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Undirected Graphs

Vertices, Edges, Paths

An undirected graph G = (V, E) consists of a nonempty finite set V of elements called vertices

(or nodes) and a finite set E of edges (or links), where each element in E is an unordered pair of

two vertices in V.

We often write V = {1, . . . , n} and an edge between vertices i and j is denoted as {i, j}. We

call two vertices i, j ∈ V adjacent if {i, j} ∈ E . We call edge {i, j} incident with its vertices i

and j. The neighborhood N (i) ⊆ V of vertex i is defined as the set of vertices that are adjacent

with i, i.e., N (i) := {j ∈ V : {i, j} ∈ E}.

A path between two vertices v1 and vk in G is an alternating sequence of distinct vertices

v1v2 . . . vk

such that for any m = 1, . . . , k − 1, there is an edge between vm and vm+1.

We call graph G connected if, for every pair of distinct vertices in V, there is a path between

them.

Degree, Adjacency, Incidence, and Laplacian Matrices

The degree of node i in graph G, di, is the cardinality of N (i). The degree matrix of G, denoted

D(G), is the diagonal matrix diag(d1, . . . , dn) containing the vertex degrees on the diagonal.

The adjacency matrix A(G) is the symmetric n×n matrix indicating the adjacency relation-

ships in G, in that

[A(G)]ij =


1, if {i, j} ∈ E ,

0, otherwise.

(1)

The Laplacian matrix of G, denoted L(G), is defined by

L(G) := D(G)−A(G) (2)

Let m be the number of edges, i.e., the cardinality of E . We now arbitrarily label the edges

in E from 1 to m, and the j’th edge will be denoted as ej . The incidence matrix of G, denoted
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B(G), is the symmetric n×m matrix indicating the incidence relationships in G, in that

[B(G)]ij =


1, if edge ej is incident with vertex i,

0, otherwise.

(3)

We have the following relation.

Proposition 1 B(G)B(G)T = D(G) +A(G).

Proof. Plain calculation. �

Incidence Matrix with Orientation

We now assign an orientation to G in the sense that for every edge {i, j} ∈ V, we select one node

as head and the other tail. Intuitively every edge in E is then equipped with a direction starting

from the tail pointing to the head. Let Go be one of the oriented graph of G. The oriented

incidence matrix of G, denoted B∗(Go), is the symmetric n ×m matrix indicating the oriented

incidence relationships in Go, in that

[B∗(Go)]ij =


−1, if i is the tail of the edge ej ,

1, if i is the head of the edge ej ,

0, otherwise.

(4)

We have the following relation.

Proposition 2 B∗(Go)B∗(Go)T = D(G)−A(G) = L(G).

Proof. Again, plain calculation. �

The Laplacian

The Laplacian L(G) is of fundamental importance for characterizing the graph G. We summarize

some important properties of L(G):

• Denote 1 = [1, . . . , 1]T . Then L(G)1 = 0. As a result, zero is an eigenvalue of L(G) with

1 a corresponding eigenvector.
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• L(G) is symmetric and positive semi-definite. Hence we can sort its eigenvalues by

0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λn(G).

• Denote x = (x1, . . . , xn)
T as a vector in ℜn. Then

xTL(G)x = xTB∗(Go)B∗(Go)Tx =
∑

{i,j}∈E

(xi − xj)
2. (5)

• λ2(G) = min
x⊥1,||x||=1

xTL(G)x; λn(G) = max
||x||=1

xTL(G)x.

We end the discussion on undirected graphs with the following theorem.

Theorem 1 The graph G is connected if and only if λ2(G) > 0.

Proof : It is crucial to notice that G is connected if and only if the null space of B∗(Go)T has

dimension one.

If λ2(G) > 0, then the null space of L(G) has dimension one. This in turn implies that the

null space of B∗(Go)T has dimension one based on Proposition 2. The graph G is thus connected.

This proves the sufficiency.

If λ2(G) = 0, then the null space of L(G) has dimension at least two. This in turn implies

that the null space of B∗(Go)T has dimension at least two based on Proposition 2. The graph G

is thus not connected. This proves the necessity. �
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Directed Graphs

Arcs, Paths

A directed graph (digraph) G = (V, E) consists of a nonempty finite set V = {1, . . . , n} of nodes,

and a finite set E of arcs, where each element in E is an ordered pair of two vertices in V. An

element (i, j) ∈ E starts from i and points to j. We call i the tail and j the head of in arc (i, j).

A directed path from vertex v1 to vk in digraph G is an alternating sequence of distinct nodes

v1v2 . . . vk

such that (vm, vm+1) ∈ E for any m = 1, . . . , k − 1.

Connectivity

We call node j reachable from node i if there is a directed path from i to j in digraph G. In

particular every node is supposed to be reachable from itself. A node v from which every node

in V is reachable is called a center node (root).

A digraph G is strongly connected if every two nodes are mutually reachable; G is quasi-

strongly connected if for every two nodes i and j, there is a node u from which both i and j are

reachable; G is weakly connected if we can get a connected undirected graph by removing all the

directions of the arcs in E .

For the connectivity of digraphs, the following theorem holds [2].

Theorem 2 A digraph G is quasi-strongly connected if and only if G has at least one center

node.

Proof. The sufficiency claim is trivial. Now suppose G is quasi-strongly connected. Take two

different nodes i and j. There is a node v(i, j) (as a function of i and j) from which both

i and j are reachable. This node v(i, j) might be within {i, j}, or not. We anyhow denote

V1 = {i, j, v(i, j)}. Then take a node outside V1, say k. There must be a node u(V1, k) from

which every node in V1 ∪ {k} is reachable. We can repeat this argument until every node in the

graph has been visited. The last node we find is clearly a center node of G. �
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The Digraph Lapalacian

In a digraph G, the in-neighborhood N+(i) ⊆ V of node i is defined as N+(i) := {j ∈ V : {j, i} ∈

E}. The out-neighborhood N−(i) ⊆ V of node i is defined as N−(i) := {j ∈ V : {i, j} ∈ E}. The

in-degree of node i in digraph G, d+i , is the cardinality of N+(i). The out-degree of node i in

digraph G, d−i , is the cardinality of N−(i).

The in-degree matrix of digraph G, denoted D+(G), is the diagonal matrix diag(d+1 , . . . , d
+
n ).

The adjacency matrix A(G) of digraph G is the n× n matrix given by

[A(G)]ij =


1, if (j, i) ∈ E ,

0, otherwise.

(6)

The Laplacian matrix of digraph G, denoted L(G), is defined by

L(G) := D+(G)−A(G) (7)

Unlike the case for undirected graphs, L(G) is no longer symmetric. However, it is still

obvious to verify that L(G)1 = 0. This means, for directed graphs, zero continues to be an

eigenvalue of L(G) and 1 is a corresponding eigenvector. It is also worth mentioning that the

eigenvalues of L(G) always lie in the closed Left Half-Plane as a direct conclusion from the

Geršhgorin circle theorem.

The following result holds. The proof is omitted since it requires considerably more prelim-

inary knowledge. We refer to [3] for a complete proof.

Theorem 3 Let L(G) be the Laplacian of a digraph G. Then rankL(G) = n− 1 if and only if G

is quasi-strongly connected.
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