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Abstract— We examine the leader-to-follower ratio needed to this question in the context of a leader-follower network. |
maintain connectivity in a leader-follower multi-agent network  particular, we ask the question “How many leaders do you
with proximity based communication topology. The paper ex- - raq|ly need?”. While many issues regarding controllability

tends the one-dimensional results of [2] to the two dimensional -
case. In the scenario we consider, only the leaders are aware of and stability of leader-follower networks have been adstds

the global mission, which is to converge to a known destination re€cently in, for instance, [10],[8], and connectivity mign
point. Thus, the objective of the leaders is to drag the team to nance for homogeneous multi-agent systems was examined

the desired goal. In the paper we obtain bounds on the number for example in [4], the issue of how the ratio of leaders-to-

of leaders needed to complete the task. The results are first followers affects connectivity is a novel topic, introdddey
established for an initially complete communication graph and the authors in [2] ’

then extended to the incomplete case. Computer simulations ; .
support the derived theory. In this paper we take a geometric approach to the problem.

We show that by considering the derivative of the distance
between two agents it is possible to obtain rules for how
Distributed control of multi-agent systems is an importanto select the relative number of leaders-to-followers and
issue in a number of applications, including multi-agenthe goal attraction function of the leader agents so that
robotics [5], networked sensor and health maintenance [Gbnnectivity and convergence to a common goal position
and formation control [4],[1] just to name a few. One wayare guaranteed. Preliminary results for agents moving & on
in which the user can interact with such systems is througlfimension were obtained in the conference paper [2]. The
so-called leader agents, whose dynamics need not confoourrent paper extends the results to the casedifnensions.
to those of the follower agents. In this paper we study sudn particular we study the case= 2.
systems, i.e., systems where a selected subset of the agentphe rest of the paper is organized as follows: in Section
are following a task-level controller encoding the transpo Il we introduce the considered framework and present the
of the network from one location to another. The rest ofpproach. In Sections Ill and IV we demonstrate the pro-
the agents have no notion of these task-level objectivegsposed approach on two examples of connected networks
and are instead executing a local interaction-based dontrand in Section V the theoretical results are illustrated in
strategy for keeping the team together. The reason why susimulations. Finally, in Section VI, the results of the pape
a heterogeneous network configuration is desirable is thatdre summarized.
frees up resources by only insisting on a select subset of
agents being able to tell global positions and/or positions Il. SYSTEM AND PROBLEM STATEMENT
relative to particular landmarks, thus limiting the reeuair ConsiderN agents evolving irR™. We use single integra-
sensor load of the remaining agents. This was for instanter agents whose motions obey the modgl= u;,i € N =
the case in [9], in which a collection of mobile sensor node$1, ..., N}. The agents belong either to the subset of leaders
were to traverse long distances before assembling theedesip\?, or to the subset of followersy/, such thav' UNT =
sensing configuration. N and Nt N N/ = (. The number of agents in each set
The reasons for prescribing networked solutions to engis given by|NV/| = N and |NV!| = N, respectively. Due to
neering systems range from cost considerations (many chesffortcomings of the sensors, each agent has a limited gensin
systems for solving a problem rather than a single expensivene of radiusA > 0. At any given time, the agents located
system) to strength-in-numbers arguments. However, as wfthin the sensing zone of agent A are referred to as the
yet, few studies have addressed the question concerning hpgighbors of agenti. DefineN; = {j € N : |z; — x| < A}.
many agents one actually needs. In this paper, we pursiibe setV; is called agent’s neighboring set and is updated

, _ L _every time an agent enters/leaves the sensing zone of agent
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V x Vl]i € Nj} containing pairs of vertices that represent If i € N’/ the motion is given byi; = — > ken; (Ti—TK).
inter-agent communication links. Since the detis time If N; = 0 the agent will not move at all and the proof
varying, the graphg = G(t) itself, is time-varying. In the s trivial. Now consider the cas&/; > 0. By settinga =
following sections we will establish sufficient conditiofts Ni‘1 and rearranging the terms we can show that =
some particular networks of agents to stay connected. Wez; + >, .\, %. Apparently the motion of followet is
start by introducing a notation for the distance between twdirected towards the barycenter of the subgragphC G,

arbitrary agentsi and j. Let §,; = 6;; = |z; — x;| = which, thanks to convexity, is known to lie either on the
V(@i —2;)T(z; — ;) > 0. Then boundary or in the interior of:. By convexity we conclude
) that the motion of follower must lie within (.
d(sij :251157] :2(Ii*xj)T(ii*ij)- (1) For ¢ .ENZ, we havei; = _Zkef\/j(‘ri —{Ek)-l-f(|d—
dt :ci|)|jj§:|. If N; = 0 the agent will, depending on the
82, magnitude off(|d — z;|), either not move at all, or move

Unlike 4, 5~ Is defined on all ofR™. The function has

o - . directly towardsd. Sinced is in ©2 and sincef) is convex,
always the same sign ag;. Hence, a sufficient condition for y

) ey we see that in either case agenwill remain in Q. If
agent; and;j to remain connected is;> < O whend;; = A. N, > 0 we define = (N; + f(|d — x;]))~*. Then we

The dynamics of the followers are given by the standarget: 3i;, = —z; + B(Ni Y ren: % + f(|d — x4])d). The
consensus equation [7], meaning that each follower movesotion of i is directed towards a convex combination of the
in the direction of the average position of its neighbors. Foharycenter of\; C G and the goald. By definition, this

i € N/ we have: convex combination lies within the convex hull gfJd, and
L o . therefore, by the convexity d2, agenti stays in{2.
T = k%\;(xl k) = —Niwi + k;\/ Tk (2) Since the motion of any agent on the boundary{ofs

either on the boundary dR or directed into the interior of
The dynamics of the leaders include an additional attractia), we can conclude that no agent will ever enter outside the
term which aims at dragging the team to a pre-defined goabnvex hull defined by the initial positions of the agents and
position z = d. For agenti, defined; = |d — z;|. The the goald. Hence,Q) is an invariant set>

dynamics for an arbitrary leadérc A" are given by The next Theorem states that the closed-loop system
. converges to the goal positiehif the communication graph
o= = ) (@i o) + Fla,d) remains connected:
kENS Theorem 2: Let the closed loop dynamics (2) and (3). Let
= —Niwi+ »_ o+ F(xi,d), (3 #(0) € © and assume that the communication grajh)
kEN; remains connected. Thehim; . z;(t) = d for all i € \V.
where F(z;, d) is the goal attraction function Proof: Equations (2) and (3) are written in stack vector form
asi = —(L®ly)x—F(z,d), wherex = [z1,...,2x]T, and
Flasd) F)5E 6> 0 @ the elements of the vectd#(z, d) are given byF;(z, d) = 0,
v 0 5 =0 if i ¢ N/ and Fy(z,d) = F(x;,d), if i € N, and

L . where L is the Laplacian ofG(¢). The eigen-properties of
Al allny gith¢ d, th(.et ((jjlre_ctlgn %“;(%’C& IS tovt\(ards the Ithe Laplacian matrix are well established in the coopegativ
goal and the magnitude 1S decided by the continuous SCaiglyi o) |iterature and are not recapped here. The reader is

;qntc:tion ft(i;) = dO. ! (66) iz dgpendditrlg or_ltlython ag(T.n'tst. referred to [3] for a review of the Laplacian matrix propesti
istance tod and can be designed to suit the application. Defining = — x — d, with d = [d, ..., d|” we haves —

;)I'he (;o?tmwty Of‘ﬁ)x“d) is guaratrr]]tetelq by reql;?lrlng((lo) = (LoL)r-Fled) = ~(L® L)z +d) - Fle,d) =
and limg+ o =5~ < o0, SO thatlimg: g F(x,d) = (1 oy, p(;) where now the vectoF(z) is given by
F(d,d) = 0. A simple example of a possible goal attractlonFl(Z) —0,if i € N7, and Fi(2) = 6,£(6,) = |=il £ (1))
function that satisfies these requirementg (§) = §. e ’ ' ' AT AT
The following Lemma guarantees the boundedness JfKINgV =
solutions of the closed-loop system: V=:T="2TLoLz-2TF(z) = —2T(L® L)z -
Lemma 1. Let G be a nonempty graph consisting of) .\~ d;f(d;), which is negative semidefinite due to the
followers and leaders with dynamics decided by (2) and (3kigen-properties of. and f being monotonically increasing.
Define Q to be the convex hull of the agents ¢hand the By LaSalle’s Invariance Principle, we have thgt— 0 for
goal positiond, Q2 = Co(G U d), and letQ), denote the all i € N''. Now, due to the first term we also have that
convex hull at timet = 0. Now assume that none of the 27 (L ® I,)z — 0 so that all elements of attain an equal
agents inG are connected to any agenis, k ¢ G, and that value. This means that;| — z* or §; — 2* for all i € N.
f(ld—x|) < fmae < oo for all z € Qq. Then the trajectories Sinced; — 0 for all i € N we finally getz* = 0, i.e.,
of all agents inG will remain within Qg ast — co. 0; = 0foralli e N. O
Proof: We will show that for an arbitrary agent € G, By virtue of the above Theorem, agents converge to the
positioned on the boundary d@#, the motion is either on desired goal configuration as long as the communication
the boundary of2 or pointing inside the polytop€. graph remains connected throughout the evolution of the

§sz as a candidate Lyapunov function we get



2 2
closed-loop system. In the following sections, we esthblisterm is zero, thendg% < 0. If z; # d we get djf
conditions under which connectivity is preserved for SOMEe-2N§2, — 2 (6;) (x; _J;j)TW < —2N&%, +2£(5;)8i5.,

classes of initially connected graphs. since —0;;0; < (a; — mj)T(d — 2;) < 5;;6;. We will now

I1l. COMPLETE GRAPH CASE make use of Lemma 1. Lef,.., be the largest value that
(0;) assumes within the convex hull defined by the agents
hitial positions and the goal positiah Then|f(5;)| < fimas

for all ¢t > 0 and

In this section, we assume that all agents are initiall
within the sensing zone of one anothee, at a distance
less thanA from each other. Hence, the initial graght) is
complete and of course, connected. In the sequel, we derive Jmaz < NA (8)
sufficient conditions for the graph to remain complete. ,

Since the graph is initially complete, the dynamics for thés a sufficient condition to guarantee tﬁgg <0if §;; = A,

follower agents are given by: i.e. that any initially connected pair consisting of one leader
. and one follower will remain connected at all times. One way

D S e DR BICEED to achieve this, regardless of the positions of the agesits, i

keN/ keN! chosef(9) to be a function that is bounded above MA.
= —Npzi+ > ax—Nzi+ > a For instance one could chogés) = 282 arctan(s).

keNS keN! Theorem 3: Let the closed loop dynamics of the system
= —Nuz;+ Z Tk, Vi e N (5) be given by (5) and (6). Assume that the communication

keN graph G(t) is initially complete and that both (7) and (8)

Similarly, the dynamics for the leader agents are given byhold onCo(G(0) Ud), whered represents the coordinates of
the goal. Theng(¢) remains complete for all > 0.

j/’i:_N-Ti"‘Zxk‘i‘F(l’iad)y Vie N (6)

RN IV. THE INCOMPLETE GRAPH CASE
Follower-follower connections:For two arbitrary follow-
2
ersi,j € N7/, (1) and (5) give’% = 2(x;—x;) T (#—3;) = In this gecti_on, a special case of incomplete graphs is an-
2(z; — 2;)7 |~Na; + Sien Tk + N3y — Spenzi| = alyzed. It is still assumed that both the subset of leadeds an

NS We see thab?. — 0. In particular, this implies the .su_bset of followers initially make up complete graphs,
pca ij ' ' but it is no longer assumed that all followers are connected

that < < 0 whend;; tends toA, so we can conclude that to all leaders. LetV/ = A; N NF and V! = N; NN be

if the two followers are initially within each others sengin the subsets of ageiis neighbors that belong to the group of

zones, they will remain connected as- . followers and the group of leaders respectiveMﬂ = Ny,
Leader-leader connections: FZor two arbitrary leaders |N!| = Ny,. Thus, for each € N/ in the incomplete graph

i,j € N, (1) and (6) givedgf = —2N& + 20 — N = N/ while N? C N, For eachj € N we instead

)T F(a:,d) — F(x;,d)]. Noting that(z; — ;) = — ((d — have N} = N, Njf C N¥. The dynamics of followei are:

x;) — (d — z;)) makes it possible to re-write the equation .
' ) s, Bi=— Y (wi—a) = Y (@ — ),
for the general case where; # d,x; # d. 5% = ovd: KN

NG 2w —y)T | F(6:) L5~ (0;) 555 | = ~2NoE -

216000 + £(85)65 — (£ 4 L92) (a - 7o) (- z)].1n

, — a2V (d — ) = 56 i .
.the WOI’St. case we ha.lvéd d?‘.}) (4 3;‘3;2, 0;9;, which By = — Z (z; — 2x) — Z (z; — 21) + F(;,d). (10)
inserted in the equation for;;> gives —* = —2N6§j - LeN! wen !
ds?; !
2[£(0:)6: + £(61)8; — F(0:)8; — 1(6,)6:]. 50 that 52 = - TR,
—2N6Z—2(f(8;)— f(6;))(8;—6;). Itis easy to see from the we will begin the connectivity analysis by deriving suifiete
Y ) 52 _ _ conditions for the two initially complete subgraphs to réma
previous equation tha{%ﬁ < 0 for all inter-agent distances, complete. Then the links connecting the subgraphs are an-
and for all of Ny and N;, if we require f(d) to be a alyzed and a lower bound is determined for the number of
monotonically increasing function, leader-follower links needed to guarantee that a given link
£'(6) >0, V5 > 0. @) between a leader and a foI.Iower is kept |.ntact.
follower-follower connections: Considering the connec-
In other words, any two leaders that are initially connecteglon between two followers, ; € A/, Both followers have
will remain so if condition (7) is satisfied. links to all other follower agents and possibly, but not
Leader-follower connections:For the case € '/, j €  necessarily, links to some or all of the leader agents. The
N, we havedsjf = —2N62 — 2(x; — x;)" F(x;,d). From sets N} and A} may be disjunct or overlapping. Define
the equation above it is easy to see thatjif=d. i.e, if the N =N/ NN! C N to be the set of leaders that followers
leader is located inl and the corresponding goal attractioni and j have in common|A\}| = N,.. Note that ifk € A}

9)

while the dynamics of leadef are given by




2
then |z; — x| < A. For the two followers we get Requiring ds;-f < 0 leads to

dsé?, 5, 5 Y
D= ot [Nyt Moy (D5 = T heosa e B s (v - s
— —m————
= Y @mm) Y ()] “
kENT\NE keENNN] From condition (11) it follows that the right hand side of the
= —2(N;+ Nlc)afj equation is positive. Also, it is known thgtd) > 0. Thus,
T the only term in the above expression that may be negative
+2(z; — ;) [ > () is (*). The sign of(x) depends on the characteristicsf¢b)
RENF\N and may be constant or time varying. Due to page limitations
_ Z (z; — xk)} we shall confine the analys_is in this paper to the ¢a$e> 0.
KENTWA Recall that, by assumption; > ;. Then(x) > 0 means
< Ni CN 52 that f(§) must be a convex functiory/(§) > 0. Under those
= (N + Nic)dy; conditions it is sufficient to require
+2(N]1 + Nlj — QNZC)A(SM. f(5)
o 6-j > Ny — N, (13)
Note that(Ny; + Ny — 2N;.) > 0. Requiring—;2 < 0 when j

d;; = A leads to the constraim¥y; +N;; < Ng+3N,., which
is satisfied for all follower-follower connections, regkass
of the topology, for every graph that has

whereN;—N; > 0 according to (11). Sincé%i) is monoton-
ically increasing (which follows from the fact thgt¢) is a
positive convex function) we can use Bigitals rule to obtain
N> N (11) alower bound orH, infso o L2 = limss o L8 = £/(0).
' This means that (13) is Sa'[ISerd if
leader-leader connectionsConsider now the connection ,
between two arbitrary leadersj < N'. Following the f(0) = Ny = Ni. (14)
notation in the follower-follower case, we |Nf = N N In the Specia| case where we ha&tﬁ =0, the condition

Nf C N7 be the set of followers that and j have in corresponding to (13) becomeféf) > N; — N,. This is

common INZ| = Nye. We get obviously satisfied for all convex goal-attraction funaso
ds2. that satisfy (13).
2 < —2(N + Nfc)éfj +2(Nyg; + Ngj — 2Nyfc) Ady; Remark 1: By definition, linear functions are a special
dt case of convex functions. For a linear functig(y) =
+2(z; — l‘j)T[F(%d) - F(l’jvd)] (12) 5 >0, Eq. (13) can be simplified a8 > N; — N; > 0.

leader-follower connections: Finally we derive what it
takes to keep the leader and the follower subgraphs con-
nected. Consider followei € N7/ and leaderj € N

Let f..: as before be defined as the largest value the
goal attraction functiory(d;) can assume within the convex
hull of the initial positions of all agents in the network

and the goal positionl. While z;

We shall investigate the casg; = A closer. Definex
to be the angle betweej and d, as seen by. Then, for
an arbitrary choice ofc; we havexr; = z; + Ae, where
e = % The dependence betweénandd; follows from
the law of cosines, such that for a givenwe getd; =
\/A2 + 62 — 2AA¢; cos .. Without loss of generality we can
assume thad; > d;, and that consequently 5 < a < 3
andcos a > 0. For the moment we also assume that> 0. 2(z; — a;)" [* D okens (T — k) — Zke/\/g( i »Lk-) +

With 6” =4, (12) becomes Zke_/\[l (CL’J - xk) + Zke]\/f (wa - xk) - F(l‘j,d)}, which
dé?, ) after some calculations yields
o S 2Npi+ Ny = 3Npe — N)A 62
oo 852 _ 52 _ 2N\ )
+2(xz _ :L‘j)T [F(IL,d) . F(Ij,d):| dt = 2Nf]5m 2N1151J + 2(xz 517]) |: F(xjvd)
< Q(Nf — Nl)AQ - Z (xi - Ik) + Z (l‘j - xk)}
f EeENT\N}
20— ) [Flas, ) — Flay,d)] e
< —2(Ny; + le')%- + 2 fmax0ij
K +2(Ny — Nyj)Abij + 2(Ny — Nii) Ad;.

and withz; = z; + Ae, the termy becomes

Setting dd” < 0 whenjd;; = A leads to

7 = 28T (42 - L)@ - ay) + LA N fue v .
. ) . + fi + NV
= —2A (f((;l) - f(61)> d; cos o — 2f(6])A2. _ 2 24 o o
i d; j It is easy to see that it;; = d, (15) is still a sufficient
—_———

e condition for i, j to remain connected since the effect of



setting F'(z;,d) = 0 will be a relaxation of the inequality.
Thus, if the leader and follower subgraphs remain complete
and if (15) holds for all initial links between leaders and I ]
followers, all connections in the graph will be maintained. I g
The previous derivations are summarized in the following: e \
Theorem 4. Assume that the communication gragft) or P S
is initially connected and constituted of two complete sub- I VT e
graphs, the subgraph of leaders and the subgraph of fol- Y e ® g
lowers. The dynamics of the follower and leader agents are al ./
given by (9) and (10) and the magnitude of the maximum °
goal attraction force that can be experienced by the leader -6
agents isfyae = Maxzeco(g(oyud) f(|d — z|). Assume also
that

16 18 20 22 24 26 28 30 32

. " Fig. 1. Initial configuration of the agents in Example 1 and Radlers
(A1) G(t) ?at'Sf'es condmon.(ll), and followers are represented by darker and lighter dots.
(A2) f(9) is a convex function orC'o(G(0) U d) such

that (14) is true,

(A3) (15) holds for all initial links(i, 7) such thati € s
N je N >
Then all links inG(¢) will be maintained fort > 0. or *ﬁ%?,f,,,r .
In some cases the following is also useful: ‘
Lemma 5: Let G(¢) be the communication graph in Theo- 5y °
rem 4 and letE* be a subset of the initial links between the o 5 10 15 20 25 30

group of leaders and the group of followers. Re-define the
neighbor sets of the graph such thiat N7 is considered a Fig. 2. Example 1: Trajectories of robots converging to thalgo
neighbor ofj € A, and vice versa, if and only if they are o ‘ ‘ ‘ ‘ ‘ ‘
initially connected and the linki, j) € E*. Then, if (A1) e
and (A2) are satisfied and it is possible to find a subBét ol

|E*| > 1, such that condition (15) is satisfied for all links in Fﬂ";" o
E*, then all links inE* will remain intact and the groups of )
leaders and followers will remain connected with each other

Proof: See [2]. 0 5 10 15 20 25 30
Fig. 3. Example 2: The initial positions of the robots are thens as
V. SIMULATIONS in Example 1 but the attraction to goal is stronger and camdli{iL5) that

guarantees preservation of leader-follower links is veda

The results of Section IV are illustrated in a series of
simulations. We consider a scenario where the subgraph of
leaders and the subgraph of followers are complete but where2) Example 2: Leader-to-follower stability: If the same
the full graph is not. A linear attractiofi(d) = 3¢ is used. simulation is run with a larger value ofi (6 = 2), the
Moreover,A = 10 andd = (0 0) in the examples. influence off(9) increases. Conditions (11) and (14) are still

1) Example 1: Stable graph: Consider first nine agents, satisfied but the inequality in (15) is no longer true for afiy o
four leaders and five followers. Le&f(t) denote the time- the existing leader-follower links and it is not guarantéeat
dependent communication graph, so tig0) is decided the connection between the leader and the follower subgroup
by the initial configuration of the agents, shown in Fig. 1is kept. The simulation shows that all agents still converge
ApparentlyG(0) is not complete. As seen in the figure, thetowards the goal (see Fig. 3), but because of the stronger
rightmost of the followers is outside the sensing range dttractive force, the leaders move faster towafdend as a
all the leaders while the reverse is true for the leftmost ofesult, one of the leader-follower links is temporarily kea
the leaders. The remaining seven agents form a compledgring the first part of the simulation. In this example, only
subgraph. Usingd = 1, both (11) and (14) are satisfied one link was broken and it was later re-formed, but in order
and condition (15) is true for all existing links between thdo predict this fortunate outcome of the simulation a thgtou
leader and the follower group. According to Theorem 4, thignalysis of the system would have been needed. Making
guarantees that all links in the initial graph are maintdjne sure that condition (15) is satisfied presents an easy way
a result that is confirmed by the simulation. The links are aPf avoiding the undesirable situation where the leader and
kept intact as the robots converge to the goal position and #e follower agents lose contact with each other.
the agents move closer to each other new links are formed,3) Example 3: Leader-to-leader stability: Let us consider
one by one, until the graph is complete. The trajectories d&fig. 4. Except for the single leader to the left, all agents ar
the converging robots are shown in Fig. 2. within sensor range of each other. With this setup we can
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10 15 20 25 30
Fig. 4. Initial configuration of the agents in Example 3.

choosegs such that (11) and (15) are true while (14) is vio-

in Fig. 8. In the initial setup, the rightmost of the follovser

is connected to the rest of the group only through links to

the other followers. These links are broken short after the
simulation is started and once the contact to the other agent
is lost, the disconnected follower has no way of localizing

neither the other agents nor the goal. As a result, the lost
follower is left behind and it never reaches the goal.

lated, and such that the leftmost of the leaders loses dontac
with the rest of the agents. Fig. 5 shows the trajectorieb®f t

agents in a simulation where = 0.02 while Fig. 6 shows °
the separation between the disconnected leader and the re: Ll |
of the group as a function of time. Since all leaders know ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30

the coordinates of the goal, all agents eventually re-ccinne

as they are approgchlng The follower agents_on _the Othe_r Fig. 8. Example 4: Condition (11), that guarantees the compsts of
hand are depending on the leaders for navigation, so it tise follower subgroup, is violated. The single follower teetright loses
more serious if one of the followers loses contact with theontact with the group permanently short after the start efsiimulation.

group. This scenario is treated in the final example.
VI. CONCLUSIONS

-5t

0 5 10

15

20

We examined how the network structure affects connectiv-
ity and convergence to a common goal for a group of agents
in a leader-follower multi-agent network with proximity
based communication topology. The geometric approach is
demonstrated on two networks with special structure on the
initial topology. In the first example, we studied a network
where the communication graph was initially complete. In

Fig. 5. Example 3: Due to the weakness of the goal attractisoefo
condition (14) is violated and the single leader closestéogoal temporarily
loses contact with the group.

20

15

101

distance

[1]
sk i
. R [2]
o 20 40 60 80 100 120 140
time
3]
Fig. 6. Distance separating the disconnected leader in Eagp 4]

4) Example 4: Follower-to-follower stability: To illustrate
the importance of maintaining the links within the follower [5]
subgroup we study a graph consisting of four followers and
five leaders. The initial positions are shown in Fig. 7. Qigar 6
the ratio of leaders-to-followers in the graph violates)(11
but with a proper choice of it is possible to satisfy both

K 7
(14) and (15) for all leader-follower links. 7
[8l

oF -
of — | [9]

ol ‘ ‘ ‘ ]

10 15 20 25 30
[10]
Fig. 7. Initial configuration of the agents in Example 4.

The simulation was run wity = 1 and the result is shown

the second example we considered an incomplete network
consisting of two complete subgraphs that were linked to-

gether. Further research includes an investigation oryrest
of information structures on which this approach is useful.
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