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Undirected Graphs

Vertices, Edges, Paths

An undirected graph G = (V, &) consists of a nonempty finite set V of elements called vertices
(or nodes) and a finite set £ of edges (or links), where each element in £ is an unordered pair of
two vertices in V.

We often write V = {1,...,n} and an edge between vertices i and j is denoted as {i,j}. We
call two vertices i,j € V adjacent if {i,j} € £. We call edge {i,j} incident with its vertices i
and j. The neighborhood N (i) C V of vertex i is defined as the set of vertices that are adjacent
with 4, i.e., N(i):={j eV :{i,j} € E}.

A path between two vertices v1 and v in G is an alternating sequence of distinct vertices
V1V ...V

such that for any m =1,...,k — 1, there is an edge between vy, and v41.
We call graph G connected if, for every pair of distinct vertices in V, there is a path between

them.

Degree, Adjacency, Incidence, and Laplacian Matrices

The degree of node i in graph G, d;, is the cardinality of N (7). The degree matriz of G, denoted
D(G), is the diagonal matrix diag(dy,...,d,) containing the vertex degrees on the diagonal.
The adjacency matrix A(G) is the symmetric n x n matrix indicating the adjacency relation-
ships in G, in that
17 if {Z’]} € 57
[AG)lij = (1)

0, otherwise.

The Laplacian matriz of G, denoted L(G), is defined by
L(G) == D(G) — A(9) (2)

Let m be the number of edges, i.e., the cardinality of £. We now arbitrarily label the edges

in £ from 1 to m, and the j'th edge will be denoted as e;. The incidence matriz of G, denoted



B(G), is the symmetric n X m matrix indicating the incidence relationships in G, in that

1, if edge e; is incident with vertex ¢,
[B(9)]i; = (3)

0, otherwise.

We have the following relation.
Proposition 1 B(G)B(G)T = D(G) + A(G).

Proof. Plain calculation. O

Incidence Matrix with Orientation

We now assign an orientation to G in the sense that for every edge {i,j} € V, we select one node
as head and the other tail. Intuitively every edge in £ is then equipped with a direction starting
from the tail pointing to the head. Let G° be one of the oriented graph of G. The oriented
incidence matriz of G, denoted B,(G°), is the symmetric n X m matrix indicating the oriented

incidence relationships in G°, in that

—1, if 4 is the tail of the edge e;,
[B«(6°)]lij = {1,  if i is the head of the edge e;, (4)
0, otherwise.

We have the following relation.
Proposition 2 B.(G°)B.(G°)" = D(G) — A(G) = L(9).

Proof. Again, plain calculation. O

The Laplacian

The Laplacian L(G) is of fundamental importance for characterizing the graph G. We summarize

some important properties of L(G):

e Denote 1 = [1,...,1]7. Then L(G)1 = 0. As a result, zero is an eigenvalue of L(G) with

1 a corresponding eigenvector.



e [(G) is symmetric and positive semi-definite. Hence we can sort its eigenvalues by

0=X(9) <X2(G) <...<M\(G).

e Denote z = (1,...,2,)7 as a vector in R”. Then

2TL(G)e = 2" B.(G°)B.(G") w = ) (i — )™ (5)

o _ : T . _ T
A2(G) L nin L(G)x; Au(G) max L(G)x.

We end the discussion on undirected graphs with the following theorem.
Theorem 1 The graph G is connected if and only if A2(G) > 0.

Proof: It is crucial to notice that G is connected if and only if the null space of B*(QO)T has
dimension one.

If A\2(G) > 0, then the null space of L(G) has dimension one. This in turn implies that the
null space of B,(G°)? has dimension one based on Proposition 2. The graph G is thus connected.
This proves the sufficiency.

If X\2(G) = 0, then the null space of L(G) has dimension at least two. This in turn implies
that the null space of B,(G°)T has dimension at least two based on Proposition 2. The graph G

is thus not connected. This proves the necessity. O



Directed Graphs

Arcs, Paths

A directed graph (digraph) G = (V,£) consists of a nonempty finite set V = {1,...,n} of nodes,
and a finite set £ of arcs, where each element in £ is an ordered pair of two vertices in V. An
element (i, 7) € & starts from i and points to j. We call i the tail and j the head of in arc (1, j).

A directed path from vertex v; to vy in digraph G is an alternating sequence of distinct nodes
V1V ...V

such that (vy,,vm41) € € forany m=1,...,k — 1.

Connectivity

We call node j reachable from node i if there is a directed path from ¢ to j in digraph G. In
particular every node is supposed to be reachable from itself. A node v from which every node
in V is reachable is called a center node (root).

A digraph G is strongly connected if every two nodes are mutually reachable; G is quasi-
strongly connected if for every two nodes 7 and j, there is a node u from which both ¢ and j are
reachable; G is weakly connected if we can get a connected undirected graph by removing all the
directions of the arcs in .

For the connectivity of digraphs, the following theorem holds [2].

Theorem 2 A digraph G is quasi-strongly connected if and only if G has at least one center

node.

Proof. The sufficiency claim is trivial. Now suppose G is quasi-strongly connected. Take two
different nodes i and j. There is a node v(i,j) (as a function of ¢ and j) from which both
i and j are reachable. This node v(i,7) might be within {7, j}, or not. We anyhow denote
Vi = {i,4,v(i,j)}. Then take a node outside Vj, say k. There must be a node u(Vi,k) from
which every node in V; U {k} is reachable. We can repeat this argument until every node in the

graph has been visited. The last node we find is clearly a center node of G. U



The Digraph Lapalacian

In a digraph G, the in-neighborhood Nt (i) C V of node i is defined as N (i) := {j € V : {j,i} €
E}. The out-neighborhood N~ (i) CV of node i is defined as N~ (i) :={j € V : {i,j} € £}. The
in-degree of node i in digraph G, d;, is the cardinality of N7 (7). The out-degree of node i in
digraph G, d;, is the cardinality of N~ (i).

The in-degree matriz of digraph G, denoted DT (G), is the diagonal matrix diag(df, codih).

The adjacency matrix A(G) of digraph G is the n x n matrix given by

1, if (j,i) € &,
AG)]; = e ©)

0, otherwise.

The Laplacian matriz of digraph G, denoted L(G), is defined by
L(G) = D"(G) — A(9) (7)

Unlike the case for undirected graphs, L(G) is no longer symmetric. However, it is still
obvious to verify that L(G)1 = 0. This means, for directed graphs, zero continues to be an
eigenvalue of L(G) and 1 is a corresponding eigenvector. It is also worth mentioning that the
eigenvalues of L(G) always lie in the closed Left Half-Plane as a direct conclusion from the
Gershgorin circle theorem.

The following result holds. The proof is omitted since it requires considerably more prelim-

inary knowledge. We refer to [3] for a complete proof.

Theorem 3 Let L(G) be the Laplacian of a digraph G. Then rankL(G) = n—1 if and only if G

18 quasi-strongly connected.
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