zeno behavior is excluded.

Proof. Since Σ is ISES and (36) holds for h1(t) we con-
clude from Proposition 2 that a positive r1 ∈ R exists, such
that‖x1(t)‖≤ r1e−α1t holds. Now we need the condition αi+1 ≤
αi, i.e., ‖x1(t)‖ ≤ r1e−α1t ≤ r1e−α2t and ‖h1(t)‖ ≤ c1e−α1t ≤
c1e−α2t , to do the same steps as in the proof of Lemma 5 to con-
clude the existence of positive real values ri such that ‖xi(t)‖ ≤
rie−αit holds for all i ∈ {1, . . . ,N}. Therefore by choosing r =
‖ [r1, . . . ,rN ]

T ‖ it holds that ‖x(t)‖ ≤ re−mini∈N αit = re−αN t .

It remains to show that Zeno behavior is excluded. As before
‖ḣi(t)‖ ≤ ‖hi(t)‖+ |ui(t)|

≤ cie−αit(1+L1 +L2)+(L1 +L2)×
(rie−αit + ri−1e−αi−1t + ci−1e−αi−1t) (38)

and with αi ≤ αi−1, for all t i
k ≤ t ≤ t i

k+1 we get

‖ḣi(t)‖ ≤ cie−αit i
k(1+L1 +L2)+(L1 +L2)×

(rie−αit i
k + ri−1e−αit i

k + ci−1e−αit i
k). (39)

By the definition of the trigger rule the next event is triggered,
as soon as ‖hi(t)‖> cie−αit . Therefore the equation(

ci(1+L1 +L2) + (L1 +L2)(ri + ri−1 + ci−1)
)
e−αit i

k τi

= cie−αit (40)

multiplied with eαit i
k , i.e.,(

ci(1+L1 +L2) + (L1 +L2)(ri + ri−1 + ci−1)
)
τi

= cie−αiτi (41)
gives an implicit lower bound on the inter-execution time τ i =
t i
k+1− t i

k and we conclude the exclusion of Zeno behavior as in
the proof of Theorem 6. 2

The foregoing corollary generalizes Theorem 6 towards the
use of heterogeneous trigger rules. We can go even one step
further by taking into account heterogeneous event-triggered
controllers, i.e.,

ui,et =− fi(pi,et − pi−1,et +∆(i−1,i))−gi(ṗi,et − ṗi−1,et). (42)
The nonlinear functions fi,gi are chosen in a way that the
ISES property for each system can again be concluded from
Corollary 4. The main difference is, that (29) holds now with
individual positive scalars cγ,i, ki and λi, i.e.,

‖xi(t)‖ ≤max
{

kie−λi(t−t0)‖xi(t0)‖,

cγ,i sup
t0≤ν≤t

(
‖hi(ν)‖+‖hi−1(ν)‖+‖xi−1(ν)‖

)}
.

(43)
The result is given in the following Corollaray.
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Fig. 3. Nonlinear functions f (z),g(z) in the Simulation example

Corollary 8. Suppose a platoon of vehicles modeled as double-
integrators (1), controlled with individual event-triggered non-
linear predecessor-following controllers (42) with fi,gi being
globally Lipschitz with Lipschitz constants L1,i,L2,i and ful-
filling the following sector nonlinearities, fi ∈ [ε1,i,K1,i] and
gi ∈ [ε2,i,K2,i], where ε1,i,ε2,i,K1,i,K2,i > 0, guaranteeing that
each vehicle is ISES as in (43). Consider the trigger functions

σi(t,hi(t)) = ‖hi(t)‖− cie−αit (44)
with 0 < αi < λi, αi ≥ αi+1 and ci > 0, thus guaranteeing the
bound ‖hi(t)‖ ≤ cie−αit for all i ∈ N . Then the norm of the
state error exponentially converges to 0 with

‖x(t)‖ ≤ re−αN t (45)
and Zeno behavior is excluded.

Proof. Since Σ1 is ISES due to Corollary 4 and (44) holds for
h1(t) with α1 < λ1 we conclude the existence of a positive
scalar r1 such that ‖x1(t)‖ ≤ r1e−α1t due to Proposition 2.
Now we use the conditions αi+1 ≤ αi, i.e., ‖x1(t)‖ ≤ r1e−α1t ≤
r1e−α2t as well as ‖h1(t)‖ ≤ c1e−α1t ≤ c1e−α2t , and αi < λi to
do the same steps as in the proof of Lemma 5 to conclude that
‖xi(t)‖ ≤ rie−αit for all i ∈ {1, . . . ,N}. Therefore by choosing
r = ‖ [r1, . . . ,rN ]

T ‖ the statement ‖x(t)‖ ≤ re−αN t holds. If we
compare the framework of Corollary 8 to Corollary 7 we see
that the trigger rules are the same and, as shown before the
bounds on the state error for each agent decrease with the
same rate. Therefore the same computation as in the proof of
Corollary 7 excludes Zeno behavior here. 2

5. SIMULATION

To illustrate our theoretical results we simulate a platoon con-
sisting of N = 10 vehicles, equipped with the nonlinear event-
triggered predecessor-following controllers. The chosen non-
linear functions f and g, shown in Fig. 3, are globally Lipschitz
and lie in a certain sector. Therefore, Corollary 4 guarantees,
that the dynamics of each vehicle is ISES. A lower bound on
the parameter λ with these nonlinearities of λ ≥ 0.05, verified
through simulations, is used to design the trigger function σi =
‖hi(t)‖−e−αt with α = 0.08. Therefore Theorem 6 guarantees
exponential convergence of the state error. In the top subplot
of Fig. 4 the evolution of the norm of the state error under
event-triggered control ‖x(t)‖et confirms this statement. In this
simulation the average time between two events of one agent is
τavg = 1.6182s. As a comparison the second subplot in Fig. 4
shows the evolution of the state error under time-triggered in-
formation exchange with τtt,h = 0.001s, while the third subplot
is simulated with τtt,avg = 1.6s. Regarding these plots one can
see, that the event-triggered controller attains almost the same
performance as the time-triggered controller with very frequent
information exchange, and it outperforms the time-triggered
controller with constant inter-event times equal to the average
time by far.
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Fig. 6. Evolution of the state error and inter-event times with
heterogeneous trigger rule

Taking now a closer look on the inter-event times for this event-
triggered controller, one can see in Fig. 5, that for increasing
i ∈ N , the inter-event times of agent i become shorter. This
confirms the motivation for allowing individual trigger rules in
Corollary 7. As a comparison we simulate the same platoon and
controller with the individual trigger functions σi = ‖hi(t)‖−
e−αt with αi = 0.08 · 0.85i fulfilling the conditions αi ≤ αi−1
and αN > 0. The simulation results in Fig. 6 show that this
trigger rule increases the inter-event times for the mentioned
agents and therefore also the average to τavg = 1.85s while
preserving the transient behavior. The asymptotic convergence
is slower compared to the previous simulation with a common
trigger rule as shown in Corollary 7, since it depends on αN .

6. CONCLUSION

In this paper we considered the platooning control problem with
a nonlinear controller under event-triggered communication.
We were able to design a trigger rule that guarantees exponen-
tial convergence of the state error for the use of a certain non-
linear event-triggered predecessor-following controller, shown
in Theorem 6. Furthermore it is shown, that Zeno behavior is
excluded. In a second step we investigated individual trigger

rules for individual vehicles, while we can still guarantee expo-
nential convergence and the exclusion of Zeno behavior under
some additional conditions on the parameters of the trigger rule
in Corollary 7. Further conditions were investigated in Corol-
lary 8 for the case that the nonlinear functions in the controller
vary for the different agents. Therefore, in combination with
the simulation results, this paper gives a good exploration of
the potential of event-triggered communication in combination
with nonlinear platooning control. As a future work it will be
interesting to explore how mechanisms to guarantee collision
avoidance as in Bechlioulis et al. (2014) can be used in an event-
triggered platooning framework.
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