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Abstract— We examine the leader-to-follower ratio needed to
maintain connectivity in a leader-follower multi-agent network
with proximity based communication topology. The paper ex-
tends the one-dimensional results of [2] to the two dimensional
case. In the scenario we consider, only the leaders are aware of
the global mission, which is to converge to a known destination
point. Thus, the objective of the leaders is to drag the team to
the desired goal. In the paper we obtain bounds on the number
of leaders needed to complete the task. The results are first
established for an initially complete communication graph and
then extended to the incomplete case. Computer simulations
support the derived theory.

I. I NTRODUCTION

Distributed control of multi-agent systems is an important
issue in a number of applications, including multi-agent
robotics [5], networked sensor and health maintenance [6]
and formation control [4],[1] just to name a few. One way
in which the user can interact with such systems is through
so-called leader agents, whose dynamics need not conform
to those of the follower agents. In this paper we study such
systems, i.e., systems where a selected subset of the agents
are following a task-level controller encoding the transport
of the network from one location to another. The rest of
the agents have no notion of these task-level objectives,
and are instead executing a local interaction-based control
strategy for keeping the team together. The reason why such
a heterogeneous network configuration is desirable is that it
frees up resources by only insisting on a select subset of
agents being able to tell global positions and/or positions
relative to particular landmarks, thus limiting the required
sensor load of the remaining agents. This was for instance
the case in [9], in which a collection of mobile sensor nodes
were to traverse long distances before assembling the desired
sensing configuration.

The reasons for prescribing networked solutions to engi-
neering systems range from cost considerations (many cheap
systems for solving a problem rather than a single expensive
system) to strength-in-numbers arguments. However, as of
yet, few studies have addressed the question concerning how
many agents one actually needs. In this paper, we pursue
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this question in the context of a leader-follower network. In
particular, we ask the question “How many leaders do you
really need?”. While many issues regarding controllability
and stability of leader-follower networks have been addressed
recently in, for instance, [10],[8], and connectivity mainte-
nance for homogeneous multi-agent systems was examined
for example in [4], the issue of how the ratio of leaders-to-
followers affects connectivity is a novel topic, introduced by
the authors in [2].

In this paper we take a geometric approach to the problem.
We show that by considering the derivative of the distance
between two agents it is possible to obtain rules for how
to select the relative number of leaders-to-followers and
the goal attraction function of the leader agents so that
connectivity and convergence to a common goal position
are guaranteed. Preliminary results for agents moving in one
dimension were obtained in the conference paper [2]. The
current paper extends the results to the case ofn dimensions.
In particular we study the casen = 2.

The rest of the paper is organized as follows: in Section
II we introduce the considered framework and present the
approach. In Sections III and IV we demonstrate the pro-
posed approach on two examples of connected networks
and in Section V the theoretical results are illustrated in
simulations. Finally, in Section VI, the results of the paper
are summarized.

II. SYSTEM AND PROBLEM STATEMENT

ConsiderN agents evolving inRn. We use single integra-
tor agents whose motions obey the model:ẋi = ui, i ∈ N =
{1, . . . , N}. The agents belong either to the subset of leaders
N l, or to the subset of followers,N f , such thatN l ∪N f =
N and N l ∩ N f = ∅. The number of agents in each set
is given by|N f | = Nf and |N l| = Nl respectively. Due to
shortcomings of the sensors, each agent has a limited sensing
zone of radius∆ > 0. At any given time, the agents located
within the sensing zone of agenti ∈ N are referred to as the
neighbors of agenti. DefineNi = {j ∈ N : |xi−xj | ≤ ∆}.
The setNi is called agenti’s neighboring set and is updated
every time an agent enters/leaves the sensing zone of agent
i. We denote|Ni| = Ni.

Each agent has knowledge of the relative coordinates of
all its neighbors, but can not detect or communicate with
agents outside its sensing zone. To keep track of the active
communication links we introduce acommunication graph,
G = {V,E}, that describes the group topology.G = {V,E}
consists of a set of verticesV = {1, ..., N} indexed by
the team members, and a set of edges,E = {(i, j) ∈



V × V |i ∈ Nj} containing pairs of vertices that represent
inter-agent communication links. Since the setE is time
varying, the graphG = G(t) itself, is time-varying. In the
following sections we will establish sufficient conditionsfor
some particular networks of agents to stay connected. We
start by introducing a notation for the distance between two
arbitrary agentsi and j. Let δij = δji = |xi − xj | =
√

(xi − xj)T (xi − xj) ≥ 0. Then

dδ̇2
ij

dt
= 2δij δ̇ij = 2(xi − xj)

T (ẋi − ẋj). (1)

Unlike δ̇ij ,
dδ2

ij

dt
is defined on all ofRn. The function has

always the same sign asδ̇ij . Hence, a sufficient condition for

agenti andj to remain connected is
dδ2

ij

dt
≤ 0 whenδij = ∆.

The dynamics of the followers are given by the standard
consensus equation [7], meaning that each follower moves
in the direction of the average position of its neighbors. For
i ∈ N f we have:

ẋi = −
∑

k∈Ni

(xi − xk) = −Nixi +
∑

k∈Ni

xk. (2)

The dynamics of the leaders include an additional attraction
term which aims at dragging the team to a pre-defined goal
position x = d. For agenti, define δi = |d − xi|. The
dynamics for an arbitrary leaderi ∈ N l are given by

ẋi = −
∑

k∈Ni

(xi − xk) + F (xi, d)

= −Nixi +
∑

k∈Ni

xk + F (xi, d), (3)

whereF (xi, d) is the goal attraction function

F (xi, d) =

{
f(δi)

d−xi

δi
δi > 0

0 δi = 0
(4)

At any xi 6= d, the direction ofF (xi, d) is towards the
goal and the magnitude is decided by the continuous scalar
function f(δi) ≥ 0. f(δi) is depending only on agenti’s
distance tod and can be designed to suit the application.
The continuity ofF (xi, d) is guaranteed by requiringf(0) =

0 and limδ+→0
f(δ)

δ
< ∞, so that limx+→d F (x, d) =

F (d, d) = 0. A simple example of a possible goal attraction
function that satisfies these requirements isf(δ) = δ.

The following Lemma guarantees the boundedness of
solutions of the closed-loop system:

Lemma 1: Let G be a nonempty graph consisting of
followers and leaders with dynamics decided by (2) and (3).
Define Ω to be the convex hull of the agents inG and the
goal positiond, Ω = Co(G ∪ d), and let Ω0 denote the
convex hull at timet = 0. Now assume that none of the
agents inG are connected to any agentsxk, k /∈ G, and that
f(|d−x|) ≤ fmax < ∞ for all x ∈ Ω0. Then the trajectories
of all agents inG will remain within Ω0 as t → ∞.
Proof: We will show that for an arbitrary agenti ∈ G,
positioned on the boundary ofΩ, the motion is either on
the boundary ofΩ or pointing inside the polytopeΩ.

If i ∈ N f the motion is given bẏxi = −
∑

k∈Ni
(xi−xk).

If Ni = 0 the agent will not move at all and the proof
is trivial. Now consider the caseNi > 0. By settingα =
N−1

i and rearranging the terms we can show thatαẋi =
−xi +

∑

k∈Ni

xk

Ni
. Apparently the motion of followeri is

directed towards the barycenter of the subgraphNi ⊆ G,
which, thanks to convexity, is known to lie either on the
boundary or in the interior ofΩ. By convexity we conclude
that the motion of followeri must lie withinΩ.

For i ∈ N l, we haveẋi = −
∑

k∈Ni
(xi − xk) + f(|d −

xi|)
d−xi

|d−xi|
. If Ni = 0 the agent will, depending on the

magnitude off(|d − xi|), either not move at all, or move
directly towardsd. Sinced is in Ω and sinceΩ is convex,
we see that in either case agenti will remain in Ω. If
Ni > 0 we defineβ = (Ni + f(|d − xi|))

−1. Then we
get: βẋi = −xi + β

(
Ni

∑

k∈Ni

xk

Ni
+ f(|d − xi|)d

)
. The

motion of i is directed towards a convex combination of the
barycenter ofNi ⊆ G and the goald. By definition, this
convex combination lies within the convex hull ofG∪d, and
therefore, by the convexity ofΩ, agenti stays inΩ.

Since the motion of any agent on the boundary ofΩ is
either on the boundary ofΩ or directed into the interior of
Ω, we can conclude that no agent will ever enter outside the
convex hull defined by the initial positions of the agents and
the goald. Hence,Ω0 is an invariant set.♦

The next Theorem states that the closed-loop system
converges to the goal positiond if the communication graph
remains connected:

Theorem 2: Let the closed loop dynamics (2) and (3). Let
x(0) ∈ Ω and assume that the communication graphG(t)
remains connected. Then,limt→∞ xi(t) = d for all i ∈ N .
Proof: Equations (2) and (3) are written in stack vector form
asẋ = −(L⊗I2)x−F (x, d), wherex = [x1, . . . , xN ]T , and
the elements of the vectorF (x, d) are given byFi(x, d) = 0,
if i ∈ N f and Fi(x, d) = F (xi, d), if i ∈ N l, and
whereL is the Laplacian ofG(t). The eigen-properties of
the Laplacian matrix are well established in the cooperative
control literature and are not recapped here. The reader is
referred to [3] for a review of the Laplacian matrix properties.

Defining z = x − d, with d = [d, ..., d]T we haveż =
−(L ⊗ I2)x − F (x, d) = −(L ⊗ I2)(z + d) − F (x, d) =
−(L⊗ I2)z −F (z), where now the vectorF (z) is given by
Fi(z) = 0, if i ∈ N f , and Fi(z) = δif(δi) = |zi|f(|zi|).

TakingV =
1

2
zT z as a candidate Lyapunov function we get

V̇ = żzT = −zT (L ⊗ I2)z − zT F (z) = −zT (L ⊗ I2)z −
∑

i∈N l δif(δi), which is negative semidefinite due to the
eigen-properties ofL andf being monotonically increasing.
By LaSalle’s Invariance Principle, we have thatδi → 0 for
all i ∈ N l. Now, due to the first term we also have that
zT (L ⊗ I2)z → 0 so that all elements ofz attain an equal
value. This means that|zi| → z∗ or δi → z∗ for all i ∈ N .
Since δi → 0 for all i ∈ N l we finally get z∗ = 0, i.e.,
δi → 0 for all i ∈ N . ♦

By virtue of the above Theorem, agents converge to the
desired goal configuration as long as the communication
graph remains connected throughout the evolution of the



closed-loop system. In the following sections, we establish
conditions under which connectivity is preserved for some
classes of initially connected graphs.

III. C OMPLETE GRAPH CASE

In this section, we assume that all agents are initially
within the sensing zone of one another,i.e., at a distance
less than∆ from each other. Hence, the initial graphG(t) is
complete and of course, connected. In the sequel, we derive
sufficient conditions for the graph to remain complete.

Since the graph is initially complete, the dynamics for the
follower agents are given by:

ẋi = −
∑

k∈N f

(xi − xk) −
∑

k∈N l

(xi − xk)

= −Nfxi +
∑

k∈N f

xk − Nlxi +
∑

k∈N l

xk

= −Nxi +
∑

k∈N

xk, ∀i ∈ N f . (5)

Similarly, the dynamics for the leader agents are given by:

ẋi = −Nxi +
∑

k∈N

xk + F (xi, d), ∀i ∈ N l. (6)

Follower-follower connections:For two arbitrary follow-

ersi, j ∈ N f , (1) and (5) give
dδ2

ij

dt
= 2(xi−xj)

T (ẋi−ẋj) =

2(xi − xj)
T
[

−Nxi +
∑

k∈N xk + Nxj −
∑

k∈N xk

]

=

−2Nδ2
ij . We see thatδ2

ij → 0. In particular, this implies

that
dδ2

ij

dt
< 0 whenδij tends to∆, so we can conclude that

if the two followers are initially within each others sensing
zones, they will remain connected ast → ∞.

Leader-leader connections: For two arbitrary leaders

i, j ∈ N f , (1) and (6) give
dδ2

ij

dt
= −2Nδ2

ij + 2(xi −

xj)
T
[

F (xi, d)−F (xj , d)
]

. Noting that(xi −xj) = −
(
(d−

xi) − (d − xj)
)

makes it possible to re-write the equation

for the general case wherexi 6= d, xj 6= d:
dδ2

ij

dt
=

−2Nδ2
ij+2(xi−xj)

T
[

f(δi)
d−xi

δi
−f(δj)

d−xj

δj

]

= −2Nδ2
ij−

2
[

f(δi)δi + f(δj)δj −
(

f(δi)
δi

+
f(δj)

δj

)
(d−xi)

T (d−xj)
]

. In

the worst-case we have(d − xi)
T (d − xj) = δiδj , which

inserted in the equation for
dδ2

ij

dt
gives

dδ2
ij

dt
= −2Nδ2

ij −

2
[

f(δi)δi + f(δj)δj − f(δi)δj − f(δj)δi

]

, so that
dδ2

ij

dt
=

−2Nδ2
ij−2

(
f(δi)−f(δj)

)
(δi−δj). It is easy to see from the

previous equation that
dδ2

ij

dt
≤ 0 for all inter-agent distances,

and for all of Nf and Nl, if we require f(δ) to be a
monotonically increasing function,

f ′(δ) ≥ 0, ∀δ ≥ 0. (7)

In other words, any two leaders that are initially connected
will remain so if condition (7) is satisfied.

Leader-follower connections:For the casei ∈ N f , j ∈

N l, we have
dδ2

ij

dt
= −2Nδ2

ij − 2(xi − xj)
T F (xj , d). From

the equation above it is easy to see that ifxj = d. i.e., if the
leader is located ind and the corresponding goal attraction

term is zero, then
dδ2

ij

dt
≤ 0. If xj 6= d we get

dδ2
ij

dt
=

−2Nδ2
ij − 2f(δj)(xi −xj)

T (d−xj)
δj

≤ −2Nδ2
ij + 2f(δj)δij ,,

since−δijδj ≤ (xi − xj)
T (d − xj) ≤ δijδj . We will now

make use of Lemma 1. Letfmax be the largest value that
f(δj) assumes within the convex hull defined by the agents
initial positions and the goal positiond. Then|f(δj)| ≤ fmax

for all t ≥ 0 and

fmax ≤ N∆ (8)

is a sufficient condition to guarantee that
dδ2

ij

dt
≤ 0 if δij = ∆,

i.e. that any initially connected pair consisting of one leader
and one follower will remain connected at all times. One way
to achieve this, regardless of the positions of the agents, is to
chosef(δ) to be a function that is bounded above byN∆.
For instance one could chosef(δ) = 2N∆

π
arctan(δ).

Theorem 3: Let the closed loop dynamics of the system
be given by (5) and (6). Assume that the communication
graphG(t) is initially complete and that both (7) and (8)
hold onCo(G(0)∪d), whered represents the coordinates of
the goal. Then,G(t) remains complete for allt ≥ 0.

IV. T HE INCOMPLETE GRAPH CASE

In this section, a special case of incomplete graphs is an-
alyzed. It is still assumed that both the subset of leaders and
the subset of followers initially make up complete graphs,
but it is no longer assumed that all followers are connected
to all leaders. LetN f

i = Ni ∩ N f andN l
i = Ni ∩ N l be

the subsets of agenti’s neighbors that belong to the group of
followers and the group of leaders respectively,|N f

i | = Nfi,
|N l

i | = Nli. Thus, for eachi ∈ N f in the incomplete graph
N f

i = N f while N l
i ⊆ N l. For eachj ∈ N l we instead

haveN l
j = N l, N f

j ⊆ N f . The dynamics of followeri are:

ẋi = −
∑

k∈N f

(xi − xk) −
∑

k∈N l
i

(xi − xk), (9)

while the dynamics of leaderj are given by

ẋj = −
∑

k∈N l

(xj − xk) −
∑

k∈N f
j

(xj − xk) + F (xj , d). (10)

We will begin the connectivity analysis by deriving sufficient
conditions for the two initially complete subgraphs to remain
complete. Then the links connecting the subgraphs are an-
alyzed and a lower bound is determined for the number of
leader-follower links needed to guarantee that a given link
between a leader and a follower is kept intact.

follower-follower connections: Considering the connec-
tion between two followersi, j ∈ N f . Both followers have
links to all other follower agents and possibly, but not
necessarily, links to some or all of the leader agents. The
setsN l

i and N l
i may be disjunct or overlapping. Define

N l
c = N l

i ∩N l
j ⊆ N l to be the set of leaders that followers

i and j have in common,|N l
c | = Nlc. Note that ifk ∈ N l

i



then |xi − xk| ≤ ∆. For the two followers we get

dδ2
ij

dt
= 2(xi − xj)

T
[

−Nf (xi − xj) − Nlc(xi − xj)

−
∑

k∈N l
i \N

l
c

(xi − xk) +
∑

k∈N l
j\N

l
c

(xj − xk)
]

= −2(Nf + Nlc)δ
2
ij

+2(xi − xj)
T
[ ∑

k∈N l
j\N

l
c

(xj − xk)

−
∑

k∈N l
i \N

l
c

(xi − xk)
]

≤ −2(Nf + Nlc)δ
2
ij

+2(Nli + Nlj − 2Nlc)∆δij .

Note that(Nli +Nlj − 2Nlc) ≥ 0. Requiring
dδ2

ij

dt
≤ 0 when

δij = ∆ leads to the constraintNli+Nlj ≤ Nf +3Nlc, which
is satisfied for all follower-follower connections, regardless
of the topology, for every graph that has

Nf ≥ Nl. (11)

leader-leader connections:Consider now the connection
between two arbitrary leadersi, j ∈ N l. Following the
notation in the follower-follower case, we letN f

c = N f
i ∩

N f
j ⊆ N f be the set of followers thati and j have in

common,|N f
c | = Nfc. We get

dδ2
ij

dt
≤ −2(Nl + Nfc)δ

2
ij + 2(Nfi + Nfj − 2Nfc)∆δij

+2(xi − xj)
T
[

F (xi, d) − F (xj , d)
]

. (12)

We shall investigate the caseδij = ∆ closer. Defineα
to be the angle betweenj and d, as seen byi. Then, for
an arbitrary choice ofxi we havexj = xi + ∆e, where
e =

xj−xi

∆ . The dependence betweenδi andδj follows from
the law of cosines, such that for a givenα we get δj =
√

∆2 + δ2
i − 2∆δi cos α. Without loss of generality we can

assume thatδi ≥ δj , and that consequently−π
2 < α < π

2
andcos α ≥ 0. For the moment we also assume thatδj > 0.

With δij = ∆, (12) becomes

dδ2
ij

dt
≤ 2(Nfi + Nfj − 3Nfc − Nl)∆

2

+2(xi − xj)
T
[

F (xi, d) − F (xj , d)
]

.

≤ 2(Nf − Nl)∆
2

+2(xi − xj)
T
[

F (xi, d) − F (xj , d)
]

︸ ︷︷ ︸

γ

.

and withxj = xi + ∆e, the termγ becomes

γ = −2∆eT
[(

f(δi)
δi

− f(δj)
δj

)
(d − xi) +

f(δj)
δj

∆e
]

= −2∆
(f(δi)

δi

−
f(δj)

δj

)

︸ ︷︷ ︸

(∗)

δi cos α − 2
f(δj)

δj

∆2.

Requiring
dδ2

ij

dt
≤ 0 leads to

(f(δi)

δi

−
f(δj)

δj

)

︸ ︷︷ ︸

(∗)

δi cos α +
f(δj)

δj

∆ ≥ (Nf − Nl)∆.

From condition (11) it follows that the right hand side of the
equation is positive. Also, it is known thatf(δ) ≥ 0. Thus,
the only term in the above expression that may be negative
is (∗). The sign of(∗) depends on the characteristics off(δ)
and may be constant or time varying. Due to page limitations
we shall confine the analysis in this paper to the case(∗) ≥ 0.

Recall that, by assumption,δi ≥ δj . Then(∗) ≥ 0 means
thatf(δ) must be a convex function,f ′(δ) ≥ 0. Under those
conditions it is sufficient to require

f(δj)

δj

≥ Nf − Nl, (13)

whereNf−Nl ≥ 0 according to (11). Sincef(δ)
δ

is monoton-
ically increasing (which follows from the fact thatf(δ) is a
positive convex function) we can use l’Hôpitals rule to obtain
a lower bound onf(δ)

δ
, infδ>0

f(δ)
δ

= limδ+→0
f(δ)

δ
= f ′(0).

This means that (13) is satisfied if

f ′(0) ≥ Nf − Nl. (14)

In the special case where we haveδj = 0, the condition
corresponding to (13) becomesf(∆)

∆ ≥ Nf − Nl. This is
obviously satisfied for all convex goal-attraction functions
that satisfy (13).

Remark 1: By definition, linear functions are a special
case of convex functions. For a linear functionf(δ) = βδ,
β > 0, Eq. (13) can be simplified asβ ≥ Nf − Nl ≥ 0.

leader-follower connections:Finally we derive what it
takes to keep the leader and the follower subgraphs con-
nected. Consider followeri ∈ N f and leaderj ∈ N l.
Let fmax as before be defined as the largest value the
goal attraction functionf(δj) can assume within the convex
hull of the initial positions of all agents in the network

and the goal positiond. While xj 6= d we have
dδ2

ij

dt
=

2(xi − xj)
T
[

−
∑

k∈N f (xi − xk) −
∑

k∈N l
i
(xi − xk) +

∑

k∈N l(xj − xk) +
∑

k∈N f
j
(xj − xk) − F (xj , d)

]

, which
after some calculations yields

dδ2
ij

dt
= −2Nfjδ

2
ij − 2Nliδ

2
ij + 2(xi − xj)

T
[

−F (xj , d)

−
∑

k∈N f\N f
j

(xi − xk) +
∑

k∈N l\N l
i

(xj − xk)
]

≤ −2(Nfj + Nli)δ
2
ij + 2fmaxδij

+2(Nf − Nfj)∆δij + 2(Nl − Nli)∆δij .

Setting
dδ2

ij

dt
≤ 0 whenδij = ∆ leads to

N

2
+

fmax

2∆
≤ Nfj + Nli. (15)

It is easy to see that ifxj = d, (15) is still a sufficient
condition for i, j to remain connected since the effect of



settingF (xj , d) = 0 will be a relaxation of the inequality.
Thus, if the leader and follower subgraphs remain complete
and if (15) holds for all initial links between leaders and
followers, all connections in the graph will be maintained.

The previous derivations are summarized in the following:
Theorem 4: Assume that the communication graphG(t)

is initially connected and constituted of two complete sub-
graphs, the subgraph of leaders and the subgraph of fol-
lowers. The dynamics of the follower and leader agents are
given by (9) and (10) and the magnitude of the maximum
goal attraction force that can be experienced by the leader
agents isfmax = maxx∈Co(G(0)∪d) f(|d − x|). Assume also
that

(A1) G(t) satisfies condition (11),
(A2) f(δ) is a convex function onCo(G(0) ∪ d) such

that (14) is true,
(A3) (15) holds for all initial links(i, j) such thati ∈

N l, j ∈ N f .

Then all links inG(t) will be maintained fort ≥ 0.
In some cases the following is also useful:
Lemma 5: Let G(t) be the communication graph in Theo-

rem 4 and letE∗ be a subset of the initial links between the
group of leaders and the group of followers. Re-define the
neighbor sets of the graph such thati ∈ N f is considered a
neighbor ofj ∈ N l, and vice versa, if and only if they are
initially connected and the link(i, j) ∈ E∗. Then, if (A1)
and(A2) are satisfied and it is possible to find a subsetE∗,
|E∗| ≥ 1, such that condition (15) is satisfied for all links in
E∗, then all links inE∗ will remain intact and the groups of
leaders and followers will remain connected with each other.
Proof: See [2].♦

V. SIMULATIONS

The results of Section IV are illustrated in a series of
simulations. We consider a scenario where the subgraph of
leaders and the subgraph of followers are complete but where
the full graph is not. A linear attractionf(δ) = βδ is used.
Moreover,∆ = 10 andd = (0 0) in the examples.

1) Example 1: Stable graph: Consider first nine agents,
four leaders and five followers. LetG(t) denote the time-
dependent communication graph, so thatG(0) is decided
by the initial configuration of the agents, shown in Fig. 1.
ApparentlyG(0) is not complete. As seen in the figure, the
rightmost of the followers is outside the sensing range of
all the leaders while the reverse is true for the leftmost of
the leaders. The remaining seven agents form a complete
subgraph. Usingβ = 1, both (11) and (14) are satisfied
and condition (15) is true for all existing links between the
leader and the follower group. According to Theorem 4, this
guarantees that all links in the initial graph are maintained,
a result that is confirmed by the simulation. The links are all
kept intact as the robots converge to the goal position and as
the agents move closer to each other new links are formed,
one by one, until the graph is complete. The trajectories of
the converging robots are shown in Fig. 2.
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Fig. 1. Initial configuration of the agents in Example 1 and 2. Leaders
and followers are represented by darker and lighter dots.
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Fig. 2. Example 1: Trajectories of robots converging to the goal.
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Fig. 3. Example 2: The initial positions of the robots are the same as
in Example 1 but the attraction to goal is stronger and condition (15) that
guarantees preservation of leader-follower links is violated.

2) Example 2: Leader-to-follower stability: If the same
simulation is run with a larger value onβ (β = 2), the
influence off(δ) increases. Conditions (11) and (14) are still
satisfied but the inequality in (15) is no longer true for any of
the existing leader-follower links and it is not guaranteedthat
the connection between the leader and the follower subgroup
is kept. The simulation shows that all agents still converge
towards the goal (see Fig. 3), but because of the stronger
attractive force, the leaders move faster towardsd and as a
result, one of the leader-follower links is temporarily broken
during the first part of the simulation. In this example, only
one link was broken and it was later re-formed, but in order
to predict this fortunate outcome of the simulation a thorough
analysis of the system would have been needed. Making
sure that condition (15) is satisfied presents an easy way
of avoiding the undesirable situation where the leader and
the follower agents lose contact with each other.

3) Example 3: Leader-to-leader stability: Let us consider
Fig. 4. Except for the single leader to the left, all agents are
within sensor range of each other. With this setup we can
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Fig. 4. Initial configuration of the agents in Example 3.

chooseβ such that (11) and (15) are true while (14) is vio-
lated, and such that the leftmost of the leaders loses contact
with the rest of the agents. Fig. 5 shows the trajectories of the
agents in a simulation whereβ = 0.02 while Fig. 6 shows
the separation between the disconnected leader and the rest
of the group as a function of time. Since all leaders know
the coordinates of the goal, all agents eventually re-connect
as they are approachingd. The follower agents on the other
hand are depending on the leaders for navigation, so it is
more serious if one of the followers loses contact with the
group. This scenario is treated in the final example.
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Fig. 5. Example 3: Due to the weakness of the goal attraction force,
condition (14) is violated and the single leader closest to the goal temporarily
loses contact with the group.
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Fig. 6. Distance separating the disconnected leader in Example 3.

4) Example 4: Follower-to-follower stability: To illustrate
the importance of maintaining the links within the follower
subgroup we study a graph consisting of four followers and
five leaders. The initial positions are shown in Fig. 7. Clearly,
the ratio of leaders-to-followers in the graph violates (11),
but with a proper choice ofβ it is possible to satisfy both
(14) and (15) for all leader-follower links.

10 15 20 25 30
−2

0

2

Fig. 7. Initial configuration of the agents in Example 4.

The simulation was run withβ = 1 and the result is shown

in Fig. 8. In the initial setup, the rightmost of the followers
is connected to the rest of the group only through links to
the other followers. These links are broken short after the
simulation is started and once the contact to the other agents
is lost, the disconnected follower has no way of localizing
neither the other agents nor the goal. As a result, the lost
follower is left behind and it never reaches the goal.
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Fig. 8. Example 4: Condition (11), that guarantees the completeness of
the follower subgroup, is violated. The single follower to the right loses
contact with the group permanently short after the start of the simulation.

VI. CONCLUSIONS

We examined how the network structure affects connectiv-
ity and convergence to a common goal for a group of agents
in a leader-follower multi-agent network with proximity
based communication topology. The geometric approach is
demonstrated on two networks with special structure on the
initial topology. In the first example, we studied a network
where the communication graph was initially complete. In
the second example we considered an incomplete network
consisting of two complete subgraphs that were linked to-
gether. Further research includes an investigation on the types
of information structures on which this approach is useful.
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